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Abstract. At present Level 2 and importance sampling methods are the main tools used to estimate
reliability of structural systems. But sometimes application of these techniques to realistic problems invol-
ves certain difficulties. In order to overcome the difficulties it is suggested to use Monte Carlo simulation
in combination with two other techniques-extreme value and tail entropy approximations; an appropriate
Pearson’s curve is fit to represent simulation results. On the basis of this approach an algorithm and
computer program for structural reliability estimation are developed. A number of specially chosen nume-
rical examples are considered with the aim of checking the accuracy of the approach and comparing
it with the Level 2 and importance sampling methods. The field of application of the approach is
revealed.

Key words: structural reliability; Monte Carlo simulation; Pearson’s curves; extreme value approxima-
tion; tail entropy approximation.

1. Introduction

It is well known (Bjerager 1990) that at present there exist two basic approaches to structural
reliability analysis-Level 2 (FORM/SORM) methods and importance sampling technique.

The drawbacks of Level 2 methods (Hohenbichler, er al. 1987, Thoft-Christensen and Baker
1982) are well known and can be summarized as follows. The failure surface cannot be most
commonly defined explicitly and therefore the derivatives essential in many techniques, used
for reliability index calculation, can be determined only numerically. In the general case there
is no one-to-one relationship between the reliability index and failure probability, so the value
of failure probability is estimated only approximately. The failure surface can be of such a
form that several local minima are present (multiple S-points). In this case if the process of
calculation converges not to the global minimum structural reliability can be dangerously overesti-
mated. To perform calculations non-normal variables should be transferred to normal variables
(Rackwitz and Fiessler 1977, Rosenblatt 1952).

The application of importance sampling methods is sometimes troublesome as well, because
it involves identification of the most likely failure region and proper selection of an importance
sampling density function; some methods are sensitive to curvatures of the limit state function,
to number of variables, to multiple S-points, etc. One of the most serious problems is that the
majority of importance sampling methods use a gradient-based search algorithm to locate the
important region. Therefore probability density functions and failure functions have to be conti-
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nuous (Engelund and Rackwitz 1993). Serious difficulties are experienced in application of impor-
tance sampling methods if more than one important region exist.

As was shown by Krakovski (1993), Monte Carlo simulation with subsequent approximation
of the results by Pearson’s curves (Elderton and Johnson 1969) can be used to solve practical
problems of structural reliability estimation. The Pearson’s curve represents a probability density
function (pdf) of the limit state function. It should be noted that until recently this approach
has not been recommended (see Thoft-Christensen and Baker 1982). A common objection against
the approach is that simulation results are concentrated mostly around mean value, and therefore
the approximation of pdf tails cannot be sufficiently accurate. In this study to represent the
tails of distributions more accurately an improvement is introduced: it is suggested to use the
approach in combination with two other techniques, namely, tail entropy (Lind and Hong 1991)
and extreme value approximations.

The principal aim of this paper is to show that on the basis of the approach sufficient accuracy
in reliability estimation can be achieved and the above drawbacks of Level 2 and importance
sampling methods can be overcome. At the same time limitation on the field of application
of the approach will be revealed.

With this in mind first the algorithm for structural reliability estimation is described. Thereafter
a number of examples are considered where calculation results obtained on the basis of suggested
and other approaches are compared with the aim of checking the accuracy of the suggested
approach.

2. Algorithm for reliability estimation
2.1. General description of the algorithm

For reliability estimation of structural systems basic load and resistance variables are assumed
to be statistically independent random variables with known probability density functions.

The pdf of the basic variables can be defined analytically by the equation of a curve or
numerically in the form of a histogram. A deterministic method for structural analysis is assumed
to be known. Structural failure is defined as violation of the requirements for the structure.
The problem is to find the non-failure probability of the structure.

Algorithm to solve the problem is based on Monte Carlo simulation and consists of the
following steps:

(I) According to specified pdf of basic variables obtain m sets of their random realizations.

(2) Carry out m deterministic analyses of the structure by the selected method. The analyses

determine m values of the output parameter y; (i=1, -+, m). Stresses, deflections, crack width,
load-bearing capacity, etc. can be taken as the output parameter.

