Structural Engineering and Mechanics, Vol 3. No. 3 (1995) 245-253 245
DOI: http://dx.doi.org/10.12989/sem.1995.3.3.245

A combined finite element-Riccati transfer
matrix method for free vibration of structures

Huiyu Xuet

Department of Physics, Suzhou University, Suzhou, Jiangsu 215006, China

Abstract. A combination of Riccati transfer matrix method and finite element method is proposed
for obtaining vibration frequencies of structures. This method reduces the propagation of round-off errors
produced in the standard transfer matrix method and finds out the values of the frequency by New-
ton-Raphson method. By this technique, the number of nodes required in the regular finite element
method is reduced and therefore a microcomputer may be used. Besides. no plotting of the value of
the determinant versus assumed frequency is necessary. As the application of this method. some numerical
examples are presented to demonstrate the accuracy as well as the capability of the proposed method
for the vibration of structures.
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1. Introduction

In vibration analysis of structures, exact solutions for the natural frequencies are possible
only for a limited set of simple structures and boundary conditions. Approximate numerical
methods are therefore important for the analysis of more complex systems. The different numerical
methods available include the Holzer-Myklestad type transfer matrix method. This method is
successful for systems described by a sirigle space variable such as beams and shafts.

For more complicated structures, the finite element method has proved to be powerful and
versatile. However, the disadvantage of the finite element method is that for some systems large
matrices are produced which require large computers to handle them. In order to reduce the
size of the matrices, some substructure techniques have been proposed which consist of keeping
the important degrees of freedom and suppressing the less important ones. Which degrees of
freedom in the substructure are to be retained depends on judgment and on the physical system.
However, this approach may lead to considerable inaccuracy if the wrong degrees of freedom
are suppressed. Recently, Dokainish and others (Dokanish 1972, Ohga 1983, 1987, Degen 1985)
suggested a method in which the finite element technique is combined with the transfer matrix
approach (FE-TM) for obtaining frequencies of vibration of thin plates and shells. In this app-
roach, as the size of stiffness and mass matrices was equal to the number of degrees of freedom
in only one subsystem, it had the advantage of reducing the size of a matrix to much less
than that obtained by the ordinary finite element method. However, the method has drawbacks:
numerical instabilities occur when transfer matrix method is used for calculation of high resonant
frequencies, it requires calculation at a significant number of frequencies and interpolation must

t Associate Professor



246 Huiyu Xue

A A

\f\j?__\ . ~ B
B |c [ E_]

N

\\

1 M -

112 Qr-
Ly

K/

efed dwes [N
\/ /Dl‘_.._____. —_]:‘) E

1
Fig. 1 Subdivision of structure into strips and finite elements.

be used if even only a few of the lowest natural frequencies are to be determined.

To overcome these drawbacks, the Riccati transformation of state vectors is proposed to use
as a means of reducing the propagation of round off errors. In this method, the Riccati transfer
matrix and its derivatives with respect to frequency are formulated for the right boundary. This
transfer matrix relation is then used in the determination of natural frequencies via a Newton-
Raphson iterative technique. The proposed method gives a quadratic convergence to a natural
frequency from the trial value on either side of the true natural frequency and hence allows
a greater degree of error in the selection of the trial frequency.

2. Finite element-Riccati transfer matrix method (FE-RTM)

Without losing generality, we consider the plate shown in Fig. 1. It is divided into m strips
and each strip is subdivided into finite clements. Edge BE is the left section of strip i+1 or
the right section of strip i. There are 2n nodes on strip i. Here #n nodes on the left section
AD, and n nodes on the right section BE.

2.1. Transfer matrix relation for a strip

Proceeding as in Dokanish (1972), we obtain / strip’s transfer matrices

A R U

i
where

[An]/: - [312]71 [Bll:lia [AIZ]i: [312]7| .
[42]=~[Bi2),+[Bni[B\.];' [Bi]i. [Anli=—[Bx1[B)];'

1= el=a-wtan

and [K]; is the final stiffness matrix of the / strip, [M]; is the mass matrix of the / strip, ®
is the natural frequency of free vibrations {U}:, {U}%, {F}Y: and {F} are the left and right displace-
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ment and force vectors of section i.
Since the problem of free vibrations is considered, we can get a relation of the form:

