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Abstract. A linearly tapered, doubly symmetric thin-walled closed member. such as power-transmission
towers and tourist towers, are often characterized by local variation in mass and/or rigidity, due to additional
mass and rigidity. On the preliminary stage of design the closed-form solution is more effective than the
finite element method. In order to propose approximate solutions, the discontinuous and local variation
in mass and/or rigidity is treated continuously by means of a usable function proposed by Takabatake(1988.
1991, 1993). Thus, a simplified analytical method and approximate solutions for the free and forced transverse
vibrations in linear elasticity are demonstrated in general by means of the Galerkin method. The solutions
proposed here are examined from the results obtained using the Galerkin method and Wilson-§ method

and from the results obtained using NASTRAN.

Key words: clastic analysis; dynamic structures; local mass; local rigidity; natural frequency: variable
thin-walled member.

1. Introduction

In Japan, power-transmission towers constructed in urban districts and tourist towers are
often made of a cantilevered and linearly tapered thin-walled member with a circular or
polygonal transverse cross-section. Such towers have discontinuous and local variation in the
mass and/or rigidity, due to insulators, insulators crossarms, and floors for observatories and/or
lookout restaurants. Those additional mass and rigidity are independent of the structural mass
and rigidity of the linearly tapered member.

Takabatake (1990) presented a static closed-form solution for a linearly tapered and doubly
symmetric thin-walled member, subjected to arbitrary loads. Gaines and Volterra (1968)
discussed frequencies of tapered beams. Wang and Lee (1973) extended the power series
solution of Rohde (1953) to the large deflection problem for tapered cantilevers. Prathap and
Varadan (1975) presented finite deflection of a tapered cantilever with any arbitrary inertia
variation. Bouchet and Biswas (1977) presented nonlinear analysis of towers and stacks by
means of FEM. To (1979) presented an explicit expression for mass and stiffness matrices
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of two higher order tapered beam elements for vibration analysis. Gupta (1984, 1985) derived
dynamic stiffness and mass matrices in explicit form for a linearly tapered beam element
for FEM. However, the general analytical method and approximate solutions for a linearly
tapered thin-walled closed member with discontinuous variation in mass and/or rigidity are
scarce. Especially, on the preliminary stage of design the closed-form simplified solution is
more effective than the finite element method.

The purpose of this paper is to present a simplified dynamic analysis, in linear elasticity,
for a cantilevered and linearly tapered thin-walled member with discontinuous additional mass
and/or structural rigidity, subjected to the transverse vibrations. The local variation in mass
and/or rigidity due to the additional mass and/or additional rigidity, distributed disconti-
nuously, is replaced with a continuous function by means of a usable function proposed by
Takabatake (1988, 1991, 1993). The use of the function simplifies a general analytical method
for such a member.

First, the governing equation of motion, including discontinuous and local variation in mass
and/or rigidity, is presented, in which the transverse shear deformation in such a member
is neglected in practice, as shown by Takabatake (1990). Second, the free transverse vibration
is presented by means of the Galerkin method: and an approximate solution for the natural
frequencies is proposed in closed-form. The validity of the proposed solutions is shown through
comparison with the results obtained from the FEM code NASTRAN and the previous results.
Third, forced transverse vibration is presented by means of the Galerkin method; and an

approximate solution is proposed in closed-form. The analytical method and approximate
solution are examined from numerical results obtained using NASTRAN and the previous
results.

2. Governing equations of motion

Consider a linearly tapered and doubly symmetric thin-walled closed section, as shown
in Fig. 1. The two diameters of the transverse cross section are assumed to be far smaller
than the length of the member; and the thickness is also assumed to be far smaller than
the size of the transverse cross section. The coordinate axes are prepared as shown in Fig.
1, in which the x-axis takes the axial line, being the centroidal axis: and its original point
is taken as the intersection of the generating lines on the middle surface bisecting the thickness
at each point. The y-and z-axes are the principal axes of the transverse cross section, prescribed
by the value of x.

