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Abstract. An analysis to determine shear centers for anisotropic elastic thin-walled composite beams,
cantilevered and loaded transversely at the free end is presented. The shear center is formulated based
on familiar strength of material procedures analogous to those for isotropic beams. These procedures
call for a balancing of torsional moments on the cross sectional surface and lead to a condition of
zero resultant torsional couple. As a consequence, due the presence of anisotropic coupling, certain
non-classical effects are manifested and are illustrated in two example problems. The most distinguishing
result is that twisting may occur for composite beams even if shear forces are applied at the shear
center. The derived shear center locations do not depend on any specific anisotropic bending theories
per se, but only on the values of bending and shear stresses which such theories produce.
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1. Introduction

Thin-walled beams with both open and closed sections are frequently exploited in aerospace
structures, and the use of advanced composites is becoming commonplace. The location of the
shear center for thin-walled laminated beams is of particular interest due to non-classical effects
associated with composite beam theory.

The focus here is on the class of beams, with constant cross sectional properties, fixed at
one end and loaded in transverse shear at the opposite end. This problem has been studied
in-depth based on St. Venant's solution from the theory of elasticity. Several early works in
this area sought to define the shear center for isotropic beams. For sections with the abscissa
as an axis of symmetry for both loading and geometry, Griftith and Taylor (1917) arrived at
a shear center formula, based partially on soap film methods, in which shear stress distributions
were determined so as to produce zero rate of twist at the free end. This formula was interpreted
by Duncan (1953) as the centroid with the ordinates cubed. Duncan (1932, 1953) replaced Griffith's
and Taylor's soap film analogies with a series representation of stress functions and found a
shear center which coincided with Griffith’s and Taylor's only when Poisson’s ratio equaled
zero. Trefftz (1935) defined the shear center in terms of total strain energy versus strain energy
from the separate torsion and bending solutions. Since, as Goodier (1944) explained, it is impossi-
ble for the relative rotations of all corresponding elements of area between two cross sections
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to vanish. Goodier enforced a condition of zero average rate of twist over the section. Osgood
(1943) asserted that the “usual” definition of shear center-that point through which transverse
shear loads must pass so as to cause no rotation of the free end section-is inadequate to produce
a unique location which is the reason why various formulations, based on this definition. yield
differing results.

For isotropic beams, it is the torsional couple caused by tranverse forces resolved about some
reference point (e.g. the shear center) which leads to twist, while for anisotropic beams, twist
may result with or without torsional couples through bending and extension coupling. As a
consequence, care must be taken when using shear center definitions such as those above for
anisotropic beams. Trefftz’ definition, for example, may not be suitable since, for a general lami-
nate, the bending, torsion and extension problems are coupled. Recently, Reissner and Tsai
(1972), through the use of influence coefficients based on St. Venant's solution, have obtained
a definition for shear center, and Reissner (1989, 1991, 1992) has extended his influence coefficients
to account for orthotropy and anisotropy. Using anisotropic plate theory, Mansfield (1979) has
taken an alternate view of applying conditions on torsional moments rather than deformations
to locate the shear center.

To avoid the complexities associated with theory of elasticity, methods analogous to those
of classical thin-walled isotropic theories are applied in this paper to obtain shear center positions.
The formulation of the shear center is based on familiar strength of material (engineering) proce-
dures but extended to account for orthotropic coupling found in composite laminates. The use
of the familiar simplifying assumptions inherent in the classical, engineering theory provides
a clear, intuitive approach to the anisotropic shear center problem. In this context, no literature
has been found on shear center formulations for arbitrary section geometry and lay-ups although
for the special case of orthotropic materials (single ply). Bauchau (1985) has been able to decouple
bending and torsion, and the shear center is determined from this condition.