(3) Using the above values choose an appropriate pdf z(y) out of the family of Pearson’s
curves.

(4) Find the ultimate value of the output parameter 3", above or below which the failure
occurs, such as the ultimate deflection, crack width, load-bearing capacity, etc.

(5) Determine reliability of the structure by numerical integration:

P:J"Uz(y ydy 0y

or
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V()
pP= f _2y)dy 2

Use Eq. (1) if y° is a lower bound, and Eq. (2) if »" is an upper bound. Failure probability
is P=1—P.

Tf'lc described algorithm was implemented in the form of a computer program. Two problems
can be solved-direct and inverse. The direct problem is defined by Egs. (1) and (2). The inverse
problem is to find the value of »" so as to obtain a prescribed level of reliability P in Egs.
(1) and (2). In order to solve the inverse problem numerical integration in combination with
one-dimensional search is performed.

Egs. (1) and (2) represent a generalization of the well known approach with a limit state
function f: f >0 and f <0 define failure and safe regions, respectively. Eq. (1) evaluates reliability
if £<y® and f>y" define failure and safe regions, respectively, and Eq. (2) evaluates reliability
if £ >v" and f <y define failure and safe regions, respectively. Of course, all these representations
are equivalent, but they are convenient for solving inverse problems.

In the following the algorithm will be referred to as direct Monte Carlo simulation.

2.2 Generation of random realizations of basic variables

Let us consider the first step of the algorithm in more detail. In order to obtain sets of random
realizations of basic variables the following procedure is proposed.
(1) Divide probability density functions of all basic variables into m equal-area parts.
(2) Find the centers of gravity of each part and the corresponding values of basic
variables

x <X el (3)

All these values are equally probable.
(3) Using uniform distribution choose randomly a value of the first basic variable among
m equally probable values. Remove this value from further calculations.
(4) Perform Step (3) for basic variables 2,3,---,n. Obtain a set of values of basic variables.
(5) Put m=m—1. Go to Step (3).
(6) Perform Steps (3) to (5) until m=0.
Table 1 shows the results of numerical investigation of the accuracy of two algorithms-above
described and conventional (in which random number generator is used to obtain realizations

Table 1 Comparison of accuracy of two algorithms generating random realizations of basic

variables
Aleorithm Basic-  Exact values Calculated values of y, with sample size m=
g moments  of g 100 200 500 1000 2500 5000
Proposed Ui 0 8.490X10 * 2895X 1074 2524X107% —2288X 107+ —1.892X107¢ —1417X10*
> 1 0.9858 0.9992 0.9996 0.9996 0.9998 09998
J’B 0 5476 X10 * —6276 X107+ —5589X107% —2027X10 * —1342X107* —1249%X107*
Us 3 2.7979 29424 29822 2985 29882 29935
Conven- I 0 6.032X10 ° 7257X107%  4126X10°°  2992X107° —2207X10 * —2756Xx107*
tional U 1 09738 0.9603 1.0153 0.9908 09911 1.012
g 0 0.1101 0.1499 0.1214 6.570x10 * 3.245%10°° 1.290X107*
Ha 3 3.0250 2.7912 2.8533 2.826 2.8064 2.7976
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of each random variable). First four basic statistical moments yu; (i=1,---,4) are calculated for
standard normal distribution with different sample sizes and compared with their exact values.
As can be seen from Table 1, the described algorithm is much more accurate: even for rather
small sample size m=500 the calculated u, are closer to their exact values than values computed
using the conventional approach with sample size m=25000.

The higher accuracy of the results obtained by the proposed algorithm is attributable to the
following reasons.

Assume that conventional Monte Carlo simulation with sample size m is performed ¢ times
for the i/th basic variable, i.e.  samples of size m are obtained. The simulation results-random

realizations x!}’ x{, -+~ x{""-are ranged so that

5ll)sx()< <X(-"-”.. j:l....‘[ (4)

t

and mean values are calculated

N(H*_fo;”s . ~(’m|_%zx(m) (5)

=t

It is obvious that

XMooy (D e Ty ) (6)

when 1—c.
_ And it is also apparent that evenly distributed along the length of the curve mean values
x", -+ x" represent the original pdf of a basic variable much more accurately than randomly
dlstnbuted along the length of the curve realizations x|'.---.x%" used in conventional Monte
Carlo simulation.

