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A new reinforcing steel model with bond-slip
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Abstract. A new reinforcing steel model which is embedded inside a concrete element and also accounts
for the effect of bond-slip is developed. Unlike the classical bond-link or bond-zone element using
double nodes, the proposed model is considering the bond-slip effect without taking double nodes by
incorporation of the equivalent steel stiffness. After calculation of nodal displacements, the deformation
of steel at each node can be found through the back-substitution technique from the first to the final
steel element using a governing equation constructed based on the equilibrium at each node of steel
and the compatibility condition between steel and concrete.r This model results in significant savings
in the number of nodes needed to account for the effect of bond-slip. in particular, when the model
is used for three dimensional finite element problems. Moreover a new nonlinear solution scheme is
developed in connection with this model. Finally, correlation studies between analytical and experimental
results and several parameter studies are conducted with the objective to establish the validity of the
proposed model.
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1. Introduction

Reinforced concrete(RC) structures are made up of two materials with different characteristics.
namely, concrete and steel. Steel can be considered as a homogeneous material and its material
properties are generally well defined. On the other hand. concrete is a heterogeneous material
made up of cement, mortar and aggregates and exhibits nonlinear behavior even under low
level loading due to nonlinear material behavior, environmental effects, cracking, biaxial stiffening
and strain softening. Moreover, reinforcing steel and concrete interact in a complex way through
bond-slip and aggregate interlock. These complex phenomena have led engineers in the past
to rely heavily on empirical formulas for the design of concrete structures, which were derived
from numerous experiments. With the advent of digital computers and powerful methods of
analysis, such as the finite element method, many efforts to develop analytical solutions which
would complement the experiments have been undertaken by investigators (Leibengood,
et al. 1986, Choi and Kwak 1990). In spite of the large number of previous studies on the nonlinear
finite element analysis of reinforced concrete structures, only few conclusions of general applicabi-
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lity have been arrived at. The inclusion of the effects of tension stiffening and bond-slip is
the case in point. Since few rational models of this difficult problem have been proposed so
far, it is rather impossible to assess exactly what aspects of the behavior are included in each
study and what the relative contribution of each is.

While the response of lightly reinforced beams in bending is very sensitive to the effect of
tension stiffening of concrete, the response of RC structures in which shear plays an important
role, such as over-reinforced beams and shear wall, is much more affected by the bond-slip
of reinforcing steel than the tension stiffening of concrete (Kwak and Filippou 1990). To account
for the bond-slip of reinforcing steel two different approaches are common in the finite element
analysis of reinforced concrete structures. The first approach makes use of the bond-link element
proposed by Ngo and Scordelis (1967). This element connects a node of a concrete finite element
with a node of an adjacent steel element. The link element has no physical dimensions, i.e.
the two connected nodes have the same coordinates(Fig. 1a). The second approach makes use
of the bond-zone element developed by de Groot, et al. (1981). In this element the behavior
of the contact surface between steel and concrete and the behavior of the concrete in the immediate
vicinity of the reinforcing bar is described by a material law which considers the special properties
of the bond zone. The contact element provides a continuous connection between reinforcing
steel and concrete, if a linear or higher order displacement field is used in the discretization
scheme(Fig. 1b). A simpler but similar element was proposed by Keuser and Mehlhorn (1987)
who showed that the bond-link element cannot represent adequately the stiffness of the steel-
concrete interface. Even though many studies of the bond-slip relationship between reinforcing
steel and concrete have been conducted, considerable uncertainty about this complex phenomenon
still exists because of the many parameters which are involved. Especially the complication
in numerical modeling caused by taking the double nodes exacts that most finite element studies
of RC structures do not account for bond-slip of reinforcing steel. Many researchers express
the opinion that this effect is included in the tension stiffening model.

In this study, a new reinforcing steel model which is embedded inside a concrete element
and accounts for the effect of bond-slip without taking the double nodes is developed. The
reliability for the proposed model is verified through the correlation studies between analytical
and experimental results.

2. Reinforcing steel model with bond-slip
2.1. General

Bond is the interaction between reinforcing steel and surrounding concrete. Since bond stresses
in reinforced concrete members arise from the change in the steel force along the length, the
effect of bond becomes more pronounced at the end anchorages of reinforcing bars and in
the vicinity of cracks.