The “engineering” shear center is often defined in two different ways. and though either defini-
tion produces the same result in the isotropic case. significant differences arise in the anisotropic
case. Many authors (e.g., Allen and Haisler 1985, Peery and Azar 1982, Bisplinghoff, er al.. 1957,
Donaldson 1993, Faupel and Fisher 1981) define shear center as the point on the cross sectional
plane at which the application of shear forces causes no twist of section. Libove (1988) has
considered this definition in terms of anisotropic closed sections. His recommendation is to
“..-formulate a shear center definition that is nearly analogous to that of the classical theory---"
by finding a position through which the shear loads cause no average rate-of-twist over the
beam length. In the present investigation, however. it is shown that the “analogous” definition
comes directly from the other common shear center definition (described next), and no re-defining
is necessary.

In the second definition (eg. Oden and Ripperger 1981, Gjelsvik 1981, Niles and Newell
1938), the shear center is defined as the point on the cross sectional plane at which the application
of shear forces causes a shear stress distribution which balances the torsional moment due
to resultant shear forces. Under such a condition, no resultant torsional couple is generated
by the shear loads.

For isotropic, homogeneous elastic sections, twist can only arise from resultant torsional couples:
zero twist implies a zero torsional couple. and vice versa. and both definitions yield identical
results. In the anisotropic case, zero torsional couple does not necessarily imply zero twist. For
example, a shear load may be applied at a point on the cross section such that a zero net
torsional couple is generated. However, due to bending moments caused by shear loads. twist
may exist since bending and twist are coupled. Similarly, zero twist does not guarantee zero
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Fig. 1 Cross sectional stresses and resultants.

torsional couple. Consequently, either the resultant torsional couple can be made zero or the
twist can be zeroed, but not both simultaneously. Bauld and Tzeng (1984) have made a similar
observation that, except for certain cross-ply lay-ups. “---equilibrium configurations for which
bending and twisting deformation modes are uncoupled do not exist”. (The shear center problem
is not considered in that work.) If the second definition (in terms of balanced torsional moments)
is used, procedures analogous to the isotropic ones can be followed to determine shear centers.
Hence, the second definition is seen as more natural and is used herein.

2. General results from composite beam theory

In general, due to anisotropy, full coupling between extension, bending and twist is exhibited
in composite beams. This behavior can be represented symbolically through the following genera-
lized constituitive relationship:

P, SF, SF, SF; SF, &
M: — SF]] SF33 SF:J SF34 a (1)
M, SFy SFy, SFy SFy || b
M, SFy SF, SF,u SFy 0

where (see Fig. 1) P, is the resultant force in the x direction, M.(M,) is the resultant bending
moment about the y(z) axis caused by normal stresses in the z(y) direction defined such that
tensile stresses in the positive x —y(y —z) quadrant produce a positive moment. M, is the resultant
torsional couple whose sense is given by the right hand rule about an axis parallel to the x-
-axis, & is the strain along the x-axis (beam axis), @ and b are cross sectional constants representing
the bending deformations (e.g. in Euler-Bernoulli theory, the curvatures of the beam axis in
the y and z directions, respectively), 8 is the rate of twist due to coupling and applied pure
torsional moments (couples), and SF; are elements of the “stiffness” matrix [SF].

The location of the origin of the (x, y, z) system is arbitrary, but it is understood that the
transverse shear forces pass through the shear center so that (as will be demonstrated subsequently)
no net torsional couple is produced by them. General assumptions leading to relations of the
type given by Eq. (1) are only that the normal strain varies linearly over the section and that
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Fig. 2 Line-of-action of shear resultant.

the resultant shear stresses N, arising from applied shear loads can be ignored as producing
insignificant deformations (Euler-Bernoulli theory is a special case incorporating these assump-
tions). Recall, also, that only beams of constant cross sectional properties are considered herein.
Transverse shear and warping degrees of freedom may be explicitly appended to the above
relations as desired. The specific values SF;; depend on the particular beam theory used in addition
to material properties and geometry and thus will be left general in the subsequent development.
Also, separate stress-strain relations may be required due to the fundamentally different mechani-
cal behavior between open and closed sections.
In short form, Eq. (1) may be written as:

