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Abstract. Finite element methods have often been used for structural analyses of various mechanical
problems. When finite element analyses are utilized to resolve mechanical systems, numerical uncertainties
in the initial data such as structural parameters and loading conditions may result in uncertainties in the
structural responses. Therefore the initial data have to be as accurate as possible in order to obtain reliable
structural analysis results. The typical finite element method may not properly represent discrete systems
when using uncertain data, since all input data of material properties and applied loads are defined by
nominal values. An interval finite element analysis, which uses the interval arithmetic as introduced by
Moore (1966) is proposed as a non-stochastic method in this study and serves a new numerical tool for
evaluating the uncertainties of the initial data in structural analyses. According to this method, the element
stiffness matrix includes interval terms of the lower and upper bounds of the structural parameters, and
interval change functions are devised. Numerical uncertainties in the initial data are described as a
tolerance error and tree graphs of uncertain data are constructed by numerical uncertainty combinations of
each parameter. The structural responses calculated by all uncertainty cases can be easily estimated so that
structural safety can be included in the design. Numerical applications of truss and frame structures
demonstrate the efficiency of the present method with respect to numerical analyses of structural
uncertainties.

Keywords: non-stochastic; interval arithmetic; finite element method; structural uncertainty; initial
data; interval change function; tolerance error.

1. Introduction

Numerical analyses of structural responses are generally executed with structural parameters such

as Young’s modulus, cross-sectional areas and lengths of members, and loading conditions. In

engineering structure designs, the structural analyses are used to assess behaviors using nominal
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values of structural parameters and loading conditions. However, in practice, some degree of

uncertainty exists in structural parameters and applied loads (Chen and Yang 2000). For example,

inaccuracy or error in the material properties of products may occur during manufacturing. After

these processes the nominal values of the structural parameters may change due to environmental

conditions such as temperature and humidity. In addition, errors in the work of engineers may result

in inaccurate magnitudes of structural parameters during the manufacturing stage, or applied loads

during experimental tasks (Noh 1998). As a consequence, structural analysis always has some

degree of uncertainty. Therefore the concept and application of uncertainty plays an important role

in investigations of various engineering and mechanical problems.

Until recently, the majority of scientists and engineers which have researched the problem of

uncertainty have utilized stochastic, i.e., probabilistic methods such as heuristic approaches.

According to these approaches structural parameters and loading conditions are modeled as random

variables in defined fields of structures. However, given that only small amounts of statistical

information about initial data are available only in a few specialized cases, the probabilistic

approaches can not deliver reliable solutions without sufficient experimental data. This problem is a

limitation of the heuristic approach. The application of uncertainty models which are independent of

such detailed knowledge has been investigated by some researchers (Karni and Belikoff 1996,

McWilliam 2001, Alefeld 1983).

As an alternative of the heuristic method, a branch and bound method such as an interval

approach has been considered by many researchers. A famous and traditional example of interval

arithmetic was proposed by Archimedes. He considered inscribed polygons and circumscribed them

with circles with radius of 1. He then obtained an increasing sequence of lower bounds and at the

same time a decreasing sequence of upper bounds for the area of the corresponding disc (Alefeld

and Mayer 2000). The intervals as a result of measurement were first introduced by Wiener (1914,

1921). In 1914, he applied intervals to the measurement of distances and in 1921 of time. As a

turning point of interval theory, Sunaga (1958) introduced algebraic rules of multidimensional

interval operations.

