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Free vibration analysis of cantilever cylindrical tanks

H. A. Hadidt and D. A. Hassont
Dept. of Civil Eng., University of Mosul, Mosul, Iraq

Abstract. General free vibration characteristics of cantilevered circular cylindrical tanks are analyzed
using the integral equations technique with the cubic spline functions. For computations, the partial
differential equations for thin shallow shells as given by Flugge's have been employed after the addition
of the inertia forces.

The application of the method is illustrated with a numerical examples of tanks which are free at
the top edge and fixed at the bottom. The results obtained by this method have been compared with
the available results and a good agreement was found.
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1. Introduction

Free vibration characteristics of cylindrical shell is important to designers confronted with
aeroelastic and acoustic problem.

Hadid and Bashir (1990) are used integral equation technique with cubic spline function for
the static analysis of skew plate. The natural frequencies of cylindrically curved panel were
calculated by Hadid and Hasson (1992).

The free vibration analysis of cylindrical shells are studied by Ross (1982) using stiffness method
and by Luah and Fan (1989) and Sen and Gould (1974) using finite element method. Solution
of vibration analysis problem of thick cylindrical shells are available in Singal and Williams
(1988).

In the present method, the partial differential equations of the cylindrical shell are reduced
to a set of ordinary differential equations by assuming sinusoidal functions in the circumferential
direction. These ordinary equations are then solved using spline integral method.

2. Governing differential equations

The non-dimensional governing differential equations of the frec vibration of cylindrical shells
in terms of the three displacements u, v and w are:
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u, v and w are displacements in x, 8 and z directions respectively. /, @ and 4 are length, radius
and thickness of the shell respectively. w is the circular natural frequency. £, v and m are modulus
of elasticity, poisson’s ratio and mass density per unit arca of the shell material respectively.
Superscripts * and ° represent the derivative with respect to x and 8 direction.

3. Boundary conditions
The free end conditions at the top end at x=/ are:
u'+viv® — V—IWZO
a

vV+1u®=0

w'+viw®°=0

W' +QR—wWI*w'°°=0
The fixed end conditions at the base at x=0 are:

u=v=w=w'=0

4. Free vibration analysis

The partial differential equations are reduced to ordinary differential equations by assuming
sinusoidal functions in the circumferential direction, therefore, the displacements u, v and w
can be written in the following form:

u=u, cosnf
v=v, sinn@
w=w, cosnf 2

where u., v. and w, are unknown functions to be determined.
Substituting the displacements functions given in Eq. (2) and their derivatives in Eq. (1), the
following ordinary differential equations are obtained:
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Using the same procedure used for the governing partial differential equations the free edge
boundary conditions at x=/ will be reduced to the following equations:

uy = —vingv.+ v-a—lgw

va=lIngu,+ %ngwé
wa=vl'n’gw,
wi=Q—v)Prw, 4)

where uy;, v, wy and wy are derivatives of the unknown functions u,, v, and w, at the free
edge at x=/ and g is a unitary isolation matrix.

To solve Eq. (3) using spline integral method in the x direction, the highest derivations of
the unknown functions u,, v, and w, with respect to x are assumed as:

w=—s, vi=—k wi'=—q. S)

For non-homogeneous boundary conditions at x=/, Eq. (5) can be transformed to non-homo-
geneous integral equations as:
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0
where s, k and ¢ represent the unknown functions given in Eq. (5). b, ¢ and d are Green's
functions associated with the following homogeneous boundary conditions:
U= =w,=w=0 at x=0

we=v,=wi=w/=0 at x=/

Eq. (6) can be solved by approximating the unknown functions as a cubic spline function:
1
u'\.:J» bix &) SA() dé+xu;,
0

Vo= j clx, §) SA) dé+xvy
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where SA is the cubic spline function.
Eq. (7) can be solved using the expressions given in Hajdin and Krajcinovic (1972) for definite
integrals. Therefore Eq. (7) can be written in matrix form as follows:

u.=Bs+f u;,
v, =Ck+f v,
W= Dg+faws+fow] ®

where f, =[x, fo=0x72], fy =00 —3x%)/6]. f.. f f3 are column matrices of order M X 1, f matrices
given the displacements at the various nodes in the x direction for unit influence at the free
edge boundary at x=[. B, C and D are square matrices of orderM XM M is number of intervals
in the x direction.

The derivatives of Eq. (8) required in Eq. (3) can be written as:

u,=B's+fuy

ve=C's+fivy

w=D'q+finl,+finl]

w{=D"g+fiwl i +fin]] )

where f1=[1], fi=0x1. fo=[11. fi=[3*—&x)/6], fi=[x—11.