{o}=[SF]1{¢} (2)
where {c} =[P, M. M, M. ]". {e}=[& a b 6]" and [SF] is described by Eq. (1). Inversion
gives:

{e} =LCF1{o} 3

where [CF]=[SF]' and is the compliance matrix.
Spanwise equilibrium yields:

V.=V sin y= —dEMZ
V.=V cos u= —%" 4

where V', and V. are the y and z components of the transverse shear force V. In general, V'
may be aligned along any direction oriented at an angle p with respect to the z axis as shown
in Fig. 2. Since only cantilevers loaded by transverse forces at the free end are considered, P,=M,=
0.

Although N,,. due to V is ignored in obtaining Eq. (1), the shear center formulation requires
the shear stress due to applied transverse shear loads (i.e. in the absence of applied pure bending
and torsional moments). This shear stress is denoted by N, where the overbar delineates it
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Fig. 3 Forces on an infinitesimal beam element.

from other shear stresses that may be envisioned. N,, can be obtained through force and moment
equilibrium of the forces per unit sectional length shown acting on an infinitesimal beam element
in Fig. 3. To the first order:

= s JN, -
Nxx_ fo dX dS‘f‘]Vx_\-O (5)
where N,, is the shear force per unit sectional length, N, is the normal force in the axial direction

per unit sectional length, and N,,, denotes the values of N,, at s=0. In open sections, Ny,=0

,\’SO
because of the traction free edge at s=0. In what follows, an overbar on any quantity indicates
that it is caused solely by N..

In general, N, is related to all beam generalized displacements (&, a, b and 0), and this relation-

ship, consistent with the assumptions of Eq. (1), may be expressed as:

&
Nx:[pl P P p4] Z (6)
0

where actual values of the coefficients p depend on the beam theory used and on whether
the section is open or closed. Combining Eqgs. (3)-(6) yields the shear force per unit sectional
length required for sectional equilibrium:

N:f (ny,V sinug+ny V cosp)ds+N,, (7
0 :

where

{El;n‘}:[ CF, (F» CFp CF42] [t

nx.\';. CF; CFys CFy CFy ®

It will be useful to obtain relationships between twist and torque for the following analysis.
Recalling that only transverse end forces are considered here (simple shear), then with the applica-
tion of Eq. (4), the twisting deformation 6 from Eq. (3) is:

1,

6= CF42 <LX_ ‘2—)(') V1'+CF43 (LX* é—xz) I/_- (9)



96 Gerry D. Pollock, Adam R. Zak, Harry H. Hilton and M. Fouad Ahmad

ds dy

dz

(a) Shear stresses and forces (b) Differentials

Fig. 4 Balancing of moments on a segment of a section.

It is emphasized that this twist is caused by coupling with bending in which the bending moment
is generated by the transverse shear forces. Consistent with previous notation. if M, is the
torque about the shear center generated by N, (the shear center reference location is chosen
for convenience), then the corresponding additional rate of twist @ may be expressed as:

0=M, A (10)

The sectional parameter 4 may be termned an “anisotropic torsional rigidity” and depends
on the beam theory used but should reduce to the isotropic torsional rigidity if isotropic material
properties are used (see. for example. Pollock 1993).

According to the first shear center definition in terms of zero twist. 8 must vanish as well
as the additional contribution due to 8. Using the second definition based on resultant loads,
the net torsional couple generated by N,, must be zero. The latter condition is automatically
satisfied by adopting isotropic procedures.