Since the mid-1960s, practical applications of the interval analysis have been introduced by

Moore (1962, 1966) for bounding solutions of initial value problems, and since then computational

analyses using the interval method have been developed by many researchers. In 1995, Köylouglu

et al. (1995) and Köyluoglu and Elishakoff (1998) have developed an interval approach utilizing a

finite element method to deal with pattern loading and structural uncertainties. Although these

works were mainly restricted to narrow intervals and approximate numerical solutions, it was very

important that interval analyses were actually applied to measure practical structures, for example,

the bounds of complex Eigenvalues of structures with interval parameters were discussed by Yang,

Chen and Lian (2001). Rao and Beike (1997) discussed the structural analysis of uncertain structural

systems; Skvzypczyk (1997) discussed the fuzzy finite element methods; Chen and Qiu (1994)

discussed the interval Eigenvalue problems; and interval analysis was applied to linear mechanical

structures by Kulpa, Powmik and Skalna (1998).

Unlike other researches of interval analyses of structural responses, the axial rigidity of truss

members and the bending rigidity of frames are regarded as important terms for considering the

uncertain response fields of mechanical systems. The uncertain rigidity fields of each member are

formulated and use discretized and modified stiffness equations which were first introduced by this

study, where multi-degree-of-freedom systems appear in the uncertain linear equations and

uncertainties of initial data are expressed as a defined tolerance error. This is used as the selection
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whether the numerical uncertainties for each uncertainty parameter exist or not. The uncertainty

combinations of each parameter can be constructed by a tree graph. The combination classifies the

uncertainty of structural responses which are dependent on initial data. An axial and bending

rigidity of uncertainty and a displacement coefficient of uncertainty are formulated by an interval

change function (ICF) for each, which is composed of upper and lower bounds. When the problem

of member uncertainty based on the uncertainty of initial data is addressed, the interval change

function is easily applied to the uncertainty problems. Finally, this study represents the dependence

between structural parameters and applied loads according to the uncertainty of structural responses.

In order to verify the reliability of the proposed method for uncertainty response analyses, numerical

examples of truss and frame structures with the interval structural parameters defined are given with

respect to the quantities of uncertainty measurement.

The outline of this study is as follows. In Section 2, the theory of interval arithmetic is described.

Finite element method formulations using interval change functions derived from the interval

arithmetic are shown in Section 3. By using the interval finite element method numerical

applications for structural uncertainty analyses of truss and frame structures are studied in Section 4

followed by the conclusions in Section 5.

2. Theory of interval arithmetic

In structural designs and analyses, what causes uncertainty of structural responses is generally

divided into internal and external components of structures. The former is the uncertainty by

boundary conditions, loading conditions, assumptions of modeling, and analytical assumption, the

latter is the uncertainty by the workmanships and natural environmental conditions. Fig. 1 shows the

uncertainty of structural response and its reason with respect to initial data of structures.

An interval Analysis is a field of mathematics that accounts for numerical imprecision and

physical uncertainty with intervals using set-based operations. In the interval arithmetic, the errors

Fig. 1 Structural response uncertainty by uncertainties of initial data



472 Dongkyu Lee, Sungsoo Park and Soomi Shin

or uncertainties are always denoted by intervals. From this principle, we define intervals firstly. In

general, an interval arithmetic operation  between intervals a and b is given as

(1)

where the hull of a set produces the minimum and maximum bounds. Interval vectors and interval

matrices are nothing more than standard vectors and matrices with intervals instead of scalar values

for components and elements (Alefeld and Mayer 2000, Sunaga 1958, Dwyer 1951, Moore 1966).

Let  be a structural parameter vector with bound error or uncertainties and

where  

(2)

then

(3) 

where  is the lower bound of an interval and  is the upper bound of an

interval. Also we define the mid-point of an interval cc by

(4)

We define the uncertainty of an interval Δc by

(5)
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, in which  and  consist of each lower and upper bound. Similarly, the mid-point

and uncertainty of n-dimensional interval matrix  can be expressed by

  (10)

and

  (11)

Commonly used notions are the mid-point of an interval matrix Ac as follows

 (12)

and the uncertainty of an interval matrix ΔA as follows 

 (13)

For many operations, including standard arithmetic operations of addition, subtraction,

multiplication and division, the resulting set is also an interval that can be conveniently defined in

term of end-points of the argument intervals.

