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Abstract. The equation of motion of a one way (vertical) spanning strip wall, as an assembly of two
rigid bodies, is presented. Only one degree of freedom is needed to completely describe the wall response
as the bodies are assumed to be perfectly rectangular and are allowed to rock but not to slide horizontally.
Furthermore, no arching action occurs since vertical motion of the upper body is not restrained.
Consequently, the equation of motion is nonlinear, with non constant coefficients and a Coriolis
acceleration term. Phenomena associated with overburden to self weight ratio, motion triggering,
impulsive energy dissipation, amplitude dependency of damping and period of vibration, and scale effect
are discussed, contributing to a more complete understanding of experimental observations and to an
estimation of system parameters based on the wall characteristics, such as intermediate hinge height and
energy damping, necessary to perform nonlinear time history analyses. A comparison to a simple standing,
or parapet, wall is developed in order to better highlight the characteristics of this assembly.

Keywords: rocking response; threshold acceleration; impulsive energy dissipation; amplitude
dependency; scale effect.

1. Introduction

The dynamic behaviour of a kinematic chain, made up by two rectangular bodies, is presented.

Body and foundation deformabilities are neglected and the friction between the bodies as well as

between the system and both the ground and the top restraint is assumed to be sufficient to prevent

horizontal sliding. Complete loss of contact between the bodies and/or the supports is not permitted

and the top roller support is assumed to be in synchronous motion with the ground support so that

the system can be represented as a single degree of freedom (SDOF) system, an assumption which

is reasonable if the diaphragms are not too flexible. Further, the top restraint does not hinder the

vertical motion of the upper body and uniform mass density distribution is assumed so that the
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centre of mass and geometric centroid is coincident for each body. The displacements are also

considered to be finite. 

On a previous occasion (Sorrentino and Masiani 2003), it has been qualitatively shown, by means

of field and laboratory evidence, that a model based on the previous hypotheses can effectively

represent a vertical spanning strip wall (VSSW) subject to out-of-plane earthquake induced inertia

forces. A VSSW is intended to represent a wall with significant restraint on top due to connection

to floor or roof system and negligible lateral restraint due to inadequate connection to lateral walls

or to the existence of openings. This mechanism can prove dangerous for wall aspect ratios (i.e.,

height over thickness) exceeding 12-14. Such values can be common in contemporary masonry

buildings as well as in premodern edifices with large halls such as churches, school gyms, and

theatres. 

The first to develop an analytical model to reproduce the dynamic response of one way spanning

unreinforced concrete and dry stacked masonry specimens were Baggio and Masiani (1991).

However, the matrix equation of motion they presented was valid only for small displacements.

Possibly the widest experimental campaign on the matter was that performed by Ewing, Johnson

and Kariotis as part of the Agbabian, Barnes and Kariotis consortium (ABK 1981, 1984), whose

brick and block walls did not necessarily collapse after cracking and rocking. Recent laboratory

tests on this issue were carried out by Doherty and Griffith (Doherty 2000, Doherty et al. 2002,

Griffith et al. 2003, 2004, Lam et al. 2003). The authors numerically reproduced the test results

using an equivalent elastic nonlinear SDOF oscillator, with experimentally established stiffness and

viscous damping, valid for an intermediate hinge at mid height. 

Simsir et al. (2004) experimentally accounted for the effect of stiff or flexible diaphragms, noting

in the second case an increase in the out-of-plane wall displacements and mechanism periods.

Intermediate cracking was observed only when superimposed load was reduced compared to wall

self weight, a condition which is typical of top storeys façades. The intermediate hinge has formed

around 70% of the wall height. In their laboratory tests on full-scale models, Meisl et al. (2006)

considered the influence of different ground motions and quality of construction. Rocking of a

coupled-rigid body assembly was observed even though the specimens were three-wythe walls and,

in two out of four cases, poor quality workmanship. The intermediate hinge height spanned between

65 and 74% of the wall height. Wilhelm et al. (2007) tested different boundary conditions: if this is

fixed at the top (neither rotation nor elongation allowed) no rocking was observed because of arch

action. The use of a low flexural strength mortar caused the opening of multiple cracks in the upper

third of the wall, with a major crack moving down from the top of the wall and back up again.

In the following pages first the kinematics of the model will be described (§ 2); then, using a

Lagrangian approach, the equation of motion will be introduced (§ 3); subsequently motion

triggering and intermediate hinge height will be addressed (§ 4); energy dissipation will be

introduced and discussed (§ 5); amplitude dependency of energy dissipation and period of vibration

will be highlighted (§ 6); finally sample response and scale effect will be presented (§ 7).