Eg. (8) can be written as:
s=B "u.—frul)
k=C'(v,—f1vi)
q=D"'(w.=fowitfiw") (10)
Substituting Eq. (10) into Eq. (9) gives:
u.=B'B 'u,~f BB uli+uy
n=C'C 'v,—f1C'C v+
wi=D'D 'w A i—AD'D WL+ —AD' D W
wi=D'D ™ w A |fi—f2D'D Wi+ [fi—fD"D W (11)

To solve Eq. (3) substituting expressions (11) in Eq. (3). then these equations can be written
in matrix form as follows:
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[/] is a unit diagonal matrix of order (3M+4)X(3M+4) and the order of @), @i, @ and a
are (3AMX3M), (3MX4), (4X3M) an (4X4) respectively.
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Eq. (12) can be reduced to eigenvalue problem determinate as follows:
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Fig. 1 Cylindrical tank. Fig. 2 Tank with variable thickness.
[[a] —/1[1]] 5=0 (13)

where a is the global matrix of order (3M+4)X(3M+4) given in Eq. (12) and § is the displace-
ments vectors u,, v,. w,. u.. we, and w; of order GM+4)X1.

5. Results and discussions

The results of the general free vibration analysis of cylindrical tanks shown in Fig. | using
four and six elements are given in Table 1 together with those obtained by Sen and Gould
(1974) using finite element method and Luah and Fan (1989) using spline finite element method.
Remarkable agreement in the results is observed. However, the torsional mode obtained by present
method was not reported in Sen and Gould (1974).

The natural frequencies of tank with variable thickness shown in Fig. 2 are analyzed. The
boundary conditions at the step junction are considered to be continuous. The results are presented
in Table 2. The values of natural frequencies were found to be in good agreement in comparison
with those obtained by finite elements method (SAP 1988).

The natural frequencies for the first three modes of vibration of the fixed-free cylindrical
tank as shown in Fig. 1 are plotted in Fig. 3 together with those of Sen and Gould (1974)
obtained using finite element method and Weingarten's experimental results (Weingarten 1964).
The agreement between the results are encouraging. For n=2 and 3, however, the experimental
results are lower than those predicted by the theory. As pointed out by Weingarten, this is
due to inadequate clamping of the shell in the experiment.

The problem of convergence was studied for the first three modes of vibration of the cylindrical
tank shown in Fig. 1. The results of the study are plotted in Fig. 4.



Table 1 Natural frequency (Hz) of a fixed-free cylindrical shell
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Mode Present method FEM* SFEM#
n number 4 clements (Hz) 6 clements (Hz) 12 elements (Hz) 6 elements (Hz)
0 Torsional mode 3508 3507 — 3506
1 5463 5491 5486 5479
2 7950 7956 8055 7953
3 8168 8028 8123 8017
1 1 2083 2084 2033 2032
2 5757 5702 5431 5412
3 7266 7191 6986 6943
2 1 1058 1025 982 981
2 3698 3571 3409 3396
3 6023 5855 5783 5718
3 1 659 640 565 563
2 2425 2387 2243 2228
3 4545 4472 4378 4310
4 1 614 599 487 485
2 1841 1776 1598 1587
3 3555 3473 3318 3278
5 1 757 728 621 620
2 1563 1506 1295 1287
3 2906 2838 2632 2605
6 1 989 951 863 862
2 1507 1462 1258 1251
3 2572 2493 2250 2229
7 1 1288 1244 1170 1168
2 1636 1583 1419 1413
3 2424 2372 2126 2108
8 1 1633 1596 1531 1528
2 1897 1830 1710 1704
3 2509 2434 217 2201

*Finite element method; *Spline finite element method.

Table 2 Natural frequency (Hz) of a fixed-free surge tank'

Mode Spline integral Finite element

No. Telee 9ele. 1lele | ISele. 19ele. 23 cle
1 2325 23.26 23.26 25.36 2536 25.36
2 44.54 44.54 44.54 4129 42.79 4347
3 44.82 44.83 44.83 44.22 44.28 44.30
4 4522 4521 45.21 44.85 4491 4495
5 46.14 46.11 46.09 45.71 45.80 45.88
6 46.95 4694 4693 49.31 49.39 4949
7 51.54 51.03 5092 55.15 55.06 55.10
8 59.81 5812 57.66 6543 64.82 59.81

Fig. 2
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Fig. 3 Natural frequencies of a fixed-free cylindrical tank.
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Fig. 4 Natural frequencies of a fixed-free cylindrical tank.

The general form of some typical circumferential and longitudinal mode shapes of the cylindri-
cal tank shown in Fig. | is given in Fig. 5. The circumferential mode shape is defined by
the number of n. The longitudinal mode shape is defined by M, which represents the number
of nodes (for radial displacements) in the axial direction.
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Fig. 5 Typical longitudinal and circumferential mode shapes.
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6. Conclusions

The formulation of the spline integral method for free vibration analysis of shell of revolution
has been developed. This method inherits both the efficiency of the cubic spline interpolation
and the generality and flexibility of the integral equations technique. From the theoretical consi-
derations and the illustrated numerical examples, the following conclusions can be made.

(1} The present formulation is accurate and efficient in analysis a variety of shells of revolution.
As can be seen from the examples presented, highly accurate results could be obtained
with relatively few elements.

(2) The method is capable of predicting the frequencies in any of the membrane, flexural
or torsional modes.

(3) It was found from the results, that the present method has a remarkable convergence
property for structural mechanic problems and this property arises from the use of cubic
spline.

(4) Shells with variable thickness can be modeled and analyzed by the present method.

(5) This method is very modest in consuming computer time and core storage, and suitable
for personal computers.
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