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Abstract. The iterative procedure to use the nonconforming elements in elasto-plastic problems is esta-
blished and applied to the variable node transition solid element developed for the automated three-
dimensional local mesh refinement. Through numerical tests, the validity and performance of the element
are examined. As the nonlinear iterative procedure presented in this paper is accomplished for the
general three-dimensional case, it can also be easily applied to the two-dimensional elements such as
membranes, plates and shells.
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1. Introduction

Fully three-dimensional analysis embraces clearly all the practical engineering problems. It
is obvious, however, that the number of degrees-of-freedom necessary to achieve a given degree
of accuracy by the three-dimensional analysis has to be very large. It is not surprising therefore
that efforts to improve accuracy of the analysis by the use of more complex elements have
been strongest in the area of three-dimensional analysis (Spilker and Singh 1982, Gupta 1984,
Yunus, et al. 1991, Smith and Kidger 1992, Chen and Cheung 1992).

The eight-node hexahedron solid element has been frequently used in the three-dimensional
structural analysis due to its simplicity and easy availability. However, when a complicated struc-
ture needs to be gradually refined locally and reanalyzed due to the existence of steep stress
gradient and/or the singularity due to the concentrated local load, the overall mesh should be
reconstructed to be consistent with the local stress gradient. For such mesh gradation, the use
of eight-node solid elements often leads either to meshes with highly distorted elements or to
meshes with too many degrees-of-freedom which may exceed the economical limit of computation.

A new solid element with variable nodes was established to be used effectively as transition
elements in three-dimensional modeling (Choi and Lee 1993). The improvement achieved by
the addition of the nonconforming modes was significant and the use of this type of element
in modeling transition zone is very effective and stable. To date, however, the application of
this element has been limited to the problems within elastic domain. In this paper, the use
of nonconforming transition solid element is extended to the materially nonlinear problems.
The formulation of the element is briefly reviewed and an iterative procedure to add material

t Professor
1 Graduate Student



326 Chang-Koon Choi and Gi-Taek Chung

@ basic node

15 8 (® varniable node

Fig. 1 Transition element with variable nodes from 8 to 27.

nonlinearity to the nonconforming element is suggested in subsequent sections. Through the
numerical tests, the validity and performance of the proposed element is examined.

2. Nonconforming transition solid element

For the automated three-dimensional local mesh refinement where the steep stress gradient
exists, a three-dimensional transition solid element has been developed by Choi and Lee (1993).
The developed transition element was established by adding a variable number of nodes to
the basic nonconforming 8-node solid element (NC8) for an effective connection between the
refined region and the coarse region with minimum degrees of freedom possible. Based on
the basic configuration and the node numbering of the element, a series of new solid transition
elements which have up to 27 nodes can be systematically established (Fig. 1). The basic behavior
of these elements has been improved through the addition of modified nonconforming displace-
ment modes.

It was verified by Choi and Lee (1993) that the developed elements passed the patch test
and there are no spurious zero energy mechanisms. Moreover, in case of the highly distorted
mesh, the accuracy of the nonconforming elements is markedly better than that of the conventio-
nal elements.

The general displacement approximations for the variable-node element with the nonconfor-
ming modes which are modified to incorporate the contributions of variable nodes are of the
form

u=N.u~+N,u, (1)

where ¢ indicates conforming, » indicates nonconforming, u, is the nodal displacement vector,
u, is the nonconforming mode interpolation parameter vector., N, is the compatible interpolation
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functions, and N, is the corresponding nonconforming modes modified from those of a regular
hexahedron element to consider the nature of variable nodes that a transition element has.
The derived shape functions and the detailed formulation for the element can be found in
Choi and Lee (1993).

Then the element strains are given as

e=B.u.+B,u, (2

where strain-displacement matrices B, and B, are obtained by differentiating the shape functions
N, and N,, respectively, imposing constraints as described by Choi and Lee (1993).

The augmented equilibrium equation in a matrix form due to the addition of the nonconfor-
ming displacement modes u, is given as (Choi and Park 1989)

& o= o

where
K.= f B'DB.dV )]
b
K,= j B'DB,dV &)
»
K,.= j BZ'DB,,dV (6)
)

in which D is the general (6X6) stress-strain matrix. It is noted that the lower part of force
vector contains only zeros since the nonconforming modes (#,) are not physical nodal displace-
ments and accordingly the corresponding force terms cannot be defined.