Let  and  be the intervals, then the operations are defined by the

following formulas.

(14)
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lower bounds in structural systems.

In order to analyze the influence of the uncertain initial data, it is convenient to divide the

uncertain vector into two factors, namely, the axial rigidity of uncertainty α, and the displacement

coefficient of uncertainty β in truss structures.

The axial rigidity α includes relations of numerical uncertainty among Young’s modulus E, cross-

sectional areas A and length of members L and it is written as

(18)

If the second order terms are neglected in the formulation (18), i.e., the analysis is a perturbation

method, the mid-point of α, i.e., nominal value αc is written as

 (19)

The uncertainty of α, Δα is also expressed as

 (20)

The displacement coefficient of uncertainty β presents the values of uncertain displacements of

each degree-of-freedom and is written with the additional parameter of applied loadings P as

(21)
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degree of freedom of an angle of a rotation or a slope. The members of frame structures take

properties of constant moments of inertia I, Young’s modulus E, lengths of member L, and cross

sectional areas A and applied loads P. Note that the cross sectional areas are subject to the moments

of inertia. In order to estimate the influence of the above-mentioned uncertain initial data in frame

structures, the bending rigidity with uncertainty γ, and the displacement coefficient of uncertainty χ

in frame structures are considered. As related to the formulations (18)~(23) in case of truss

structures, those of frame structures are described as the following formulations (24)~(29).

The bending rigidity γ is written as

(24)

If the second order terms are neglected in formulation (24), i.e., the analysis is a perturbation

method, the mid-point of γ, i.e., nominal value γ c is written as

(25)

The uncertainty of γ, Δγ is expressed as
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We can let the uncertainty Δ of the interval α, γ, β, and χ be the tolerance errors x, which is

,  about real value R.

3.2 Interval change function

An interval change function is a mathematical formulation which is composed of the upper and

lower bounds with respect to the tolerance error x. A basic idea behind the interval change function

is quantitatively to calculate the changes of the required results that take place in uncertainty

problems, when a small change (i.e., uncertainty) is made by the uncertain parameters against some

nominal values in the structural system.

Considering whether numerical uncertainties of the initial data exist or not, a generalized scenario

function of the uncertainty  may be written as follows

(30)

where

ac, bc : Mid-point of each uncertain parameter

i : 2p+q, The number of uncertainty scenarios

p, q : The number of uncertain parameters

 : Lower bounds of an interval change function 

 : Upper bounds of an interval change function

x : The tolerance error, , 

When different parts of the structure are uncertain, it is a systematic uncertainty problem of
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and material properties of uncertain members with respect to the structural system. The different

combinations of members with and without uncertainties results in different systematic behaviors.
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where the equilibrium equations governing the displacement fields in linear systems are expressed

as follows
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expressed as an interval displacement vector . Similarly, we express the

uncertain stiffness matrix as an interval stiffness matrix , and an interval

force vector . Here, Uc, Kc, and Fc represent the nominal displacement

vector, the stiffness matrix and the force vector, respectively. ΔU, ΔK, and ΔF denote small changes

of the displacement vector, the stiffness matrix and the force vector, respectively which result from

small variations of the uncertain initial data. Following Eq. (31), the equilibrium equation of the

uncertain linear system is as follows

(32)

The perturbation presents the behavior of a system subjected to small perturbations in design

variables. For the linear system represented by Eq. (31), the problem is to generate U. K and F

denote a perturbation of the form K + eΔK and F+ eΔF, respectively. The constant e is a small

parameter. Then it is necessary to determine U when K becomes K + eΔK and F becomes F + eΔF.

Let e be small and K and F be smooth, then U is written as a convergent series

 (33)

(34)
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nodal points, and eight degrees of freedom. There is no connection between two diagonal members.