Takabatake (1983, 1987, 1990) showed that for such a member the transverse shear de-
formations and the inplane distortions of the transverse cross section are negligible. For si-
mplicity, the boundary conditions are considered to be free at the top (x=x;) and fixed at
the base (x=x;). Assuming linear strain-displacement relations, the equations of motion can
be written as

Sw:pdw + cow + (ELw) = p. — my (1)
801 pl0 + b — (pI’) + (pIo") — (GO} = m, Q)
in which w(x, r)=the displacement component on the axial line; 6(x, r)= the torsional angle

along the x-axis; ¢. and ¢, = damping coefficients for the transverse and torsional vibrations,
respectively; p= the mass density of the member; P.(x. /)= the z-component of an lateral
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Fig. 1 Linearly tapered doubly symmetric thin-walled member.
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Fig. 2 Variable member with discontinuous and local variation in mass and rigidity.
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external load acting along the central axis: m.(x. t) and m,(x,1)= the external torsional and
bending moment acting along the central axis, respectively. These displacements, torsional
angle, external loads, and external moments are considered as positive when they point toward
each positive direction of the coordinate axes for loads while right-hand rule for moment
vectors, as shown in Fig. 1: but the positive external forces and external moments acting on
a negative surface are defined inversely. Primes and dots indicate differentiation with respect
to x and 7. respectively.

On the other hand, the sectional quantities, 4, /.. J. ' and /,, are functions of x. Such a
thin-walled variable member has often discontinuous and local variation in mass and/or
structural rigidity due to additional mass and/or additional rigidity, as shown in Fig. 2. Ta-
kabatake (1988. 1991, 1993) demonstrated the effectiveness of using an operator function for
the lateral buckling of / beams with web stiffeners and batten plates and for analysis of voided
plates and of tube structures. Applying the function to the local variation in mass and/or
structural rigidity in current problem. the sectional quantities of the current member may be
expressed as follows:

POM() = pdu(x) + pADx — x,) 3)
PO, () = pulya() + puD(x — x,) @)
EX) (x) = E.lo(x) + EL;D(x — xi) (&)
G(x)J(x) = Gio(x) + GJD(x — x1) (®)
G (x) = G LLix) + GTDx — xy) )

The first term in the right side of the above equations is the sectional quantity due to only
the linearly tapered thin-walled member, and it is indicated with the subscript 0. On the other
hand, the second term is the sectional quantity due to the additional mass and/or additional
rigidity, in which the subscript i indicates to be based on the i-th local variation. The operator
function D(x-x,) is defined as

; ;
1 for x. 3 X <x + 3
Dix—x)= (&)
0 for all others

in which /= the length of the i-th local variation; and x;= the value of x at the midpoint
of the i-th local variation. The function is defined as a function of ‘which the Dirac function
exists continuously in a prescribed region. For the current problem the function has a value
in only the location where the additional mass and/or additional rigidity exist, and replaces
local variation in mass and/or rigidity, distributed discontinuously, with a continuous function.

In common with the work of Takabatake (1986, 1990), the variation of the thickness in
the axial direction is assumed to be negligible in practice. Then, these sectional quantities
for a linearly tapered and doubly symmetric member can be separated into variable and
constant as follows:

A, (x) = xA C)]
Lox) = x'I, (10)
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J(x) = x'J (11)
L(x) = x'T (12)
Lo(x) = x'I, (13)

in which4,1,.J,T and I, = sectional constants depending on both the shape of the transverse
cross section and the tapering angle, as given in the work of Takabatake (1990). Applying
Egs. (9) - (13) to Egs. (3) - (7), the current sectional quantities may be written as

PIM(x) = pd i (x) (14)
PO, (x) = pd ,a,(x) (15)
E) (x) = EJa.(x) (16)
G(x)Jx) = GuJ 0.(X) (17)
G(X)F(X) = Gofa(vr(x) (18)
in which o, dy, 0, 0w and agr are defined as
a = x + P4 px) (19)
paA
IR 20)
Qu = X — Dx—x;
p')l P
EI
Ay — x + = D(X_X,') (21)
GJ,
0y = X + —— D(x—x,) (22)
GT,
Qo = x + G.T D(x—x;) (23)

On the other hand, the sectional quantities for a uniform member including local variation
in mass and/or rigidity are given in Appendix.
3. Free transverse vibrations

Consider the free transverse vibrations of a linearly tapered thin-walled closed member.
The method of separation of the variables is employed assuming that

wix, 1) = X(x)Ar) 24
Then, the equation of free transverse vibrations for X(x) is

LE@) L)X )" — o’ plx) A(x) X=0 (25)

in which = a constant. The substitution of Egs. (14) and (16) into the above equation
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yields
(IHXW—*-Z(IH’ Xw +Q./-_'1 "AX'”‘](4 (IMX(X) = 0 (26)
in which the constant k° is defined as
(,03 1A_—
k = p_ 27
E.l

Natural frequencies for a variable member with discontinuous and local variation in mass
and/or rigidity are proposed by means of the Galerkin method. X(x) is expressed by a power
series expansion as follows:

X(x)= Z € (%) (28)

n=

in which ¢,= unknown coefficients; and ¢, =shape functions. The Galerkin equations for
Eq. (26) are written as

&/‘H : Z ('.’" [Allf?l—k4B’1’77] = O (29)
in which the coefficients, 4,., and B.... are defined as

Xy
A"'“ = J;,I (G‘H (Dm”” + 2Q,H’¢mm + al-_l”q)m” )(I)ndx (30)

Bnm = X pd Vi ndx
L“¢¢ G1)

The integrals including the operator function for a function fix) are calculated as follows:

X o+

- fOdE (32)

fﬁ D(x—x; Jfix)dx= f

. !
Xy .
: N

1

JIDWQHXU0%k=f’;FUTW&K (33)

X, -

in which the superscripts enclosed within parentheses indicate the differential order. Since
in practice [, {{/, the above equations can be approximated as

J”'Du—xvuﬂrzbﬂm

I

(34)

fzmrmkw;uwwm

1

35)
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Hence, the coefficients, 4,, and B,.. may be rewritten as

Eil
Aum f (X O+ 6E 0"+ 60Ny + D o Lo o) (36)
" |Ai
Bnm:J’ xd)md)ndx + Z:; i:‘ li(Dm (Xi)(bn(xi) (37)

The natural frequencies w, for current variable members are obtained by solving Eq. (29).
The natural frequencies for the variable members are now obtained numerically from the
above procedure. Then, consider a closed-form approximate expression for the natural fre-
quencies. Assuming that the natural frequencies are dominated by the diagonal terms in the
square matrices 4., and B,., the approximate natural frequencies ®, are obtained as

Ann / E()I_y
®, — - -
BIW \/ p’A (3 8)

The above equation will be considered as a closed-form solution, because the constant, 4.,
and B,, are calculated easily and previously by the use of computer.

4. Numerical results for free transverse vibrations

The exactness of approximate solution proposed for the free transverse vibrations of a li-
nearly tapered member with additional mass and/or rigidity will be proven from numerical
computation. The variable member is assumed to be circular section; the total height / = 38.6
m; thickness s=0.016m; diameter at the base B,=1.25 m: Young’s modulus £=2059 GN/m’
(21Gkgf/m’); Poisson’s ratio v=0.3; and mass density p,=7.87KN.sec’/m* (802 kgf.sec?/m*).
A vanable member is obtained by changing arbitrarily the tapering ratio B,/B, from 1.0 to
0.2, in which B,=the diameter at the top. The tapering ratio B,/B,~1.0 means the uniform
member. For simplicity, the shape functions for the current cantilevered variable members
use approximately natural functions for the transverse vibrations of cantilevered uniform
member. Namely,

o, = chlk, (xs—x)]—cos [k . (xs—x)]—a, {sh[k, (xs—x)]1—sin[k, (xs —x)]} (39)

The numerical results are shown in Table 1. In this table the columns with ADMASS=0
and ADST=0 show natural frequencies of tapered thin-walled members without additional
mass and rigidity. On the other hand, the columns with ADMASS=1 and ADST=0 show
natural frequencies of tapered members with local variation in only mass due to the following
two additional local masses: for the first mass (=1) x;—x;=26 m, ,=04 m, and p,4,/p,
A*)=0.5; while for the second mass (i=2) x»—x7=56 m. ,=04 m, and p.A/(pA*)=10,
in which 4,*=the sectional area at the base. On the other hand. the columns with AD
MASS=1 and ADST=1 show natural frequencies of tapered members with local variation
in mass and rigidity due to the above additional mass and the following additional rigidity
placed on the above positions: E, 1,/(EJ.*)=1.0 for the<first and second rigidity (/=1 and
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Table | Natural frequencies of transverse vibrations.

Natural Frequencies (rad,sec)