In the simplified analysis of reinforced concrete structures complete, compatibility of strains
between concrete and steel is usually assumed, which implies perfect bond. This assumption
is realistic only in regions where negligible stress transfer between the two components takes
place. In the regions of transfer stresses along the interface between reinforcing steel and sur
rounding concrete, especially near cracks, the bond stress is related to the relative displacement
between reinforcing steel and concrete. The assumption of perfect bond near crack zones requires
infinitely high strains to explain the existence of a finite crack width. In reality there is no
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strain compatibility between reinforcing steel and surrounding concrete near cracks. This incom-
patibility and the crack propagation give rise to relative displacements between steel and concrete,
which are known as the bond-slip.

Two basically different elements, namely, the bond-link element and bond-zone element, have
been proposed to date for inclusion of the bond-slip effect in the finite element analysis of
RC structures as mensioned above. In studies where the detailed local behavior is of interest,
the continuous bond elements such as bond-zone elements are most appropriate. In cases, how-
ever, where the overall structural behavior is of primary interest, the bond-link element provides
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a reasonable compromise between accuracy and computational efficiency. Therefore, the bond-
link element is selected for representing the bond-slip effect in this study.

However, the use of bond-link element in the finite element analysis of RC structures imposes
the following restrictions: (1) the finite element mesh must be arranged in the way that a reinfor-
cing bar is located along the edge of a concrete element and (2) a double node is required
to represent the relative slip between reinforcing steel and concrete. In a complex structure,
particularly in three-dimensional models, these requirements lead to a considerable increase in
the number of degrees of freedom, not only because of doubling the number of nodes along
the reinforcing steel bars, but also because the mesh has to be refined, so that the bars pass
along the edges of concrete elements. The complexity of mesh definition and the large number
of degrees of freedom has discouraged researchers from including the bond-slip effect in many
previous studies. To address some of these limitations of the bond-link element, a new discrete
reinforcing steel model which includes the bond-slip deformation is proposed in this study.

2.2. Material properties

Since the reinforcing steel is used in the concrete construction in the form of reinforcing
bars or wire, it is not necessary to introduce the complexities of three-dimensional constitutive
relations for steel. Merely the specification of an uniaxial stress-strain relation for steel is sufficient
to define the material properties needed in the analysis of reinforced concrete structures. Thus
the reinforcing steel is modeled with discrete one-dimensional truss elements, which are assumed
to be pin connected and possess one degree of freedom at each node in two dimensional
problems. In simulation of material property through the loading history, the reinforcing steel
is modeled as a linear elastic, linear strain hardening material with yield stress o, as shown
in Fig. 2. The reasons for this approximation are: (1) the computational convenience of the
model; (2) the behavior of RC members is greatly affected by the. yielding of reinforcing steel
when the structure is subjected to a large deformation. It is, therefore, advisable to take advantage
of the strain-hardening behavior of steel in improving the numerical stability of the solution.

The bond stress is determined from the change in steel stress over a certain measurement
length, which is usually taken equal to five bar diameters, and the relative slip is determined
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Fig. 3 Bond stress-slip.

externally or internally. It is, therefore, practically impossible to establish a local bond stress-
slip relation, since the measured bond stress-slip relation generally represents the average relation
over the measurement length. Moreover, the result is very sensitive to the experimental error
because the bond stress is derived from the change in.steel stress, and the bond-slip relation
also depends on the position of the bars, the surface conditions of bars, the loading stage, the
boundary conditions and the anchorage length of bars. In spite of these difficulties, several
experimental bond-stress slip relations have been proposed (Eligehausen, er al. 1983, Hayashi
and Kokusho 1985). There are also many simple relations among the proposed models due
to these difficulties (ASCE 1982). In this study the simple trilinear bond stress-slip model in
Fig. 3 is adopted in the finite element analysis of plane stress problems. The parameters of
the model are derived from the material properties of each specimen in the experimental studies.
This model is a good approximation of the actual behavior in cases which do not exhibit signifi-
cant bond-slip and associated bond damage. Under monotonic loading this holds true in all
RC members which do not experience anchorage failure.