Through the static condensation, Eq. (3) is modified to give the final equilibrium equation

I_(u(:f (7
where K is condensed back to the original matrix size and given as
K=K.—K,K, 'K, ®

The newly established element has been designated as NCV (NonConforming Variable node
element) in this study.

3. Nonconforming element in inelastic problems

Although there have been quite a few recent researches on the development of the finite
elements with nonconforming displacement modes (Choi and Park 1989, Wilson and Ibrahimbe-
govic 1990, Choi and Lee 1993), the use of these elements in structural analysis with material
nonlinearity is seldom found in the published literature. The main difficulty associated with
utilizing the nonconforming finite elements in materially nonlinear analysis is that these elements
include the nonconforming displacement modes in addition to the compatible nodal displaceme-
nts. When u, in Eq. (2) is condensed out, the strains of nonconforming elements are estimated
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by u. only
¢=Bu, )
where B is the condensed strain-displacement matrix given as

BBBKKT

nn on*

(10)

This equation reveals that the strain-displacement relationship for nonconforming elements
depends partly on the stiffness which includes material property, as well as on the geometry.
The materially nonlinear analysis is carried out by the Newton Raphson method with loads
applied in several steps. The converged solution in each load step is obtained through the iterative
procedure by updating the tangential stiffness K,, in accordance with the flow rule. Therefore,
the element strain for nonconforming elements is a function of the K, matrix rather than a
constant. The nonlinear iterative procedure with nonconforming elements in one load step is
suggested as follows.

The incremental strains are estimated first from the incremental displacements using the tan-
gential stiffness K7, as used in the calculation of the incremental displacements

de'=B’du’ (11)

where _
B'=B.—B,[K,,]1 '[K,]" (12)

in which the superscript r is the current iteration in the load step.
Based on these incremental strains, the stresses o’ satisfying the flow rule are determined
as

=o' '+ Dde’—d Ad), (13)

The details related to this equation and the flow rule employed in thlS study can be referred
to Appendix.

The final process in the iterative procedure is to calculate the internal forces and check the
convergence criterion. For the estimation of the internal forces which are statically equivalent
to the current stress field o’, the tangential stiffness K/, ' newly updated according to the flow
rule is used as

= f (B Tordv (14)

where
B’“—B —B,[K, "] '[KT (15)

It is noted that terms with the superscript r+1 in Eq. (15) will be used to calculate the next
incremental displacements du’"' and strains de™*'.

Since the sub-matrices K’;' and K’ ' are needed in the calculation of internal forces in the
current iteration, the augmented tangential stiffness K [;,,‘“g for the (r+ 1)-th iteration is evaluated
using the elasto-plastic stress-strain matrix D},

Kr+l VJ B'I Dr+lBaung (16)

ep.aug aug

or
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Fig. 2 Nonlinear iterative procedure for nonconforming element.
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(K77 (K. (17

[EK <1 IK In“]]
in which B, denotes the augmented strain-displacement matrix [B,|B,]. Thus the stiffness of
nonconforming elements for the new iteration is formed. With the processes described above,
the iterative procedure for materially nonlinear analysis with nonconforming finite elements is
shown in Fig. 2.

4. Numerical examples

Four numerical examples, ie., a cantilever beam, a clamped square plate, a solid under concent-
rated loading and a cut cube subject to inner pressure are presented to evaluate the validity
and performance of the proposed elasto-plastic nonconforming solid element with variable nodes.
The first two examples are selected to examine the nonlinear performance of the basic 8-node
nonconforming element in flexure stress situations, and the other two examples to demonstrate
the effectiveness of the variable-node element in the problems with local steep stress gradients.
The influence of nonconforming modes included in the proposed element is carefully investigated
in each example. Especially in the first two examples, the performance of the proposed eight
node nonconforming element is compared with that of the quadratic Lagrange element with
27 nodes which is available in the general purpose nonlinear analysis program ADINA (1984).
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Fig. 3 Cantilever beam

The same Gauss integration rule (3X3X3) as for the quadratic Lagrange element is used for
the proposed element.