Thereupon to form a set of random realizations of basic variables the above algorithm is
used.

2.3. Extreme value and tail entropy approximations

In order to represent the important tail regions more accurately two techniques can be used.
The first is extreme value approximation. Consider the case when the argument is on the lower
tail of the pdf. Calculations are carried out in the following way.

The results of simulation are divided into groups with & results in each group. Only one
minimum result from each group is considered. All minimum results (extreme values) are approxi-
mated by one of the Pearson’s curves, which is a pdf of extreme values. Then the exceedance
probability P, for any argument can be calculated by numerical integration of the pdf of extreme
values.

The relationship between the exceedance probabilities in the parent distribution P and P,
is (Thoft-Christensen and Baker 1982):

P =P (7

Similar results can be obtained for the upper tail of a pdf.

The second technique, improving the results of direct Monte Carlo simulation, is tail entropy
approximation (TEA) suggested by Lind and Hong 1991. In what follows the largest and the
lowest observed values are denoted by x,, and x, respectively, and Fy(x) denotes a reference
distribution, represented in our case by one of the Pearsons curves. The end points of the
domain of x are denoted by
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xT=Fy' () x=Fg'(1) &)

either or both may fall at infinity.
The lower tail entropy approximation of X is a random variable that has the distribution
function F_(x):

F_(x)=[1/m+ DILF(x)/ Fy(x))). x~ <x<x, 9
F_(x)={1+ m[Fy(x)—= F{x))J/[1— Fyx)) 1} (m+1), x,<x<x* (10

The upper tail entropy approximation of X is a random variable that has distribution F,(x)
given by

Fo(x)=[m/(m+DILFi(x)/Fx)]. x <x<x* (1)
F+ (.X): { m+ [F()(X)— F()(xm)J/[l - F()(xm)J }/(m+ 1), .)Cm<x<)('+ (12)

Egs. (8) to (12) can be used to up-date the reliability calculated on the basis of Egs. (1),
(2) or (7).

2.4. Verification of the approach

In order to verify the suggested approach. below are considered 6 numerical examples. They
are chosen from the following reasons.

Examples 1, 2 make it possible to compare the suggested approach with importance sampling
technique. Example 1 deals with systems in which several failure modes occur. Recently a method
for reliability estimation of such systems has been developed (Fu and Moses 1993) and it was
of interest to compare their results with ours.

Example 2 is taken from the paper by Engelund and Rackwitz 1993, where six importance
sampling methods are evaluated with respect to certain criteria. The example served to estimate
the robustness of the methods with respect to multiple B-points. Only two methods out of six
turned out to be not sensitive towards the existance of multiple S-points; two of them were
sensitive, one failed to solve the problem and it was not possible to estimate the sensitivity
of the last method. Therefore it was of interest to solve this difficult problem by the suggested
approach.

The next two examples deal with Level 2 methods. Example 3 serves to compare results for
an ordinary problem solved by FORM in Thoft-Christensen and Baker 1982. In Example 4
results are compared for both direct and inverse problems. Since it is difficult to solve the inverse
problem on the basis of the conventional approach, a graphical representation is used.

The problem in Example 5 is chosen because, in author’s opinion, it is very difficult, if not
impossible, to solve this problem using importance sampling or Level 2 methods: the limit state
function cannot be written analytically, only algorithm, checking whether or not failure occurs,
is available; in addition, both direct and inverse problems are solved.

One further reason for choosing Examples 4 and 5 is their practical significance. Calculations
similar to those in these examples were carried out for a revised version of the Russian Code
1985 in order to regulate reliability of RC structures. Inverse problems were solved and load-
bearing capacities of structures M, with an exceedance probability of 0.9986 were computed.
Then a material property combination factor k. =M,/M, was used (M, is a load-bearing capacity
determined from the Code using design strength of materials). Conventionally calculated load-
bearing capacity of the structure is multiplied by &, making all structures equally reliable with
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a reliability of 0.9986 (Krakovski 1993).
Example 6 shows the accuracy of the schemes where along with direct Monte Carlo simulation
extreme value and tail entropy approximations are used.