{ —UF}TZ{;]}I_‘ @

i+1

Y -y

i+1

Substitution in Eq. (1) leads to

2.2. The Riccati transformation of state vectors

In order to reduce the propagation of round-off errors in the standard transfer matrix method.
we propose a Riccati transformation of state vectors. In this method, Eq. (3) being rearranged

and repartitioned, we obtain
f}L _[Tu T {f}
{e ; Tgl Tp_z Le (4)

i+1 i i
where {f} involves half of the state variables known at the left hand boundary and {e} contains
the another half of the state variables.
As pointed out in Honer (1975), a generalized Riccati transformation at section /i may be
given by

{fY=08T {eli+ {p}i )

where matrix [S] is the Riccati transfer matrix and vector {p} contains the forcing terms.
From Egs. (4) and (5), we obtain

{f}€+|:[S]i+l{e}lf+l+ {phi+i (6)
where [S]H 1= ([TI I][S] + [lej)i([Tn] [S] + [T2:])7] (7)
{p}HI:([TII]i— (ST« I:TZl]i) {P}i 3

Egs. (7) and (8) are the general recurrence relations for [S] and {p}. Since the left hand
boundary conditions are homogeneous, the initial conditions are

[s]i=[0] 9
{phi=10} (10)

Using Egs. (9) and (10), [S] and {p} are transferred from left to right through all the structure,
hence we have

{f}rehL]:[S:]nH'l{e}lI;Hrl (11)
{phi=1pl=" ={ptm+1=1{0} (12)

Eq. (11) at the right boundary demands that for a non-trivial solution the determinant which
depends on the boundary conditions must be set equal to zero. This determinant is simply
the characteristic equation that gives the natural frequencies.

Finally, the state variables at each section are determined by transferring from right to left
through all the structure. Successive application of Eq. (13) gives {e} at any section i. Therefore,
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we could use Eq. (5) to calculate {f} at any section i. And now the solution is completed.
{efi= ([Tl [S]+ [Tl elss (13)

It is worth notice that the transfer matrix [4] in Eq. (3) for the FE-TM method is replaced
by the transfer matrix [S] in Eq. (6) for the FE-RTM method. The dimension of matrix [S]
is only half that of the matrix [A]. The Riccati transfer matrix method would only require
about half the storage requirements of the transfer matrix method.

2.3. Determination of natural frequencies

The boundary conditions of the right edge of the structure usually require some components
of state variables to be zeros. When these conditions being added, it becomes essential that
the determinant of a portion [Q] of the matrix [S] be zero at the correct natural frequency,
for a nontrivial solution. For example, if the left edge of the structure is clamped and the right
edge of the structure is simple supported, then {f} represents a displacement vector at any
section, and {e} represents a force vector at any section. According to the right boundary condition,

we have
¥ 84
{O a SZI SZZ m+l € (14)

m+1 ~“m+tl

hence {0} :[832]r11+1{e2}f1;;+l (15)

where {f},+ is a portion of the displacement vector {f} corresponding to nonzero elements
at the right boundary. {e»},+, is a portion of the force vector {e} corresponding to nonzero
elements at the right boundary.

For the nontrivial solution of Eq. (15), it is essential that the determinant of matrix [Sy],+,
be zero at the correct natural frequency. The matrix [Q] is, therefore in this particular case,
the matrix [S»],+. That is, the natural frequencies are determined from the roots of the polyno-
mial

A(w)=det [Q(w)]=0 (16)

In general, the matrix [Q] is obtained from matrix [S7,,+, by deleting the columns correspon-

ding to zero elements of {e}’,, and deleting the rows corresponding to the nonzero elements

of {f}u

Instead of resorting to a trial and error procedure in solving Eq. (16), we adopt the Newton-
Raphson iteration technique.

Differentiating Egs. (4)-(6) each with respect to w, we obtain Egs. (17)«(19).