First Second Third

Shape ADMASS 0 1 1 0 1 1 0 1 1

Bi/Bo ADST 0 0 1 0 0 1 0 0 1
Approximate 5.34 522 522 3344 3322 3324 9364 9341 9375
10 Galerkin 534 522 523 3344 3312 3314 9364 9300 9334
NASTRAN 534 522 534 3343 3322 334 93.57 9338 9361
Approximate 5.50 5.36 534 3151 3127 3130 8597 8574 8615
08  Galerkin 548 534 534 3130 3105 3109 8529 8503 85.62
NASTRAN 548 534 534 3128 3105 3107 8522 8501 8526
Approximate 578 5.61 5.61 2998 2971 2975 7951 7926 7977
06  Galerkin 567 549 549 2901 2870 2881 7646 7614 7133
NASTRAN 567 549 549 2899 2870 2873 7635 7606 7641
Approximate 6.27 6.02 6.02 2000 2870 2874 7468 7441 7504
04  Galerkin 597 571 5.72 2655 2613 2642 6703 6660 6923
NASTRAN 599 571 571 2652 2612 2616 6674 6632 6681
Approximate 7.17 6.77 6.77 2883 2846 2851 7205 7175 7252
02 Galerkin 6.51 6.09 6.11 2396 2327 2418 5733 5666  66.62
NASTRAN 6.51 6.08 6.09 23.87 2320 2328 5589 5511 5584

2, respectively), in which I+*= the moment of inertia at the base.

The approximate solutions proposed here show good in agreement both with the results
obtained from Eq. (29) and with the results obtained using FEM code NASTRAN, in which
the total number of bean element used in NASTRAN is 60.

5. Forced transverse vibrations
The equation of motion for the variable member with local mass and rigidity becomes

po AW +cow+Ed(auwy'=p, —m,’ (40)

The general solution of the above equation is assumed to be of the form
Wee 0= 2 wa(1) 0.(6) (1)

in which w, ()=unknown functions with respect to time; and ¢.(x)= natural functions satisfying
both Eq. (25) and the specified boundary conditions of the member. Substituting Eq. (41) into
Eq. (40) and using Eq. (25), we have

Z ¢m p{)A_ ap~1 [‘x)m (t) + 2hm* (-l)m wm (l) + wrn: wm ([)] = p: - m,\" (42)

m-=1
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in which 4. is defined by

Cﬂl
pdo )

with the m-th damping coefficients ¢, of c..

Since the mass coefficient a,, is a function of x, Eq. (42) cannot be transformed into an
uncoupled form by means of the orthogonality relations for natural functions. Multiplying
both sides of Eq. (42) by ¢,; integrating between xr to x;: and noticing that A,* at each point
of current member may be replaced with the usual damping constants /4, for the member
as a whole; we have

W, 2 2 Ko D0 (1) 21,0090 (1) 0,70 (0] =0, () (44)

in which the notations K,,, and Q,(r) are defined as

K, = J; HpoA_aMd)m Oadx (45)
Q.00 = fx (. —m)udx (46)

Eq. (44) are coupled differential equations with respect to time due to the additional mass
and can be solved by means of the linear acceleration method.

Then, consider an approximate solution for the transverse vibrations for practical uses.
Assuming that the behavior of the member is now dominated by the uncoupled terms(i. e.,
m=n) in Eq. (44), Eq. (44) can be approximated as the following uncoupled second order
differential equation:

Swm : Kmm [“'{)m (t) + 2hnl (O ".Vm (t) _+— wmj Wi (t):] = Q’” (t) (47)
The general solution of the above equation is

W, (£) =exp(— h,,,1) [C, sinwp, t +C> Coswpn t]

1 .
exp [ —h,n. (¢ —T)]sinwp, (t —1)0, (t)dt
Kmm(-’)Dm 0 p ( ) " ( )Q'( ﬂ (48)

+

in which C, and C,= constants which are determined from the initial conditions; and w,, =the
natural frequencies of the damped variable member, as given by

Wpm = ®, 1 - l‘lm2 (49)

Eq. (48) may be treated as a closed-form solution, because the integral calculation included
may be easily computed by computer.
Next, c~nsider the following harmonic external load:
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p-(x. )= p(x)sinw, ¢ (50)

in which p_,(x)= a distribution function in the x direction of the external load; and w,= a
frequency of the external load. Then, Q. (r) are defined as

0.(=0Q sinw, (51

. . *
in which @, are defined as
)

* B R
Qm B p:,,(b,,,dx (52)

Y

If at t=0 the initial displacement and velocity are zero, then Eq. (48) is written as

W=

(hm (»l)m)2 + ((-0[) + (-!-)I)nl)2

l *m h/n (Dm COS(DI, t + ((l)ly + (.!)[)m) Slnwpt
Knnn (ol)m 2

hm(l)m COS(I)I’ t + (('0[) - w[)m) Sln(.l),,l
(hm(l)m): + ((D/v - (»Ol)m)Z

((l)p + (Dl)m)Sin(ol)m t—_ hm(-omCOS(!)Dm t
(h/n('~)nl)l + ((Dp + coDm)3

+ CXp ( - hmwm t) [

. (6)