2. System kinematics, potential and kinetic energies, contribution of external forces

Under the previously stated assumptions, and neglecting for the time being mass and inertia

related terms, the geometry of the system under consideration is fully described when a set of three

parameters is known. These are either b, h1 and h2, or α1, α2 and R1, as shown in Fig. 1 where b is
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the half-thickness of the two bodies; h1 and h2 are the half-height of the lower, from now on

denoted with the subscript 1, and the upper, subscript 2, bodies. Half instead of full dimensions are

used following the study of a single rocking body (Housner 1963) where this made the closed form

solution of the linearised free vibrations equation more compact. α1 and α2 are the angles formed

by the vertical line passing through the base corner and the segment between this point and the

respective mass centre Gi, the length of such segment in the body 1 being R1; the first two values

determine the shape (i.e., height to thickness ratio) of the system, while the third fixes its size. 

The choice of the group of three variables is arbitrary: the first is more directly related to the

measures of a given wall, however the second is in agreement with previous research on rocking

bodies and, as will be shown, in some situations reduces by one the number of geometrical

parameters. Consequently, the latter will be ordinarily used, although in order to refer to the height

of the intermediate hinge (§ 4) the dimensionless height h1/h, where h = h1 + h2 is the half height of

the whole system, will be preferred. Typical values in building practice for the above parameters

can be found in Table 1 and derive from the experimental data reported in ABK (1981).

Because any top support or base foundation flexibility has been neglected (Koh et al. 1986,

Spanos and Koh 1986), the only Lagrangian coordinate of the system is the rotation θ1 of the lower

body, taken positive if in the anticlockwise direction. Therefore, the finite displacements sG, 1 and

sG, 2, of the respective centres of mass G1 and G2, are (refer to Fig. 1(c)) 

(1a)

(1b)

where i and j are unit vectors parallel to the horizontal and vertical axes, respectively. Similarly it is

possible to obtain the displacement of the point of the upper face of the system, where a

concentrated force N is acting.

Since the system has only one independent DOF, the rotation θ2 can be expressed as a function of θ1

sG 1, R1sin α1 θ1–( )i– R1cos α1 θ1–( )j+=

sG 2, 2R1sin α1 θ1–( ) R2sin α2 θ2+( )–[ ]i 2R1cos α1 θ1–( ) R2cos α2 θ2+( )+[ ]j+–=

Fig. 1 (a) Uncracked wall parameters and reference axes, (b) cracked vertical spanning strip wall parameters,
(c) displaced configuration and ground acceleration components acting in the mass centres of the two
bodies  
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(2)

valid no matter what the sign of θ1 is. This equation is valid until the top roller support is violated,

a condition that under transient excitations is usually experienced just prior to the complete

overturning, or when the no penetration condition between the bodies is violated, a circumstance

theoretically possible only for very stubby (large αi = arctan b/hi) blocks.

It is possible to numerically show that Eq. (2) can be linearised by the following

(3)

with appreciable differences only for very large rotations (θ1 > α1) and only for α1 and α1/α2 values

outside the range encountered in the practice (ABK 1981, Doherty 2000). Thus, in the framework

of the other simplified assumptions Eq. (3) will be preferred to Eq. (2). Finally no approximation at

all exists if the two angles are equal (i.e., h1 = h2 or crack is at mid-height).

The angular velocity of the upper body, , as a function of  is

(4)

θ2 sgn θ1( ) arcsin
sinα2

sinα1

-------------sin α1 θ1–( ) α2–

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

θ2

tanα2

tanα1

-------------θ1–=

θ
·
2 θ

·
1

θ
·
2

sinα2

sinα1

-------------
cos α1 θ1–( )
cos α2 θ2+( )
------------------------------θ

·
1–=

Table 1 Geometric data from dynamic experimental tests on vertical spanning strip walls (ABK 1981)

Specimen
Height 

(m)
Thickness

(m)
h1/h α1/α2 α1

R1 
(m)

1 4.88 0.356 0.69 0.46 0.11 1.69

2 4.88 0.356 0.64 0.57 0.11 1.57

3 4.88 0.356 0.54* 0.85 0.13 1.33

4^

5 3.05 0.143 0.53 0.89 0.09 0.81

6 3.05 0.143 0.67 0.50 0.07 1.02

7 4.88 0.200 0.50 1.00 0.08 1.22

8 4.88 0.200 0.54 0.85 0.08 1.32

9 4.88 0.200 0.46 1.17 0.09 1.13

10 4.88 0.194 0.75 0.34 0.05 1.83

11 4.88 0.194 0.67 0.49 0.06 1.64

12^

13 3.05 0.194 0.53 0.89 0.12 0.81

14 3.05 0.194 0.63* 0.59 0.10 0.97

15 3.05 0.194 0.60 0.67 0.11 0.92

16 3.05 0.143 0.67 0.50 0.07 1.02

17 3.05 0.143 0.60+ 0.67 0.08 0.92

18 3.05 0.143 0.60 0.67 0.08 0.92

^ discharged because damaged
+ fractured, during transportation, at h1/h = 0.87
* hinge position varied during tests
# homogeneity assumed
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which is dependent on the amplitude of the angular displacement. For a positive rotation of body 1,

the velocities, vG, 1 and vG, 2, of the respective centres of mass are

(5a)