The global stiffness matrix and the applied force vector are expressed as

(35)

 (36)

where  denotes an applied external force and  is Young’s modulus of the i-th member.  and

 denote a cross-sectional area and a length of the i-th member, respectively. The element stiffness

matrices  of the i-th member are described in Appendix A. Young’s modulus for each member is
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of 3.6 × 10−1 m2, and the length L of the 4 members ①-②, ①-③, ②-④, and ③-④ take values of

5 m. It is assumed that the length of a member does not change independently of the others since

the geometry of the complete structure is fixed.
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regarded as the mid-point values of the interval formulation. In order to calculate the structural
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Fig. 3 Analysis models with member uncertainties of initial data: (a) Model A has members with nominal
values of initial data. (b) In Model B, member ① -③ has only uncertainty of initial data. (c) In Model
C, member ② -④ has only uncertainty of initial data. (d) Model D is the combination of Model B and
C



Non-stochastic interval arithmetic-based finite element analysis 479

parameter and applied load. The uncertainty is given by a tolerance error x and here are 1/100 and

1/1000, i.e., 1% and 0.1% of exact values.

According to members with the numerical uncertainty of initial data, analysis models of A, B, C

and D are respectively shown in Fig. 3. The bold and thin lines denote members with uncertainties

and non-uncertainties of initial data, respectively.

Applying boundary conditions and symmetry of the structure, i.e., , the

8 × 8 global stiffness matrix of structural systems is reduced. Therefore, setting nominal values of

all structural parameters and loading conditions in Eqs. (35) and (36), the nominal global stiffness

matrix and the force vector without uncertainties are obtained as follows:
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In 2-dimensional-truss systems, the graphs of generalized interval change functions are given in

Appendix B.

In case of Model D, the local element stiffness matrices of Model B and Model C are combined

and it produces a local element stiffness matrix of Model D with the uncertainties of member ①-③

and ②-④.

For each analysis model, four solutions are represented: ES, i.e., the exact solution, L13, i.e., the

solution with uncertainty of member ①-③, L24, i.e., the solution by uncertainty of member ②-④,

and L1324, i.e., solution with uncertainty of members ①-③ and ②-④. The uncertain nodal

displacements with the upper and lower bounds of the Model A, B, C, and D are shown in Fig. 4.

Here, Max-uncertainty presents behaviors of Model A. When all E, A, P, and L take uncertainties in

Eq. (39), maximums of lower and upper bounds of nodal displacements are directly produced by

Eq. (39) and they denote Max-uncertainty. The tolerance error x of uncertainties are set to 1/100 and

1/1000. LB and UB are respectively lower and upper bounds.

In Fig. 5, uncertain nodal displacement values of the defined analysis models are expressed as

some ratio between horizontal and vertical nodal displacements in analysis model of A, B, C, D and

different tolerance errors.

In tolerance error x = 1/1000, the errors of uncertain nodal displacements of each analysis model

in comparisons with those of ES, are illustrated in Fig. 6. Here, G-uncert 1~4 describe uncertainties

using final formulation of ES solution explicitly and the number of 1~4 denotes the number of

Fig. 4 Comparisons of nodal displacements in analysis models (A, B, C, D)
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uncertainties of initial data of Young’s modulus E, cross sectional areas A, lengths of members L

and load P.

As can be seen, the errors of uncertainty structural responses of explicit analysis models of G-

uncert-1~4 are less than those of implicit analysis models of L13, L24, and L1324. In other words,

the error degree of the explicit uncertainty analysis model takes under 0.5% in comparisons with ES

solution, however, implicit analysis models such as Model B, C, and D have the errors more than

Fig. 5 Some ratio of horizontal displacements in compared with vertical displacements in different analysis
models (A, B, C, D) and tolerance errors (0.1% and 1.0%)

Fig. 6 Uncertainty solution errors of each model in comparisons with exact solutions (ES)
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1% and less than about 2.5% in case of vertical displacements. When the defined tolerance error is

more than 0.1%, the uncertainty effects of structural responses would be also increased. The

tolerance errors have to be selected under some quantitative criteria such as statistic or experimental

data of experience. From Figs. 4, 5, and 6, it can be found that the uncertainty of structural

responses depends on the numerical uncertainty of initial data and combination characteristics of

each member with initial data of uncertainty or no uncertainty in the structural system.