2.3. Proposed steel model

Based on the aforementioned material models, a new discrete reinforcing steel model which
includes the bond-slip deformation is proposed in this study. In this model the reinforcing bar
is assumed to be embedded inside the concrete element, as shown in Fig. 4a, so that the analyst
can choose the finite element mesh configuration independently of the location of the reinforcing
bars(Fig. 5). At the same time the relative slip between reinforcing steel and concrete is explicitly
taken into account in the model. Since the finite element model includes the concrete displacement
degrees of freedom only, the degrees of freedom which are associated with the reinforcing steel
need to be condensed out before the element stiffness matrix of reinforcing bar is assembled
into the structure stiffness matrix.

A convenient free body diagram can be drawn which isolates the steel element with the bond-
link elements attached at its two end points. Fig. 4b shows the element before deformation
and Fig. 4c after deformation. In Fig. 4, i and j denote the end points of the element, points
1 and 3 are associated with concrete and points 2 and 4 are associated with the reinforcing
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steel at ends i and j, respectively. The corresponding degrees of freedom of the reinforcing steel
and concrete at each end are connected by the bond-link element whose stiffness depends on
the relative displacement between steel and concrete. With this assumption the stiffness matrix
which relates the end displacements along the axis of the reinforcing bar with the corresponding

forces can be expressed as follows:

P ks 0 —kyi 0
P3 0 k[?/' 0 _kh,'
Pg - “kh/ 0 k_\-+k[,,- _k.\
P4 0 “kb,' _k.\- k_\+khj

or

Px KCS KXS dS

d
ds
d
dy

(D

)

where k,=AE/L is the steel stiffness, k,= E,A=E,mnd,L/2b is the stiffness of the bond-link
parallel to the bar axis at the corresponding end of the steel element where the dowel action
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is neglected, E, is the slip modulus, 4 is the bar circumferential area tributary to one bond
link element, m is the number of bars of diameter, d, is the diameter of reinforcing bar, L
is the spacing of the bond links along the reinforcing bar, and b is the width of the member
cross section. The factor 2 appears in the denominator to account for the fact that it is usually
convenient to place bond-link element at both the top and bottom of the reinforcing bar element
(ASCE 1982).

By the condensation of the steel degrees of freedom in Eq. (2) the following relation between
concrete displacements and corresponding forces results in

(PT1=[K"]{d) (3)

where
(PI)=(P}—[K.I[KJ"{P]} @)
[K:]=[K.]-[K,J-[K.] "-[K.] (5)

After evaluating the inverse of [ K, ] and carrying out the multiplications, Eq. (5) is reduced
to:

* o ks»'kbi'kjj . 1 —1 —

[K“-]— klg'(khi+kb/)+kh,"kb/ l:___l l:l [K(‘q:l_s (6)
which is the local stiffness matrix of the reinforcing steel element including the effect of bond
slip and it is now apparent that bond slip reduces the stiffness of the reinforcing steel element.

In case of perfect bond the bond stiffness terms &, and k, become infinitely large and the
stiffness matrix in Eq. (6) is reduced to the local stiffness of the embedded steel model with
perfect bond. The equivalent force vector { P*.} in Eq. (4) is the nodal forces of steel element
including the bond-slip effect and the force is transformed into the concrete degrees of freedom
with perfect bond.

Eq. (6) can also be expressed in the global coordinate systems by applying a rotation with
angle between the axis of the reinforcing bar and the global x-axis of the structure and has
to undergo another transformation before it can be assembled since the end points of the reinfor-
cing steel element do not generally coincide with the nodes of the concrete element mesh. As
an example, if the reinforcing bar element crosses the concrete element boundary on sides 2
and 4 in Fig. 5 and the used concrete element has 8 nodes, the transformation matrix [ 7]
which is derived with the procedure used to establish the consistent nodal forces of the finite
element method has the following form:

Ist ... (k-1)-th  kth  (k+h-th .. a-th
(@)
0 keth ®@_ _o [ehe] @
— e o] — o]
© v @ © @ @

O Imaginary node
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Fig. 6 Modeling of reinforcing bar for matrix method.
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[ 4 0 0 0 0 0 A4, 4,
[T]‘[o 0 B, B, B, 0 0 0] )

where
_{2p°—3p+l1 0 _| —4p>+4p 0 | 2p*=p 0
A [0 2p2—3p+1] 4> [O —4p>+4p A= 0 2p—p ®)
_[2¢2=34+1 0] , _[ —4q*+4q 0] , [2¢°—q 0
Bl—[O 2q2’3q+1:| Bz”[() —4q°+4q B:= 0 2q°—q ©)

where p=c,/l,, ¢g=c:/l; and O is the 2X2 null matrix. More details including the case where
the steel bar intersects with adjacent two sides of the concrete element can be found elsewhere
(Kwak and Filippou 1990).