3. Comparison of results: importance sampling methods and the suggested approach
3.1. Example 1

First let us consider an example given by Fu and Moses (1993). A system with two failure
modes defined by failure functions

g1 (x)=R—S:; g (x)=61—144R—S (13)

is investigated. Here R and S are normally distributed random variables with mean values,
25, 10 and standard deviations, 2.5, 3.0, respectively. Exact value of failure probability is P, =7.462 X
1074,

Monte Carlo simulation with sample size 1000 was performed. The result of each trial was
min [g,(x), g:(x)]. These minima were approximated by a Pearson’s curve. The curve turned
out to be of type 4

y(x)—0.2464[1+< 4515 )] X exp[ 13.373 arctan( 54505 ] (14)

The least observed value was 0.5532. Then Eq. (9) was used:

0
F(,(x)=f Y(x)dx=4984X10"* F.)(x|)=J Y(x)dx=7.710X10"*

P,=F (x)=6458X10"* (15)

The estimate P,=6458X107* is not too far from the exact value and only slightly lower than
the estimate P,=7.005X107* obtained by Fu and Moses with sample size m=4000.

3.2. Example 2

Consider the following example from Engelund and Rackwitz (1993). The limit state function
is
g(x)=X\ X, —PL (16)

where P and L are deterministic parameters with values, 14.614 and 100, respectively; X, and
X, are normally distributed with means, 780644 and 00104, and standard deviations, 11709.7
and 0.00156, respectively. As indicated above, the example was used to evaluate the robustness
of different importance sampling methods with respect to multiple S-points. The exact value

Table 2 Results of calculations for Example 2
k 1 2 3 4 5 6
P; 1.807X10°° 6.620X107° 4010X107¢ 2453X107° 1.660X 10 ¢ 9.188X 107¢
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of failure probability is P,=1451X107°,

The problem was solved using Monte Carlo simulation in combination with extreme value
and tail entropy approximations. Calculations were carried out with sample size 5000. The results
are given in Table 2 for different k from Eq. (7).

From Table 2 one can see how the accuracy improves with k if k<5. For k=5 the best
result P,=1.660X107° is obtained; it is rather close to the exact value. For k=6 the result is
less accurate. The accuracy improves with k because, as k increases, the lower tail of the distribu-
tion is approximated more accurately. But if k is too large, then sample size m/k is small and
the accuracy is impaired. The results also show that the proposed approach is not sensitive
towards the existence of multiple S-points.

ANNNNNN\Y

Fig. 1 Statically indeterminate beam.

4. Comparison of results: Level 2 methods and the suggested approach
4.1. Example 3

Consider the same statically indeterminate beam (Fig. 1) as in example 5.5 from Thoft-Christen-
sen and Baker (1982). The following deflection failure criterion is used:
5 pF 1
=2 P 5 0
Une =28 "ol Z30 (17
where u,,. is the maximum deflection, ¢ the modulus of elasticity and i the relevent moment
of inertia. The span of the beam /=5 m. Basic variables P, £ and I are uncorrelated with
the following mean values and standard deviations:

P=4 kN o=1 kN,
E=2X10" kN/m®>  0,=05X10" kN/m>
I=10~* m* 6=02X10"* m* (18)

In the normalized coordinate system the failure surface is given by
02z,+0.252.+0.05z,2,—0.0391z;+0.8438=0 (19)

where normalized variables z,. z,, z; correspond to I E, P, respectively.
The reliability index, determined by FORM, equals 3.29 (Thoft-Christensen and Baker 1982).
Failure surface (19) is only slightly nonlinear. Therefore the failure probability is close to

P,=¢(—329)=5.009x10"* 20
Monte Carlo simulation with 5000 trials has shown that the pdf of Eq. (19) can be approximated
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Fig. 2 Comparison of results obtained by the suggested approach and Level 2 method.

by Pearson’s curve of type 6:
VV(Z) — 1024]9.836 — (Z + 0_5893)I8.28294 ( z + 91 4649)7 1243036 (21 )

The failure probability computed by numerical integration of (21) is equal to 4.75X10™* and
very close to (20).