((Dp - (DDm)Sinw[)m 1 + hmmeOS(DDmt
(hm(l)m): + ((1)]7 - (Dl)m)I

6. Numerical results for forced transverse vibrations

The approximate solution proposed here is validated by comparing it with numerical results
obtained using the Galerkin method and NASTRAN. Consider a thin-walled member with
circular section; the total height /=386 m; thickness s=0.016 m; diameter at the base B, =1.25
m; Young's modulus E=205.9 GN/m* (21Gkgf/m’ ); Poisson’s ratiov=0.3; and mass density
Po=7.87KN - sec’/m* (802 kgf.sec2/m*). A variable member is obtained by changing arbitrarily
the tapering ratio B,/B, from 1.0 to 0.2. For simplicity, consider the following triangularly
distributed harmonic forces:;

(XB ) .
p.(X, )=pa* sinw,t (55)

in which p_*=3315 N/m(0.338 tf/m) and w, =2.668 rad/sec. For simplicity, the natural func-
tions for current variable members use approximately the natural functions of cantilevered
uniform members.

Table 2 shows the maximum dynamic deflection and the ratio of the value obtained from
the proposed solutions to NASTRAN for the above tapering ratios, in which the value of
the notations “ADMASS” and “ADST” takes 0 for exclusion and 1 for inclusion of the fo-
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Table 2 Maximum dynamic deflection of variable member.
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Shape ADMASS 0 1 1
B /B ADST 0 0 |
Maximum deflection
Maximum(ratio) Maximum(ratio) Maximum(ratio)

Approximate 0463 m (0.98) 0.545 m (1.00) 0.545 m (1.00)

10 Wilson-6 method 0463 m (0.98) 0.548 m (1.01) 0.548 m (1.01)
NASTRAN 0475 m 0.544 m 0.544 m

Approximate 0.589 m (0.99) 0.525 m (0.99) 0.526 m (0.99)

0.8 Wilson-8 method 0.587 m (0.98) 0.525 m (0.98) 0.525 m (0.98)
NASTRAN 0.597 m 0.533 m 0.533 m

Approximate 0.658 m (0.96) 0.680 m (0.98) 0.680 m (0.97)

06  Wilson-8 method 0.657 m (0.96) 0.678 m (0.96) 0.678 m (0.96)
NASTRAN 0.683 m 0.704 m 0.704 m

Approximate 0.747 m (0.92) 0.773 m (0.93) 0.771 m (0.93)

V4  Wilson-8 method 0.755 m (0.94) 0.776 m (0.93) 0.774 m (0.93)
NASTRAN 0.808 m 0.831 m 0.830 m

Approximate 0.853 m (0.84) 0915 m (0.86) 0.906 m (0.85)

0.2  Wilson-0 method 0923 m (0.92) 0.954 m (0.89) 0945 m (0.89)
NASTRAN 1012 m 1.067 m 1.064 m

llowing two additional mass and rigidity: for the first local varation x;,—x;=2.6 m, ;=04

m, pA./(ppA))=0.5, and E,1,/(E.L,) )=20; while for second local variation x,—x; =56 m,

L, =04 m, p.4,/(peAs )=10, and E.l,./(E,I,)=20. The approximate solution shows good in
agreement with the results obtained from the other methods, but its maximum tra

nsverse displacement is slightly smaller than results obtained from the other methods. The
accuracy of the approximate solution is improved when the shape of the member approaches
to the uniform member. The reason 1s that the natural functions used here for variable
members are the ones for the uniform member.

Fig. 3 shows the dynamic transverse displacements at the top for the variable member with
B/B,=04 and the above-mentioned two additional masses and rigidities. Here the solid
curve indicates the results obtained using the approximate solution given in Eqs. (48) and
(54); the broken curve indicates the results obtained from Eq. (44) by means of the Wilson-0
method; and the solid curve with circles shows the results obtained from NASTRAN.

7. Conclusions

The analytical method and approximate solutions for a dynamic linearly tapered thin-walled
member with discontinuous and local variation in mass and/or rigidity, due to the additional
mass and/or rigidity, have been presented in general by means of a usable function. The
solutions proposed here will be applicable to the preliminary stage of design for such a variable
member. The accuracy of the approximate solutions proposed here for variable members will
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—— APPROXIMATE SOLUTION
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Fig. 3 Dynamic transverse displacements for member with Bi/B» = 04 and with additional mass
and rigidity.

be improved by using suitable natural functions for the variable members instead of the
natural functions of uniform members, used approximately here. The torsional behavior of
current member is also presented by the use of method proposed here.