Tables 1, 2, and Fig. 7 illustrate the relationship between uncertainties of initial data and structural

responses.

It can be seen that in truss systems the 2nd-order parameters, i.e., cross-sectional areas A, have

Table 1 Horizontal displacements, maximum uncertainty and some ratio (tolerance error = 1/1000)

Joint
UC

(E-05)
ΔU

(E-05)
ΔU/ΔE
(E-11)

ΔU/ΔA
(E-05)

ΔU/ΔL
(E-05)

ΔU/ΔP
(E-05)

I J

A · · 0.6944 0.0027 0.135 7.500 0.540 0.135

B 1 3 0.6944 0.0073 0.366 20.361 1.466 0.367

C 2 4 0.6944 0.0087 0.438 24.361 1.754 0.439

D 1(2) 3(4) 0.6944 0.0176 0.882 49.028 3.530 0.883

Table 2 Vertical displacements, maximum uncertainty and some ratio (tolerance error = 1/1000)

Joint
UC

(E-05)
ΔU

(E-05)
ΔU/ΔE
(E-11)

ΔU/ΔA
(E-05)

ΔU/ΔL
(E-05)

ΔU/ΔP
(E-05)

I J

A · · 0.2876 0.0011 0.055 3.0555 0.220 0.055

B 1 3 0.2876 0.0031 0.153 8.5277 0.614 0.154

C 2 4 0.2876 0.0061 0.307 17.056 1.228 0.307

D 1(2) 3(4) 0.2876 0.0099 0.492 27.361 1.970 0.493

Fig. 7 Sensitivities and uncertainty relationships between initial data and structural behaviors for analysis
model A, B, C, and D: tolerance errors = 1% for the left hand graph, tolerance error = 0.1 % for the
right one
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more influence on the uncertainty of structural responses than 1st-order parameters, i.e., Young’s

modulus E, length of members L and applied forces P. The sensitivities result in.

4.2 2D Frame structure with structural uncertainties

Frame structures are mechanical systems more general than the truss of the first example. It is

composed of elastic elongated beams jointed at nodes using both stiff joints which are not allowed

in truss structures and also rotary joints like truss structures. In frames a possibility of bending of

beams has to be taken into account, since the beams can carry also bending moments. The nodes of

the frame can be supported by full supports which give no degrees of freedom to the supported

node, sliding supports which allow the node to move along a specified line or within a specified

plane. The full support denotes a fixed one. The sliding one includes a hinged or a free support.

The second example of the frame structure is shown in Fig. 8 and the frame has a fixed support at

the joint 1 and a hinged one at the joint 4, and two external loads, i.e., a bending moment M at the

joint 2 and a vertical concentrated load P at the joint 3. The frame has DOF (degree of freedom) =

9 as shown in Fig. 8(b). Initial loading conditions are that M = 2 KN·m and P = 3 KN. The Initial

data consist of two factors: Material parameter such as Young’s modulus E and a geometrical

parameter such as cross sectional areas A, length of members L, and moments of inertia I. The

Young’s modulus in this example is taken as E1 = 3.4 × 107 KN/m2 (MAT1) and E2 = 3.4 × 105 KN/

m2 (MAT2). The cross sectional area and moment of inertia take A1 = 0.24 m2 and I1 = 0.0072 m4

(SEC1) and A2 = 0.09 mand I2 = 0.005 m4 (SEC2), respectively. It is assumed that the tolerance

error x = 0.01 (1%) is equally applied to all initial data.