3. Shear center formulation

Preventing applied shear forces from generating a net torsional couple requires a moment
balance between the moments due to V and those duc to N,, on the cross sectional surface.
This is analogous to the method for determining isotropic shear center positions except for
stress averaging through discontinuous layers in the case of composite laminates. Shear force
resultants applied to the cross sectional plane and shear stresses per unit thickness on the cross
section itself are shown in Fig. 4 along with a diagram relating differentials. Moment balance
requires that:

For open sections:

S S
Vo= — f (cos)y (N ds)+ f (sin)z (V.. db) (ah

For closed sections:

Vo= — f (cosm)y (N, ds)+ f (sinw)z (N..ds) (12)

where s=S is the contour coordinate at the end of the section. Satisfaction of the above equations
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ensures that when the shear force passes through the point (shear center, s.c.) located by the
intersection of the shear force line-of-action and a perpendicular line emanating from the origin,
moment balance is satisfied yielding zero net torque (zero torsional couple). Note that despite
the zero torsional couple, € is not zero as seen from Eq. (9) which is the major distinction
between isotropic and anisotropic shear center formulations.

In the open section case, recognizing that N, is zero, the trigonometric relationships between
the differentials shown in Fig. 4(b) can be used in Eq. (7) to give:

ST s _
Ve= +f [f (ns,V sing+n, V cos,u)ds]zdy
Yo S0 i
2¢ s _
- f [ f (ny V' sinutn, V cos,u)ak] ydz (13)
20 S0 .
where (yo, z9) and (ys, zs) are the beginning and end coordinates, respectively, of the section.

Neither V' nor u are functions of cross sectional coordinates, and so Eq. (13) can be written
as:

VSIS _ _
e= +f [f (nx, Sinu+n,, cosy)ds]zdy
Yo 50 .
Py 5S .
- f [ f (s, sin+n,,, cos,u)ak]ydz (14
20 30
where u terms are left in the integrands for notational compaction. Note that ¢ does not depend

on V and all quantities on the right-hand-side of Eq. (14) are known.
Following a similar procedure, the shear center for closed sections is found to be:

SE(s _ Nuo
e=+ [ (n. sinu+n,, cosu)ds+ '—]zdy
wltso ™ . V

sEfs_ Nuo
_ [ (nw, singtny cosp)ds+ —;—] ydz (15)
20 k)
In the closed section case, moment equilibrium alone is insufficient to provide the shear center
offset e since N,,, is as yet undetermined. In the isotropic case, zero torsional couple implies
zero twist, and therefore the additional condition of zero twist permits determination of N,
As discussed earlier, for anisotropic sections, zero torsional couple does not necessarily imply
zero twist. Referring to Eq. (10), the analogous anisotropic condition is that 6=0 (not 8=0).
This guarantees that the shear stresses N,, generated by ¥ induce no resultant torsional couple
since V' must pass through the shear center for the zero 8 condition to hold. The additional

constraint provides a means of determining N,,, in terms of V. This relationship depends on
the particular beam theory of choice but will be of the form:

NXSO = ;XX() V (1 6)

where ﬁxso is a section parameter depending on material properties and cross sectional geometry
(see, for example, Pollock 1993). The form of this relationship can be seen as follows. If the
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right hand side of Eq. (15) is multiplied through by V. it represents the torsional moment generated
by shear stresses in closed sections. Thus, the torsional moment is a linear function of V' and
this dependence is carried through in satisfying Eq. (10) for 6=0.

The final relation needed to determine the shear center offset e for closed sections is obtained
by substituting Eq. (16) into Eq. (15):

RRY A — —
o=+ j [ f (n, sinutn,, cosy)de+n\.§“:|zd y
) oo

S (s _ _ _

—f [f (n,\.,\.y sinu+n,, cos,u)ds‘+n_\..\0] ydz 17
20 S0 '

Note that e is again dependent only on the shear stress distribution and independent of the
magnitude of the external load V.

4. Discussion and numerical examples

The location of the shear center in both elastic isotropic and anisotropic sections is independent
of the magnitude but not direction of the shear force V. There are, however, several differences
between anisotropic shear center and its isotropic homogeneous counterpart. These differences
are the result of non-classical effects related to material property coupling. First, while the isotropic
homogeneous shear center depends only on section geometry, the anisotropic one depends addi-
tionally on material parameters (this was also observed for nonhomogeneous, isotropic elastic
and viscoelastic bending by Hilton and Piechocki 1962).