The stresses obtained with the element based on linear shape functions are recovered by
a smoothing procedure in order to achieve more acceptable approximations. The superconvergent
patch recovery (SPR) is employed in this study as a powerful and economic recovery technique
(Zienkiewicz and Zhu 1992, Lee 1994). In each example, the elastic modulus of 29000 ksi is
used with Poisson’s ratio of 0.3. The effective stress-strain relationship of each material is taken
to be elastic-perfectly plastic, and the yield stress o, of 36 ksi is used throughout.

4.1. Cantilever beam

A cantilever beam subject to a uniformly distributed load as shown in Fig. 3 is tested with
three different types of elements; namely C8 (Conforming 8-node element), NC8 (NonConforming
8-node element) and L27 (Lagrange 27-node element). By taking advantage of symmetry, only
a vertical half a beam is modelled and analyzed. The finite element model is composed of
45 elements and 300 degrees-of-freedom for 8-node elements (C8 and NC8) and 1680 for 27-
node Lagrange element.
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Fig. 5 Bending stress distribution at elastic stage (when ¢=048 ksi)
(at x=0.8873 and z=2.887)

The variation of vertical displacement at the upper tip of symmetry plane (point A in Fig.
3) is shown in Fig. 4. For the purpose of an easy evaluation, the pressure load and the vertical
displacement are normalized by the corresponding yield values obtained by simple bending
theory (¢,=048 ksi and #,=0.0466 in). It can be seen that the influence of nonconforming
modes is significantly increased as the corresponding material goes into the inelastic range and
that NC8 which has a much smaller number of degrees-of-freedom than L27 element provides
almost the same accuracy of the nonlinear load-displacement relationship as 1.27. This figure
also reveals that the use of conforming elements for the materially nonlinear analysis should
not be recommended because of the poor performance in the nonlinear range.

The flexural stresses o, at Gauss points nearest to the upper line of symmetry plane (at
x=0.8873 and z=2.887) are shown in Fig. 5, at the first load step or at the elastic stage. The
overall trends for each element type are similar to the reference values obtained by the beam
theory. The effective stresses at the same Gauss points at the last load step (when ¢=0.88 ksi)
are shown in Fig. 6 in which the similar yield pattern can also be seen for each element type.
In this example, it is observed that the stress state is rather insensitive to the addition of non-
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Fig. 9 In-plane stress o. contour at elastic stage (when ¢=1.5 ksi)
(at z=0.9628)

conforming modes, whereas the bending behavior of the element is very sensitive to addition
of nonconforming modes.

4.2. Clamped square plate

A clamped square plate subjected to a uniformly distributed load is examined, as shown
in Fig. 7. By taking advantage of symmetry, only a quadrant of a plate is modelled and analyzed.
The finite element model is composed of 300 elements and 1120 actual degrees-of-freedom for
8-node elements (C8 and NC8) and 8120 for 27-node element (L27). The vertical displacements
at the upper point of the plate center (point A in Fig. 7) are shown in Fig. 8. Similar to the
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Fig. 10 Variation of effective stress contour (at z=0.9628)



Elasto-plastic nonconforming solid element 335

Fig. 11 Solid under concentrated loading
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Fig. 12 Load-displacement relationship at loading point

prev:ous beam problem, the influence of nonconforming modes is greatly increased as the corres-
porc ng material goes into the inelastic range and NC8 element provides almost the same accu-
racy 1 the nonlinear load-displacement relationship as the more complicated L27.

In 1ig. 9, the contour map of the in-plane stress o, at the upper Gauss points (at z=0.9628)
under he initial load (¢= 1.5 ksi) is shown. The stress distributions for each element type, ie.,
C8, NC( 8 and L27, are of the similar pattern. In Fig, 10, the variation of effective stress contour
at the same Gauss points under the different intensities of the distributed loads are shown.
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(at z=16)

The plastic zones are initiated at the center of plate edge and then developed at the plate center
for each element type. As the corresponding material goes into the inelastic range, the yield
zones propagate and a significant influence by the addition of nonconforming modes is also
seen in this example. While the structure is fully plastified except the small corner zone at
the final load step (when ¢g=43 ksi) by the NC8 and L27 elements, some elastic zones still
remain in the structure by C8. The progress of plastification in the structure can be more effectively
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Fig. 16 Variation of effective stress contour at inner surface
(at y=4)

detected either by the higher order element (L27) or by the nonconforming element (NC8).
4.3. Solid under concentrated loading

A solid clamped fully at the bottom surface and subjected to a concentrated load at the
upper mid-point is examined, as shown in Fig. 11. A steep stress gradient is expected at the
loading point and the local mesh refinement at this point is necessary for the effective and
economic finite element analysis. By taking advantage of symmetry, only a quadrant of a solid
is actually modelled and analyzed. The finite element model is composed of 190 elements and
919 actual degrees-of-freedom. The model utilizes the two different variable node transition
elements, namely CV and NCV, and the basic behavior of the element is examined. L27 element
is not used in this example since it utilizes a different local refinement scheme.