{{}:[; ”‘{f}* H ”{ﬁj} an
{(71:= (8T, fe}+ [ST el (18)
e =080 fel + 08T fefa, (19)

where the dot represents the differentiation with respect to @. From Egs. (17), (18) and Eq.
(5). we obtain Eq. (20) and Eq. (21)

{f}l,+ 1= ([TI JiLSL+0T [S]i+ [le]f) {e}:
+([T,J, ST+ [T-1) {F}II (20
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{eler = ((Tu)i(S]i+ [Tu L, L8+ [T ) el

+((T 1 [ST+ [T el 2D
or written in
(Y =0 e+ TV el (22)
(eli =Wl {eli+[W el (23)
where
V1=[T1[S)+ 7], 24
(V=11 [ST+ [T, L [ST+(T.]; (25)
(W]=[Ty][S]+ [T, (26)
[(W1=[T2].(S)+ (T2 ].[8]+ [T, 27
From Eq. (13) and Eq. (26), we obtain
{efi=[WT;" e}, (28)

and from Eq. (23)
{ei=0WI ety W1, [W] {e}-

(29)
is obtained.
Substitution of Egs. (28). (29) in Eq. (22) leads to
(e =W DWW + LW Y el +TVLIWT el (30)
From Egs. (7), (24), (26) and Eq. (30), we obtain Eq. (31)
(A =(—OST DWW, + TVLIW Y (el + 08T (el 31)
Comparing Eq. (19) with Eq. (31), we obtain
[87 1= =181 [WLIWD + [VIIWD,! (32)
Egs. (32). (25) and (27) are the general recurrence relations for [S].
On the left hand boundary, from Eq. (18) we have
(/1i=0STifel i+ ST fel (33)
With the initial condition {f}={0} and [S],=[0]. from Eq. (33). we obtain Eq. (34)
[87,=[0] 34

With the Egs. (32). (25). (27) and (7). [S] are transferred from left to right through all the
structure, we then obtain [$],.,. and the matrix [Q] as well.
The recurrence relation between the trial frequencies based on the Newton-Raphson method
is
det[Q]
35
Orer =i~ Ger [Q, T+ der (05 +— + der [0,) 3>

where p is the order of the matrix [Q]. In Eq. (28) the determinants are evaluated at @= @,
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Fig. 2 Clamped beam.

and the coefficients of the matrices [Q,]. [Q]. -~ [Q,] are identical to those of matrix [Q]
except for the following coefficients which are related to the coefficients of matrix [Q]:
Q.. D=0 . Q.. =00, 2).
0,(i, =00 p) i=1,2 . p (36)

Hence [Q] [Q.], [Q-], ---, [Q,] are known, they can be directly used in Eq. (35) to calculate
the natural frequencies systematically.

The number of steps for convergence when using this method depends on the closeness of
the initial frequency to the true natural frequency. In the vicinity of a root, the convergence
is quadratic. The Newton-Raphson iteration technique requires a derivative of the function at
each step, so the computation time is double per step. However this increase in computation
time per step is offset by the fewer number of steps for the same final accuracy. An additional
advantage of the Newton-Raphson method is that it is a single point method requiring only
one initial trial value. Besides, it has a known sufficient condition for convergence given by
| Wit — Wirel <=d/(n — 1) (Lancaster 1964), where d is the separation between the trué natural fre-
quency under consideration and its nearest neighbouring natural frequency, and » is the degree
of the polynomial A(w) under consideration.

3. Numerical examples

In order to investigate the accuracy and the computation efficiency of our method, we develop
a program FERTMV-W based on this method on the microcomputer IBMPC-AT and the nume-
rical results are compared with those obtained by the regular finite element method and the
ordinary FE-TM method.

3.1. Example 1

With the FE-RTM method, we calculate the natural frequencies of a beam in bending vibration
shown in Fig. 2, where the physical parameters of the beam are as follows: length=20 m, flexural
strength EJ=64X10" kg-m’ and pF=9.6236X 10" kg'sec’/m’, here p is the mass density and
F the area. The beam is divided into 40 elements. The convergence factor eps=0.00001, here
eps =(wy— @y -1)/ax. The natural frequencies calculated are listed in Table 1. The solutions of
the FE method and the ordinary FE-TM method are also listed in Table 1. Table 2 and Table
3 show the trial frequencies. the calculated natural frequencies, the number of iterative steps
and the computation time for the FE-RTM method and the FE-TM method. Table 4 shows
the comparision of the mode displacements at the right boundary in our example (the maximum
mode displacement is normalized 1). From the above results, it can be concluded that FE-RTM
method has lower round-off errors and higher computation efficiency. Especially, the mode displa-
cements at the right boundary in our example should be zero, while in the FE-TM method,
owing to round-off errors, they are not. This discrepancy becomes more serious for the higher
mode. Our FE-RTM method can reduce the propagation of round-off errors produced in the
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Table 1 Comparison of natural frequencies for clamped beam