3. Solution algorithm

Once the displacement increments at the nodes of the concrete finite elements are determined
for the current load increment, they can be transformated by the matrix. [T] in Eq. (7) and
the rotation matrix to yield the concrete displacement increments { Ad.} at the ends of the
steel element in the direction of parallel to the axis of the reinforcing bar. Using the second row
of Eq. (2) which expresses the condition of equilibrium of the reinforcing bar element, the force
and deformation increments in steel can now be determined by assembling the steel element
matrices and imposing appropriate boundary conditions at the ends of the entire reinforcing bar.

The solution procedures in this study are basically the same as those of general nonlinear
finite element analysis. The newly introduced portion of the algorithm to calculate the steel
deformation from the concrete deformation obtained is explained in this section.

If the reinforcing bar is assumed to be subdivided into » elements, as shown in Fig. 6, the
relationship for the k-th element can be rearranged as Eq. (10) from Eq. (2).

{APz}k: kotky — —k, ‘_{Adz}‘_{ k,,,--Adl} (10)
AP4 _k,\ k_\+k[?/' Ad4 k’?/ 'Ad3
where it should be noted that the concrete displacement increments Ad, and Ad; are known

from the global nonlinear finite element analysis of reinforced concrete structures. Solving Eq.
(10) for the force and displacement increment at node 4 yields

AP4}A_ k {APz}A k {Adl}l\
= . —[R1*- 11
{Ad4 LOI* VA, IR ag, b
where
k
[Q]k:%[ :(lk.s-+kh,/) k.v'(khf+kh/)+k’fi']/:’:j] (12)
kbi._kxj—_kﬂ_ Ky k
[R)= o (13)
k. 0

For the transition from the k-th to the (k+1)th element using the force equilibrium and the
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compatibility condition, Eq. (14) can be obtained

APz k+‘_{ _AP4}k__' ‘_1 0 _{AP4} {AP4}
{Adg} “Vad S=| o 1] Vlaas =St (14)
and the substitution of Eq. (11) into Eq. (14) yields Eq. (15).
APz}k+l_ P k,{ APz}k_ 5 k.{Adl}k

where [Q1*=[ST[QJ* and [R]*=[S]JLR .

Eq. (15) relates the force and displacement increments at the beginning of steel element k+ 1
with those of steel element k. By applying Eq. (15) successively to elements k—1, k—2, -,
2, 1 and summing up the results, the following transfer matrix relation of Eq. (16) is resulted
in. After replacing k+1 with » in Eq. (16) and applying Eq. (11) for element », the following
relation between the forces and displacements at the two ends of the reinforcing bar can be
obtained.

(32 o {32 o {21}
=101+-101 -{AR} gy try-{4d) Ry {Ad )

~[01+[01 '+ [01-{ 4P} ~101 101 1o ¥ [RI-{ 44}

—[E]*-{Z‘g‘} (16)
{4t o1 101-{ AR} - 1017101 10 LRY-{ 4}
_..._[ﬁjn.{gi} (17)

As the concrete displacement increments and two boundary conditions are already known
at each end of the reinforcing bar element, it is possible now to solve Eq. (17) for the remaining
two unknowns among four components of the forces and displacements, namely, AP}, Ad}.
AP} and Ad). After obtaining the force and displacement increments at one end of the reinfor-
cing bar, the displacement and the stress of a reinforcing bar including bond-slip at each node
can be found through the successive application of Egs. (11) and (12) which express the condition
of equilibrium of the reinforcing bar.