The number of cases of numerical uncertainties of initial data is 32 and is shown in Table 3. Here,

the number 1 denotes uncertainties and the number 0 no uncertainties. The number of the

combination depends on the number of initial data.

Fig. 9 shows lower and upper bounds of structural responses and those arithmetic means with

regard to each case, in compared with solutions without uncertainties.

From Fig. 9, it can be seen that the variational structural response results do not depend on the

number of initial data with uncertainties but types of the uncertainty combinations of initial data.

Here, the combination of Case 29 takes the most uncertainty variation with respect to structural

responses. The fact can be also investigated by displacement coefficient of uncertainty χ in terms of

the bending rigidity γ.

Contrary to response results of truss structures, the solutions of frame become described by both

Fig. 8 Frame structure
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bending rigidity and axial rigidity. Therefore, it seems that mean values of lower and upper bounds

of solutions in each case are not likely to be equal to approximated solutions of typical finite

element analysis of Case 32 with all non-uncertainty as shown in Fig. 9. In order to estimate

relationship between initial data and uncertainty solutions, the numerical sensitivities of structural

uncertainty responses in terms of initial data can be investigated and are shown in Table 4.

Table 3 Cases of uncertainty combinations of initial data: 1 = uncertainty, 0 = no uncertainty: MAT1 (E1)
MAT2 (E2) SEC1 (I1, A1) SEC2 (I2, A2,) L1 = 5 m L2 = 7 m P1 = 2 kN·m P2 = 3 kN Error = 0.01
(1%)

Case E1, E2  I1, I2 A1, A2 L1, L2 P1, P2 Case E1, E2 I1, I2 A1, A2 L1, L2 P1, P2

1 1 1 1 1 1 17 0 1 1 1 1

2 1 1 1 1 0 18 0 1 1 1 0

3 1 1 1 0 1 19 0 1 1 0 1

4 1 1 1 0 0 20 0 1 1 0 0

5 1 1 0 1 1 21 0 1 0 1 1

6 1 1 0 1 0 22 0 1 0 1 0

7 1 1 0 0 1 23 0 1 0 0 1

8 1 1 0 0 0 24 0 1 0 0 0

9 1 0 1 1 1 25 0 0 1 1 1

10 1 0 1 1 0 26 0 0 1 1 0

11 1 0 1 0 1 27 0 0 1 0 1

12 1 0 1 0 0 28 0 0 1 0 0

13 1 0 0 1 1 29 0 0 0 1 1

14 1 0 0 1 0 30 0 0 0 1 0

15 1 0 0 0 1 31 0 0 0 0 1

16 1 0 0 0 0 32 0 0 0 0 0

Fig. 9 Nodal displacements by numerical uncertainty of initial data: (a) d1 = horizontal displacement (b) d5 =
vertical displacement (c) and (d) = rotation displacement
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From Table 4, the results of sensitivities by initial data are dU/dI > dU/dA > dU/dL > dU/dP >

dU/dE. In the frame structure, it can be seen that the variation of moment of inertia I changed by

the numerical uncertainty is the most influent factor in comparisons with truss structure of the first

example in which the variation of cross sectional areas A is the most important factor in the

structural system with uncertainty.

5. Conclusion

In this study an interval-based finite element analysis is proposed in order to estimate the

quantitative uncertainty of structural responses in linear systems. Contrary to typical interval finite

element methods, the present approach allows the uncertainty with interval forms (with tolerances)

of initial data to be substituted into both load and element stiffness terms. Therefore this approach is

identified with the numerical process of typical finite element analysis and it provides numerical

efficiency when applied to uncertainty. The problems of combining structural members with

uncertainties in the initial data can also be investigated for reliable uncertainty analyses.

For systems possessing larger uncertainties, an interval finite element analysis yields increasingly

large errors. Practically, in many cases the structure parameter errors or uncertainties are small.