The variation of vertical displacement at the loading point is shown in Fig. 12, and the signifi-
cant influence of nonconforming modes in inelastic range is assured again. In Fig. 13, the variation
of effective stress contour at the upper surface (at z=16) is shown. A wider plastic zone is
detected with the nonconforming element. It should be noted in this example that the yield
zones do not propagate to the distant zone further due to the concentration of large increase
of strain within a small zone near the loading point.
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4.4. Cut cube subject to inner pressure

A cut cube subjected to inner pressure as shown in Fig. 14 is examined, by two different
variable node transition elements, namely CV and NCV. Due to the abrupt change in geometry,
a steep stress gradient is expected at the edges of connection between the large and small bodies
and the local mesh refinement at these edges is required for the effective and economic finite
element analysis. By taking advantage of symmetry, only one eighth of the total domain is
actually modelled and analyzed. The finite element model in which both variable node transition
elements are utilized is composed of 832 elements and 3861 degrees-of-freedom.

The variation of lateral displacement at the inner corner point (point A in Fig. 14) is shown
in Fig. 15. It should be noted that failure in this example occurs abruptly by the concentrated
yielding at inner edges. Thus the overall influence by the addition of nonconforming modes
is smaller than the previous examples, except at the last load step where the load-displacement
gradient is decreased abruptly. Fig. 16 shows the effective stress contour at the inner surface
(at y=4), and the concentrated yielding at the inner edges can be seen. It is observed that
the stress state as well as the displacement is rather insensitive to the addition of nonconforming
modes since the normal stress is dominant and the flexural stress is negligible in this example.

5. Conclusions

The algorithm which uses the variable node nonconforming elements in the analysis of elasto-
plastic problems has been established. Through the numerical tests, it is found that the influence
of nonconforming modes is significantly increased as the material goes into the inelastic range.
The bending behavior of the element is more sensitive to the addition of the nonconforming
modes than the normal stress dominant case. Thus the nonconforming 8-node element (NC8)
in an elasto-plastic analysis provides comparable results to those of the more complex quadratic
Lagrange element (L27), even though the nonconforming element uses much less degrees-of-free-
dom.

Furthermore, the introduction of the variable nodes to the basic 8-node elements to establish
the nonconforming transition elements (NCV) makes it possible to construct efficient and econo-
mic finite element meshes when steep stress gradient exists due to the abrupt change in geometry
and/or loading. The most important strength of the element presented in this paper is such
that in the elasto-plastic three-dimensional finite element analysis, it gives an economy in compu-
tation and a convenience in pre- and post-processing to achieve a required degree of accuracy.
As the elasto-plastic iterative procedure was accomplished here for the general three-dimensional
case, it could be easily applied without major modifications to the simpler cases such as
membranes, plates and shells.
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Appendix

The flow rule employed in this study is based on the following hypotheses (Owen and Hinton 1980):
(1) During any increment of stress, the changes of strain are assumed to be divisible into elastic
and plastic components

de=de,+dg,.
(ii) The yield criterion of von Mises is used to determine the stress level at which plastic deformation
begins
ST I
f=k 30 0

where f is a yield function, k is a material parameter and & is termed the effective stress.
(iii) With an associated theory of plasticity, the normality condition is assumed so that the plastic
strain increment is proportional to the stress gradient of a yield function

_ 4,01
de,=d A Jo
where dA is termed the plastic multiplier.

From the assumptions and prerequisites mentioned above, the complete elasto-plastic incremental
stress-strain relation can be obtained

do=D,de
with —p. . dpdb
Do =D~ qra + dr=Da
where a is termed the flow vector
ar—0f
do

and the hardening parameter H' is obtained to be the local slope of the effective stress-plastic strain
curve
do

H="re

in which -+ denotes the corresponding effective term.