4.2 Example 4

Consider a reinforced concrete flexural member with rectangular cross section and singular
reinforcement. The member is designed in accordance with the Russian Code 1985.

Two normally distributed random variables were considered. namely, strengths of concrete
and reinforcement. Their mean values and standard deviations are

R,=285 MPa, 5,=4.56 MPa 22)

for concrete and -~
R,=435 MPa, 06,=20 MPa (23)

for steel. Design strengths of materials
R,=145 MPa, R,.=365 MPa (24)

have the exceedance probability of 0.9986.
The failure of the member is assumed to occur if

M<M, (25)

where M is a load-bearing capacity (limit moment) computed for random realizations of material
strengths, and M, is a load-bearing capacity computed for design strengths of materials.
The results of calculations on the basis of Level 2 approach are shown in Fig. 2. Normalized

random variables

— Rh _ Rl) . — R.\ - R.s
Fp= . R
O O,

(26)
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are plotted as abscissas and ordinates, respectively. Here R, and R, are random realizations
of concrete and steel strengths, respectively.

The concentric circles represent the lines with equal reliability indices. Lines 1, II, III represent
failure surfaces, for which the ratios &/&x are equal to 0.1, 0.6, 0.9 and relative moments m=M/bh;
are equal to 810, 4390 and 5540 kNm/m", respectively. The moments m are determined by direct
Monte Carlo simulation so that their exceedance probability equals 0.9986.

Here ¢ is a relative depth of concrete compression zone and & is the maximum relative
depth of concrete compression zone, for which limit state of the member is governed by stresses
in reinforcement; b and A, are, respectively, width and effective depth of the member. The ratios
&é&g are defined for design strengths of materials (24).

To obtain a point at lines I, II, III first a value of r, is fixed, and then the corresponding
value of r, is determined in accordance with the Russian Code 1985 for given values of &g
and m. Lines 1 and 2 correspond to the values of r, and r, for which the condition £=¢
is satisfied.

Moving along lines L II III one can see, that the values of r, increase as the values of r,
decrease. But at the points of intersection of lines II and 1, III and 2 the value of r, is minimal
and corresponds to over-reinforcement. Thereupon lines II, III become parallel to the axis of
ordinates, i.e.. the load-bearing capacity of the member remains constant as steel strength increases
and concrete strength is constant.

The reliability indices, obtained graphically from Fig. 1 as the shortest distances from the
origin of coordinates to lines I, I, IIT are 3.05, 33 and 3.2, respectively.

If the failure surface had been linear, the non-failure probabilities for the above three cases
could have been obtained from the normal distribution law; these probabilities would have
been equal to 0.998817, 0.999517 and 0.999313, respectively. The non-failure probability, determined
by the suggested approach, equals 0.9986 in all three cases. Therefore the results are not in
conflict with a well known fact: the level 2 method, used to solve the problem under discussion,
overestimates the non-failure probability for a convex safe region. And the more the failure
surface differs from a linear surface, the more the disrepancy is between the non-failure probabili-
ties determined by the suggested and level 2 methods.

Line IV was built by successive approximation with respect to the moment m so that the
minimum distance from the origin of coordinates to the failure surface equals 3. The parameters
of the member were identical with those used for line II. The moment m, with the exceedance
probability 0.9986 turned out to be 4460 kNm/m", i. only slightly increased comparing to the
moment 4390 kNm/m’, used for line II. Thus, in spite of a rather significant disparity between
the non-failure probabilities for lines II and IV (0999517 and (0.9986) the limit moments are
not too different.