However their integration will yield a larger error. Therefore in this study it is proposed that 2-order

parameter A errors should be minimized during the truss structure design process, and also higher

order parameter I errors in design process of frame structures. This method allows the engineering

practice to account for uncertainty in load and stiffness and to calculate very sharp bounds on the

system response for all possible scenarios of uncertainty. Numerical applications of a truss and

frame demonstrate the numerical efficiency of the proposed method for appropriate uncertainty

estimates of structural behaviors.

This study is limited to the truss and beam structures of two-dimensional systems. These

structures are related to axial and bending rigidity, respectively, which are derived in this study. The

present method can not be used to deal with plate and shell structures since they take additional

degrees of freedom in a three-dimensional system. Future works includes studying axial and

bending rigidity problems, the problems of uncertainty structural responses by shear or torsion

rigidity using the proposed interval finite element method.

Table 4 Sensitivity of (a) axial displacements U(d1, d5) and (b) rotation displacements R(d3, d6) in terms of
initial data of material and geometrical data: MAT1 (E1), MAT2 (E2), SEC1 (I1, A1), SEC2 (I2, A2),
Case 1 with error = 1/100 (1%)

(a) Sensitivity of axial displacements (m) by initial data

ΔU 
(E-05)

ΔU/ΔE1

(E-11)
ΔU/ΔE2

(E-09)
ΔU/ΔI1

(E-00)
ΔU/ΔI2

(E-00)
ΔU/ΔA1

(E-03)
ΔU/ΔA2

(E-03)
ΔU/ΔL
(E-04)

ΔU/ΔP
(E-04)

1.3 3.824 3.0 0.181 0.26 5.416 14.44
 2.6

/1.857
4.333
/6.5

ΔR
(E-05)

ΔR/ΔE1

(E-11)
ΔR/ΔE2

(E-09)
ΔR/ΔI1

(E-00)
ΔR/ΔI2

(E-00)
ΔR/ΔA1

(E-03)
ΔR/ΔA2

(E-03)
ΔR/ΔL
(E-05)

ΔR/ΔP
(E-04)

0.2 0.588 0.588 0.028 0.04 0.833 2.222
 0.4

/0.286
0.666
/1.0
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Appendix A

The matrices appearing in Eq. (35) are as follows:
(1) Element ①-②:  (2) Element ②-③ and ①-④:

 

(3) Element ③-④:  (4) Element ①-③:

 

(5) Element ②-④:
 

Appendix B

The interval change functions of Model B, C, and D are shown as follows:
(1) Model B:

K̂1
′

1/2  1/2  1/2  – 1/2–

1/2  1/2  1/2  – 1/2–

1/2  – 1/2  – 1/2  1/2

1/2  – 1/2  – 1/2  1/2⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

= K̂2
′ K̂3

′

1/2  1/2  – 1/2  – 1/2

1/2  – 1/2  1/2  1/2–

1/2  – 1/2  1/2  1/2–

1/2  1/2  – 1/2  – 1/2⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

= =

K̂4
′

1/2  1/2  1/2  – 1/2–

1/2  1/2  1/2  – 1/2–

1/2  – 1/2  – 1/2  1/2

1/2  – 1/2  – 1/2  1/2⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

= K̂5
′

1/ 2  0  1/ 2  – 0

0  0  0  0

1/ 2  – 0  1/ 2  0

0  0  0  0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

K̂6
′

0  0  0  0

0  1/ 2  0  1/ 2–

0  0  0  0

0  1/ 2  – 0  1/ 2⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

Fig. 10 Model B: interval change function with lower and upper bounds of uncertain nodal displacement in
tolerance error = 1/100
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(2) Model C:

(3) Model D:

Fig. 11 Model C: interval change function with lower and upper bounds of uncertain nodal displacement in
tolerance error = 1/100

Fig. 12 Model D: interval change function with lower and upper bounds of uncertain nodal displacement in
tolerance error = 1/100