If an isotropic homogeneous cross section has a geometric axis of symmetry parallel to the
line-of-action of the shear load, the shear center must lie on that axis. This is governed by
balancing moments and is a purely geometric effect. Since anisotropic shear centers depend
on material parameters as well, the shear center need not lie on geometric axes of symmetry
unless they are also material lines of symmetry.

The most unique distinction for anisotropic sections is that if shear center locations are
evaluated with a procedure that is completely analogous to the isotropic one, then twist may
still be produced. The residual twist is due to coupling resulting from anisotropic material proper-
ties.

For the purpose of providing numerical results, a laminated thin-walled, elastic beam theory
developed by Zak, et al. (1985, 1987) is employed.

Using this beam theory, the present shear center formulation has been coded and extensively
checked against known isotropic values (Pollock 1993). In every case the results reduce to the
isotropic case, as required, when isotropic material properties are used. Two illustrative example
with various cases are presented to demonstrate effects associated with anisotropic shear centers.

4.1. Example 1: Laminated uneven channel section

To study the effects of point of application of shear loads, an uneven channel section is
exploited. The section is shown in Fig. 5 with a vertical shear load of 100 lbs acting at both
the centroid (c.g) and the shear center.

The shear center is calculated for the three lay-ups given in Table 1. The material denoted
by M1 in Table 2 is used for each ply. Unsymmetric bending characterized by two shear load
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Fig. 5 Laminated uneven channel section.
Table 1 Configuration of uneven channel section
Case Segment Layer Orientation (degrees) Thickness (inches)
1 —45 0.08
1 2 0 0.08
3 45 0.08
1 —30 0.08
1 2 2 0 0.08
3 30 0.08
3 1 60 0.08
2 —60 0.08
1 —45 0.08
1 2 0 0.08
3 45 0.08
1 30 0.08
2 2 2 0 0.08
3 30 0.08
3 1 60 0.08
2 —60 0.08
1 45 0.08
1 2 0 0.08
3 45 0.08
| 30 0.08
3 2 2 0 0.08
3 30 0.08
3 | 60 0.08
2 60 0.08

lines-of-action (horizontal and vertical) are considered for shear center calculations. In Table
3, the shear center offsets are listed for the three cases and compared to the equivalent isotropic
case (i.e., an isotropic section of identical geometry and since the elastic, homogeneous, isotropic
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Table 2 Material properties of unidirectional plies

Material E, (Msi) E> (Msti) G (Msi) Via
Ml 399 1.26 0.51 0.260
M2 8.00 2.00 384 0.300

Table 3 Shear center locations for example 1

u e (in)
(deg) Case 1 Case 2 Case 3 Isotropic
0 0497 0.496 0.575 0421
90 0451 0453 0437 0410

Table 4 Effect of shear force position on tip deformation for example 1

C Transverse Lateral Transverse Lateral Twist
¢ deflection (in) deflection (in)  bending slope (rad) bending slope (rad) (rad)
1

cg 0492 0.174 0.0191 0.00592 —0.109
s.C. 0.491 0.209 0.0190 0.00766 —0.001
2

g 0.493 0.169 0.0190 0.00565 —0.0878
S.C. 0.493 0211 0.0191 0.00778 0.0019
3

g 0.554 0.181 0.0217 0.00577 —0.0785
S.C. 0.554 0.181 0.0217 0.00577 0.0021

shear center depends only on geometry, the isotropic material properties are irrelevant).

Although the only difference between the three anisotropic sections lies in the lay-up scheme,
the shear center offsets vary by up to 16 percent and by as much as 37 percent compared
to the isotropic casc. It is also evident that the shear center position is extremely sensitive to
fiber orientation, i.e. degree of anisotropy.