(rad/s)
Mode number Exact solution FE FE-RTM FE-TM
1 144239 14.429 14424 14424
2 39.7587 39.769 39.759 39.761
3 77.9526 77.998 77.950 77.847
4 128.847 129.04 128.85 128.99
5 192.486 193.81 192.62 193.24

Table 2 The trial frequencies and convergence results for FE-RTM

Mode Trial Calculated Number of  Computation
number  frequency (rad/s) frequency (rad/s) iterations time (sec)
1 100 14.424 6 9
2 250 39.759 7 10
3 490 77950 6 9
4 900 128.85 6 9
5 1700 192.63 6 9

Table 3 The trial frequencies and convergence results for FE-TM

Mode Trial Calculated Number of  Computation
number  frequency (rad/s) frequency (rad/s) iterations time (sec)
1 10.0 14424 20 12
2 250 39.761 23 14
3 49.0 77.847 19 12
4 90.0 12899 18 11
5 170.0 193.24 19 12

Table 4 The mode displacement W at the right boundary

Mode number FE-RTM FE-TM
1 0.0 0.0001
2 0.0 —0.0010
3 0.0 —0.0228
4 0.0 —0.0632
5 0.0 ~0.0946

ordinary FE-TM method.

3.2, Example 2

251

A cantilevered square plate shown in Fig. 3 is analysed in the example. The plate chosen
is 3002<300X 10 cm with a specific weight of 76158 KN/m?, y=03, E=2058X10* KN/m> In
the numerical calculation, a half of the plate is divided 20X 10 elements. True natural frequencies
were obtained after only a few iterations. Table 5. Table 6, Table 7, Table 8 and Table 9 show
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Fig. 3 Cantilever plate.

Table 5 Comparison of natural frequencies for clamped plate (rad/s)
Mode number FE solution FE-RTM solution FE-TM solution

1 60.264 60.272 60.272
2 147.03 147.08 147.10
3 364.58 364.65 364.71
4 46097 460.88 460.95
5 529.67 529.78 529.51
6 913.04 913.15 91247

Table 6 The trial frequencies and convergence results for FE-RTM

Mode Trial Calculated Number of  Computation
number  frequency (rad/s) frequency (rad/s) iterations time (sec)
1 50.0 60.272 S 37
2 120.0 147.08 6 45
3 300.0 364.65 5 37
4 400.0 460.88 5 37
S 500.0 529.78 4 30
6 700.0 913.15 7 52

Table 7 The trial frequencies and convergence results for FE-TM

Mode Trial Calculated Number of  Computation
number  frequency (rad/s) frequency (rad/s) iterations time (sec)
1 500 60.272 17 50
2 1200 147.10 20 58
3 3000 364.71 18 52
4 400.0 460.95 17 50
5 500.0 529.51 14 40
6 700.0 91247 23 67

a comparison among the FE-RTM solutions, FE-TM solutions and the FE solutions, where
FE-RTM. FE-TM and FE methods are applied to 20X 10 same mesh pattern. Similar results
as in Example | are obtained.
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Table 8 The maximum mode flexare moment M at the right
boundary (the maximum mode moment M at all nodes
is normalized 1)

Mode number FE-RTM FE-TM
1 0.0 0.0015
2 0.0 0.0024
3 0.0 0.0116
4 0.0 0.0346
5 0.0 0.0763
6 0.0 0.0956

Table 9 Comparison of computation time for clamped plate

Method by applying Computation time (sec)
FE method 600
FE-TM method 317
FE-RTM method 238

4. Conclusion

A combination of Riccatt transfer matrix method and finite element method has been proposed
for obtaining natural frequencies of structures. Results for vibration frequencies of the plate
show that the method enables the user to successfully calculate the frequency from one assumed
value of frequency. The method has the advantage of reducing the size of a matrix to much
less than that obtained by the FE method or the ordinary FE-TM method; it also has an
additional advantage in that one does not need to calculate so many values of the determinants
and plot them versus assumed values of the frequencies. Other advantages of the method presented
are that it allows a greater degree of error in the selection of trial frequencies and gives quadratic
convergence in calculating natural frequencies.
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