5. Other examples
5.1. Example 5

The investigation was concerned with a reinforced concrete member with rectangular cross
section under combined bending and compression. The member was designed according to
the Russian Code (1985). Characteristics of the member:

—class of concrete compressive strength is B25:

—class of reinforcing steel is A-III;
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—partial safety factor taking into account loading duration y,,=1:

—factor taking into account the effect of long-term loading on the deflection in the limit
state ¢,=2;

—/u=1, where y and ¢ are reinforcement ratios for compression and tension reinforcement,
respectively;

—slenderness A=0;

—F&=1.1

Strengths of concrete and reinforcement were assumed to be random normally distributed

values. Mean values and standard deviations are

R,=2484 MPa, 0,=335 MPa 7
for concrete and
R.=426 MPa, 6,=17.04 MPa (28)

for steel.
The deterministic analysis carried out for the design values of concrete and reinforcement
strengths has shown that for a fixed relative axial force

N

= =9.628 MPa 29
the limit relative bending moment is
_M _
m=pp =3228 MPa (30)

The sample size was 250,000. In each trial for constant relative axial force n=9.628 MPa,
a limit moment m, was determined. The failure of the member was assumed to occur if

The number of trials, in which condition (31) was satisfied, turned out to be 198. The failure
probability P, estimated as relative frequency, is

Poy(m, < m)=198/250.000=7.92X 10~ (32)

Type 4 Pearson’s curve was used to approximate the results of the first 5000 trials. The failure
probability, determined from this curve is:

Prom<3.288)=7.582X10"* (33)

As can be seen Py, coincides very closely with Py Similar results were obtained for other
values of concrete strength, A, u'/u. &

In order to investigate the effect of sample size on the results, a reinforced concrete member
under combined bending and compression was considered once again. All characteristics of
the member except A=10 and {/&r=1 were identical with those given above.

The direct Monte Carlo simulation was carried out. The total number of trials was equal
to 55000. In each trial the limit moment.

Am= (34)

_m
R,

for a fixed axial force
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Table 3 Effect of sample size on the results of approximation by Pearson’s curves

Way of Values of @,,,X10° for the number of trials mX10"*
calculation 5 10 15 20 25 30 35 40 45 50 55
(i) 580 586 580 582 584 584 590 587 585 582 586
(ii) 580 582 585 582 583 583 585 586 S8 586 585

Table 4 Comparison of exact and approximate values of P, (direct Monte Carlo simulation)

— (Inx—3)/02 P, exact P, approximate values for sample size
x o pEUnx =302 es 500 (6) 1000 (6) 5000 (5) 10000 (5) 25000 (5)
10 —3.487 2415X107% 1417X107* 1.715X107* 3350X107% 34111074 3362X107*
9.025 —4 3.167X107° 1.047X 107" 1.557X107° 5436X107° 5585X107° 5464X107°
8.160 —45 3.398X107°% 4214X 1077 9.168X 1077 7961X107% 8268X107° 8018X107°
7.389 -5 2.868X 1077 6.030X1077 2.806X10°% 1.025X10°¢ 1.079X107¢ 1.035X10°°
n
= — 35
@,= o= =05 (35)

was determined.

In the investigation the inverse problem was solved. The moment a,, with the exceedance
probability 0.9986 was calculated after each 5000 trials in two ways:

(i) using the previous 5000 trials;

(i1) using all the trials performed.

The results are shown in Table 3. As can be seen from this table, the values of a,, vary
only slightly with the number of trials as well as from one series of 5000 trials to another.
Similar results were obtained for flexural reinforced concrete members and members under com-

bined bending and tension. Therefore in these cases 5000 trials permitted to obtain sufficiently
accurate results.

5.2. Example 6

In this example the verification of the approach is carried out in the following way. Consider
a log-normal distribution

S I N B A U ST
Sx(x)= /I x eXp[ 2( - )] (36)
The values of the parameters are
u=3, 0=02 37

This is a distribution of concrete compressive strength (see example 2.12 in Thoft-Christensen
and Baker 1982). Therefore the lower tail of the distribution is of interest.