The state determination of the steel and bond elements can now be undertaken yielding the
new steel and bond forces and the updated stiffness matrices. The latter are needed only at
the beginning of a new load step, when the stiffness matrix of the structure is updated. The
substitution of the new steel and bond forces into Eq. (4) yields the equivalent nodal forces
at the global degrees of freedom. These forces are subtracted from the applied load increments
to yield the unbalanced forces. The process continues until the convergence criterion is satisfied
(Fig. 7).
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4. Numerical examples

In order to test the proposed reinforcing steel model with bond-slip, the response of anchored
reinforcing bars under monotonic pull-out and push-pull loads is studied. Two anchored reinfor-
cing bars tested by Viwathanatepa, Popov and Bertero (1979) to simulate anchorage and loading
conditions in the interior beam-column joints of moment resisting frames are selected for the
comparison with the proposed reinforcing steel model with bond-slip. The first specimen is
an anchored # 8 bar in a well confined block of 25 in(63.5 ¢cm) width, which corresponds
to an anchorage length of 25 bar diameters. This specimen was subjected to a monotonic pull-
out under displacement control at one end only. The second specimen also involves a # 8
reinforcing bar with identical dimensions which was subjected to a push-pull loading with
gradually increasing end slip value. Both specimens have been the subject of earlier analytical
correlation studies by Viwathanatepa, et al. (1979), Ciampi, et al. (1982), Yankelevky (1985) and
Filippou (1986). The material properties of concrete and reinforcing steel are as fellows: the
concrete cylinder strength is 4.700 psi (330.5 kg/cm?) for the specimen under monotonic pull-
out and 4,740 psi (333.3 kg/cm?) for the specimen under push-pull. The yield strength of the
reinforcing steel is 68 ksi (4780 kg/cm?), the yield strain is 0.23% and the modulus of elasticity
after yielding is assumed as 411 ksi (28900 kg/cm?). Also the parameters used in the bond
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model are equal to those used by Filippou, ez al. (1983) and Filippou (1986) in earlier investigations,
namely: ©#,=0.02756 in (0.07 cm), u,=0.07874 in (0.2 cm), u3=0.2756 in (0.7 cm), 7;=1500 psi
(105.5 kg/cm?) and 7,=2350 psi (1652 kg/cm?) (Fig. 3). In the study by Ciampi, er al. (1982)
the bond-slip relation was modified in the outer unconfined portions along the entire anchorage
length. For the sake of simplicity in the present study, the same bond stress-slip relation is
used along the entire anchorage length. Under push-pull loading conditions, this assumption
leads to underestimation of the bond resistance at the push-in end of the reinforcing bar. Twenty-
five(25) steel elements of 1 inch length were used in modeling the anchored reinforcing bar.

Fig. 8 shows the analytical relation between pull-out slip and steel stress at one end of the rein-
forcing bar under monotonic pull-out loading. Figs.9a-9d show the distribution of steel stresses
along the anchorage length of the reinforcing bar at different loading stages. The experimental results
are compared with the analytical results of Viwathanatepa, er al. (1979), Yankelevsky (1985) and
those of the present study. The result of the present study show the best agreement, particularly,
with increasing load. It should be noted that the model of Yankelevsky does not allow for
yielding of the reinforcing steel. The results by Viwathanatepa, er al. are from a linear finite
element analysis, since no stress distributions are presented for the nonlinear model proposed
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in that study.

The examples of steel stress distributions along the anchorage length of the reinforcing bar
under push-pull loading are shown in Figs. 10a-10d. The results of the proposed model show
an excellent agreement with experimental results. However, the comparison of the overall response
shows small discrepancies between the present model and the experimental data. Two factors
are attributable to this: (1) the present model is tested under load controlled conditions, while
the experimental specimen was subjected to displacement controlled testing, and (2) the assump-
tion that the bond stress-slip relation is the same along the anchorage length of the bar is
not adequate for the large deformation stage where a significant bond damage can occur. However,
it 1s observed that the proposed reinforcing steel model with bond-slip can describe quite well
the response of anchored reinforcing bars under monotonic pull-out and push-pull loading condi-
tions.

5. Conclusions

A new reinforcing steel model which is embedded inside a concrete element and accounts
for the effect of bond-slip is developed. Unlike the classical bond-link and bond-zone element
which have the restrictions in the numerical modeling such as a reinforcing bar arrangement
along the edge of a concrete element and a double node to represent the relative slip between
reinforcing steel and concrete, the proposed model which does not take the double nodes can
yield significant savings in the number of nodes needed to account for the effect of bond-slip,
particularly, in three dimensional finite element models. A new nonlinear solution scheme based
on the equilibrium at each node of steel and the compatibility condition between steel and
concrete is developed in connection with this model. The efficiency and reliability of the proposed
model are demonstrated through the correlation studies between analytical and experimental
results and the parametric studies associated with them.
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