Effects of applying shear loads at points other than the shear center are investigated by moving
the shear loads from the c.g. to the s.c. In Table 4, tip deformations due to vertical shear load
at the shear center (s.c.) are compared to their counterparts with the shear load at the centroid
(c.g). Although changes in the lateral and transverse deflections are noted, twisting deformations,
as also expected in the isotropic case, are severely affected by shear load location. The significance
of this example is that, although reduced by one to two orders of magnitude, anisotropic twist
does not vanish when the shear force acts through the shear center.

4.2. Example 2: Diamond shape section

The purpose of this example is to numerically demonstrate additional non-classical effects
discussed earlier. A diamond section symmetric about both the z and y (horizontal and vertical)
axes is chosen and shown in Fig. 6. A fairly complex lamination scheme (Table 5) including
layer-and segment-wise material and geometric discontinuities is incorporated to demonstrate
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Table 5 Details of diamond shape section

Segment Layer Orientation (rad)  Thickness (in) Matenal
1 1 30 0.06 Ml
2 —30 0.08 M2
3 30 0.08 M2
4 —-30 0.06 Ml
2 1 60 0.08 M2
2 0 0.12 M
3 —60 0.08 M2
3 1 45 0.08 M2
2 —45 0.06 Ml
3 45 0.06 Ml
4 —45 0.08 M2
4 1 0 0.14 Ml
2 90 0.14 M2
A} ¥
Notes: \'%4
1) dimensions in inches
2) layer one is inner “
most layer
e
2 2
1
a K3
e 5 >l 5 —————»]
Fig. 6 Laminated diamond shape section.
Table 6 Shear center offsets for diamond section
u e (in)
d Anisotropic Isotropic
(deg) Open Closed Open Closed
90 7.268 0.0767 7.500 0.000
60 6.362 0.0596 6.495 0.000
0 0.136 0.0137 0.000 0.000

the capabilities of the analysis. The properties of materials M1 and M2 are listed in Table
2. Both open and closed sections are considered where, in the open case, a small gap is imagined
to exist between segments | and 4. Isotropic results are given as a reference.

Table 6 summarizes the results of the shear center locations for open and closed, isotropic
and anisotropic cases with shear load line-of-action oriented at three different angles. In the
open section case, due to the break between segments | and 4, only one axis of geometric
symmetry exists, ie. the z axis. As required, the isotropic shear center lies on this axis for the
vertical shear load case (u=0), but since this axis is not also an axis of material symmetry,
the anisotropic shear center lies elsewhere.
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For the closed section, two lines (v and z axes) of geometric symmetry exist, and thus the
isotropic shear center coincides with this origin. Neither axis, however. is an axis of material
symmetry, and hence the anisotropic shear center lies away from the origin. It is interesting
that while the isotropic shear center remains fixed at the origin (to within the indicated accuracy),
the anisotropic shear center changes with the angle u of the line-of-action. It is important to
emphasize that the isotropic shear center formula fails to predict the correct
anisotropic shear center.

5. Conclusions

Shear centers for anisotropic elastic thin-walled beams can be determined using strength of
material procedures analogous to those of isotropic beams which lead to a condition of zero
resultant torsional couple over the section. As a consequence, due to the presence of bending/twis-
ting coupling in composite beams, twist may occur even if shear forces do not produce torsional
couples. Moreover, unlike isotropic beams, the shear center for anisotropic beams is dependent
upon material properties in addition to section geometry. Two example problems numerically
confirm these non-classical predictions which do not depend implicitly on any preselected
anisotropic beam theory.

References

Allen, D. H. and Haisler, W. E. (1985), Introduction to Aerospace Structural Analysis, John Wiley & Sons,
New York.

Bauchau, O. A. (1985). “A beam theory for anisotropic materials, " Journal of Applied Mechanics, 52,
416-422.

Bauld, Jr. N. R. B. and Tzeng, L. S. (1984), “A Vlasov theory for fiber-reinforced beams with thin-walled
open cross sections”, International Journal of Solids and Structures. 20(3), 277-297.