Using pdf (36). (37) the direct Monte Carlo simulation is performed as described above and
a suitable Pearson’s curve is used to approximate (36), (37). It should be stressed that the log-
normal curve is not among Pearson’s curves. Therefore the values P, of two probability distribution
functions for the same x can be compared: the exact value (the log-normal distribution) and
an approximate value (a Pearson’s curve).
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Table 5 Comparison of exact and approximate values of P, (combination of extreme value and tail
entropy approximations, sample size is 5,000)

_ . P, exact P, approximate values for k=
X p=(Inx—=3)/0.2 values 1 (6) 2. 3 44
10 —3.487 2415X10°4 1.620X 1074 1.671X107* 1.637X10 4 1.716 1074
9.025 —4 3.167X107° 1.583X10 ° 2480% 107 1.90310°* 3.030X107°
8.166 —4.5 3398107 1.058 <10 ¢ 3291X10°° 1.798X10°° 3.032X10°°
7.389 -5 2.868X1077 4.074X 107" 3799 10°% 1.298 X 1077 2.866X1077

The results of comparison for different sample sizes are shown in Table 4. Pearson’s curve
numbers used for approximation are given in parentheses next to the values of sample size.
As can be seen from Table 4, the accuracy of the results decrease substantially as the exact
value of failure probability decreases even for sufficiently large sample sizes.

In Table 5 are shown the results of comparison between exact and approximate values, when
the last ones were calculated using extreme value and tail entropy approximations. Sample size
5000 was used with k=2, 3, 4; k=1 denotes direct Monte Carlo simulation.

As can be seen from Table 5, the results with the use of the combination of extreme value
and tail entropy approximations are considerably more accurate in comparison with those
obtained by direct Monte Carlo simulation, especially for small values of P; An important point
is that the accuracy of the results increases with k. For k=4 the approximate results are rather
close to the exact ones.

6. Discussion of results

The following inferences can be made from the calculation results.

The suggested approach seems to be sufficiently accurate in the range of investigated failure
probabilities (down to 1077). The key advantages of the approach over other methods are simplicity
and versatility: it can be easily applied to different problems even when probability density
functions and limit state functions are not continuous (Examples 4, 5). The above mentioned
drawbacks of Level 2 and importance sampling methods can be overcome. In addition to direct
problem, inverse problem can be solved. Extreme value and tail entropy approximations substan-
tially improve results of direct Monte Carlo simulation (Examples 2, 6).

In order to achieve the best results in calculations a proper balance between general sample
size m and parameter k regulating sample size in extreme value approximation should be establi-
shed. The accuracy of approximation increases with k until sample size m/k used for extreme
value approximation remains sufficiently large, but after a certain “threshold” in k the value
of sample size m/k becomes too small and the accuracy of approximation is impaired (Example
2).

For relatively high failure probabilities of order 107*-107* (Examples 3, 4, 5) sufficiently accurate
results can be obtained by direct Monte Carlo simulation without extreme value and tail entropy
approximation; for lower failure probabilities of order 107%-1077 (Examples 1. 2, 6) the application
of these techniques is essential.

The main disadvantage of the suggested approach is that generally it fails to estimate very
low failure probabilities (lower than 1077).

The approach is particularly advantageous when calculation for similar structures are carried
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out on a mass scale. In this situation first several typical cases are investigated. On the basis
of obtained results it is decided whether or nor extreme value and tail entropy approximations
are required and the optimum values of m and, if necessary, k are established. Thereafter all
the rest of calculations are performed. For instance, such methodology was used for reliability
regulation of RC flexural members and members under combined compression and bending
in order to improve the Russian Code 1985: numerical values of material property combination
factor k. (see section 2.4 of this paper) were calculated for different combinations of member
parameters.

7. Conclusions

It is suggested to use Monte Carlo simulation in combination with extreme value and tail
entropy approximations. An appropriate Pearson’s curve is fit to represent simulation results,
reliability is estimated by numerical integration. Direct and inverse problems are considered.
An algorithm and computer program for structural reliability estimation are developed. A number
of specially chosen examples are used in order to verify the accuracy of the approach and
compare numerical results with those obtained by the importance sampling and Level 2 methods.
The suggested approach appears to be sufficiently accurate. The drawbacks of the importance
sampling and Level 2 methods can be overcome: limit state function and probability density
functions need not be differentiable and even continuous, the approach is insensitive towards
existence of multiple SB-points, non-normal basic variables need not be transferred to normal
basic variables, etc. At the same time the approach usually fails to estimate failure probabilities
lower than 1077. Therefore a proper field of application for the suggested approach exists and
it can be used for practical purposes along with the Level 2 and importance sampling methods.
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