Notations

sectional area, and sectional area at the base;

sectional constants depending on both the shape of the transverse cross section
and the tapering angle;

parameter indicating the additional local mass;
parameter indicating the additional local rigidity;
damping coefficients;

operator function;

Young's modulus and shear modulus;

moment of inertia and polar moment, respectively;
torsional constant and warping constant, respectively;
length of the i-th local variation of mass and/or rigidity;
external moments and external load;

displacement component on axial line;

location of the i-th local variation;

Qoar O O s O coefficients of sectional constants;

0
P
P
On

W,

torsional angle;

mass density;

mass density of the i-th local variation of mass;
natural functions;

natural frequencies



Simplified dynamic analysis of slender tapered thin-walled towers 73

References

Bouchet, A. V. and Biswas, M. (1977), “Nonlinear analysis of towers and stacks,” J. Struct. Div.. ASCE, 103(8).
1631-1641.

Gaines, J. H. and Volterra, E. (1976), “Upper and lower frequencies of tapered beams,” J. Engrg. Mech.
Div., ASCE, 94(2), 465-488.

Gupta, A. K. (1985), “Vibration of tapered beams,” J Swruct. Div, ASCE, 111(1), 19-36.

Gupta, A. K. (1986), “Frequency-dependent matrices for tapered beams,” J Struct. Engrg, ASCE, 112(1),
85-103.

Prathap, G. and Varadan, T. K. (1976), “Finite deflection of tapered cantilevers,” J. Engrg. Mech. Div., ASCE,
102(3), 549- 552.

Rohde, F. V. (1953), “Large deflections of cantilever beam with uniformly distributed load.” Quart. Appl.
Math., 11, 337

Takabatake, H. and Matsuoka, O. (1983), “The elastic theory of thin- walled open cross sections with local
deformations,” Int. J. Solid. Struct, 19(12), 1065-1088.

Takabatake, H. (1986), “Elastic analyses of tapered thin-walled members (in Japanese).” J. Struct. Const.
Engrg. Trans. AlJ, 364, 68-79.

Takabatake, H. and Matsuoka, O. (1987), “Elastic analyses of circular cylindrical shells by rod theory in-
cluding distortion of cross section,” Int. J. Solid. Struct, 23(6), 797-817.

Takabatake, H. (1988), “Lateral buckling of [ beams with web stiffeners and batten plates,” Int. J. Solid.
Struct, 24(10), 1003-1019.

Takabatake, H. (1990), “Cantilevered and linearly tapered thin-walled members,” J Engrg. Mech. ASCE,
116(4), 733-750.

Takabatake, H. (1991), “Static analyses of elastic plates with voids,” Int. J. Solids Structures, 28(2), 179-196.

Takabatake, H. (1991), “Dynamic analyses of elastic plates with voids,” Int. J. Solids Structures, 28(7), 879-895.

Takabatake, H., Mukai, H. and Hirano, T. (1993). “Doubly symmetric tube structures, I: static analysis”,
J. Struct. Engrg. ASCE. 119(7), 1981-2001.

Takabatake, H., Mukai, H. and Hirano, T. (1993), “Doubly symmetric tube structures, II: Dynamic analysis”,
J. Struct. Engrg, ASCE, 119(7), 2002-2016.

To, C. W. S. (1979). “Higher order tapered beam elements for vibration analysis.” J. Sound. Vibra., 63(1),
33-50.

Wang. T. M. and Lee, C. H. (1973), “Tapered cantilevers with varying distributed loads.” J. Engrg. Mech.
Div.,, ASCE, 99(4). 919-925.

Appendix

For a uniform member with the local variation in the mass and rigidity Egs. (14)«(18) must be rewri-
tten as

POA(X)= pu Ay &y (X) (56)
PEAL, ()= py Iy O (x) (57)
E(), (x)=E, I, az (x) (58)
G(X)](X): Gu -]1)0(1./ (X) (59)
GOIx)=G6, T, agr (x) (60)
in which
piA:
0u=1+ — D(x—x) (61)

p(l A 0
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piIl
0,=1+ —— D(x—x,)
paIpo
p: L,
(l;;,: l + D(x—xl )
p(llw
0w=1+ —— Dx—x,)
0v0
G
= il 2 B D —X;
Or=1+ GoFa (x—x))

in which the subscript 0 indicates to be the value of the uniform member.

(62)

(63)

(64)

(65)