Bisplinghoff, R. L., Ashley, H. and Halfman, R. L. (1955). Aeroelasticity, Addison-Wesley Publishing Com-
pany, Boston.

Donaldson, B. K. (1993), Analysis of Aircraft Structures. An Introduction. McGraw-Hill Book Company,
New York.

Duncan. W. T. (1932), “Torsion and flexure of cylinders and tubes”, Reports and Memoranda, National
Advisory Committee on Aeronautics (1444), 54-77.

Duncan, W. T. (1953), “The flexural centre or centre of shear”, Journal of the Royal Aeronautical Society,
57, 594-597.

Faupel, J. H. and Fisher, F. E. (1981), Engineering Design, 2nd Edn, John Wiley & Sons, New York.

Gielsvik, A. (1981), The Theory of Thin Walled Bars, John Wiley & Sons, New York.

Goodier, J. N. (1944), “A theorem on the shearing stress in beams with applications to multicellular
sections”, Journal of the Aeronautical Sciences, 11, 272-280).

Griffith, A. A. and Taylor. G. . (1917), “The problem of flexure”. Reports and Memoranda, National
Advisory Committee on Aeronautics (399), 1-21.

Hilton, H. H. and Piechocki, J. J. (1962), “Shear center motion in beams with temperature dependent
linear elastic or viscoelastic properties”, Proceedings of the Fourth U.S. National Congress on Applied
Mechanics, pp. 1279-1289. ASME.

Libove, C. (1988). “Stresses and rate of twist in single-cell thin-walled beams with anisotropic walls”,
AlAA Journal, 26(9). 1107-1118.

Mansfield, E. H. (1979). “On the deflection of an anisotropic cantilever plate with variable rigidity”,
Proceedings of the Royal Society of London, A. 366, 491-515.



Shear center for elastic thin-walled composite beams 103

Niles, A. S. and Newell, J. S. (1938), Airplane Structures, 1, 2nd Edn. John Wiley & Sons, New York.

Oden, J. T. and Ripperger, E. A. (1981), Mechanics of Elastic Structures. 2nd Edn. Hemisphere Publishing
Corporation, McGraw-Hill Book Company, New York.

Osgood. W. R. (1943), “The center of shear again”, Journal of Applied Mechanics. pp. A-62-A-64.

Peery, D. 1. and Azar, J. J. (1982), Aircraft Structures, 2nd Edn. McGraw-Hill Book Company, New York.

Pollock, G. D. (1993). “Thin-walled orthotropic laminated beam theory”, Ph.D dissertation, Department
of Aeronautical and Astronautical Engineering, University of Illinois at Urbana-Champaign.

Reissner, E. (1989), “The center of shear as a problem of the theory of plates of variable thickness”,
Archive of Applied Mechanics (Ingenieur-Archiv), 59, 325-332.

Reissner, E. (1991), “Approximate determination the center of shear by use of the st. venant solution
for the flexure problem of plates of variable thickness”, Archive of Applied Mechanics (Ingenieur-Archiv),
61(8), 555-566.

Reissner, E. (1992), “On some ramifications of the center of shear problem”, Zeitschrift fur Angewandte
Muthematik und Mechanik, T2(8). 315-319.

Reissner, E. and Tsai, W. T. (1972), “On the determination of the centers of twist and of shear for
cylindrical shell beams”, Journal of Applied Mechanics, 39, 1098-1102.

Trefftz, E. (1935), “Uber den Schubmittelpunkt in einem durch eine Einzellast gebogenen Balken”, Zeits-
chrift fur Angewandte Mathematik und Mechanik, 15(4), 220-235.

Zak, A. R. (1987), “Finite element limitations for orthotropic, laminated beam analysis”, Journal of Enginee-
ring for Industry, 109, 34-38.

Zak, A. R. and Nagarajan. S. (1985), “Finite element model for orthotropic beams”, Composite Structures,
20(1-3), 443-449.