(5b)

Following Eqs. (1a-b) and (5a-b) the potential, V, and kinetic, Z, energies are respectively

(6)

(7)

with m mass, IG polar moment of inertia with reference to the mass centre, g gravity acceleration. It

should be noted that as before, the subscripts 1 and 2 refer to the lower and upper bodies,

respectively. Since the ground has been assumed as a reference for the heights of the mass centres,

the potential energy is positive when the system is at rest (θ1 = 0). A plot of Eq. (6) is presented in

Fig. 2. The potential energy of the system under examination is qualitatively similar to that of a

rocking single body: it has a local minimum corresponding to the rest position (θ1 = 0), a maximum

for the non dimensional rotation equal to one (θ1 = α1) and then decreases until the rotation is

incompatible with the top restraint boundary condition (not shown in the Figure). As is well known,

the maximum for θ1 = α1 corresponds to a point of static instability: therefore, a system with zero

vG 1, R1 cos α1 θ1–( )i sin α1 θ1–( )j–[ ]θ· 1–=

vG 2, R1 cos α1 θ1–( )i 2sin α1 θ1–( )
cos α1 θ1–( )
cot α2 θ2+( )
-----------------------------+ j–
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Fig. 2 Non dimensional potential energy as a function of non dimensional rotation. α2 = 0.225 rad 
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initial velocity and no driving force, released with a rotation higher than α1, will experience no

vibration but simply migrate toward another configuration. However, if forced vibrations are

considered non dimensional rotations θ1/α1 higher than unity are possible, although in the numerical

analyses performed only values slightly exceeding one were observed without overturning. 

The work done by the superimposed gravity load N, applied to the upper body (refer to Fig. 1), in

terms of virtual work δΓN for a positive infinitesimal rotation of the lower body δθ1 is

(8)

There is experimental evidence (ABK 1981, Doherty 2000) that the gravity load N can migrate

toward the upper corner of body 2 if no special connection details are used (Simsir et al. 2004).

However, it is usual (Giuffrè 1993) and conservative to assume that the gravity load N acts at the

wall’s centreline, as will be done in the following.

The contribution of inertia forces, acting in the two mass centres and proportional to a ground

acceleration varying with time t, whose horizontal and vertical components are  and 

respectively (see Fig. 1(c)), for a positive rotation of the lower body, in terms of virtual work is

equal to

(9)

The assumption behind Eq. (9) is that the accelerations at the ground and at the top roller support

are identical, an assumption not too far from reality if diaphragms are not too flexible (Simsir et al.

2004, Meisl et al. 2006). Moreover, ABK (1981, 1984) after the most extensive experimental

campaign to date, sustained that the overturning of a VSSW was more than usually not related to

asynchrony in the motions of ground and top support. Additionally, to model how a ground shaking

could be filtered all the way up to the roller support in C’ the consideration of many more variables

and, consequently, uncertainties would be required. Thus, the preceding assumption will be taken in

the rest of the paper and Eq. (9) used.

3. Equation of motion 

Based on Eqs. (6)-(9) the equation of motion for forced vibrations is equal to

(10)

with

(11a)
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(11b)

(11c)

(11d)

(11e)

and , .

Considering Eq. (10), it is possible to note that all the system coefficients are not constant, since

CA, CS, CH, CV and CN, are functions of rotation θ1. Moreover, a Coriolis effect, due to the vertical

slide-rotation of the upper body, is detectable too. In Eq. (10) angular acceleration and velocity

appear explicitly; however, the angular displacement is present in a non algebraic form. No

progressive damage is considered in the model, since this is usually negligible (Doherty 2000,

Simsir et al. 2004, Wilhelm et al. 2007) unless construction quality is very poor (Meisl et al. 2006).

Finally, as already stated, no energy damping term is yet included in the equation of motion. The

issue will be addressed in § 5. 

4. Threshold acceleration and intermediate hinge height

As for other rocking systems (Spanos and Koh 1984, Allen et al. 1986, Psycharis 1990,

Oppenheim 1992, Sinopoli and Sepe 1993, Spanos et al. 2001), it is possible to recognize as a

system feature a threshold acceleration : an acceleration that triggers the motion. This, irrespective

of the sign of the acceleration, is equal to

(12)

which is obtained from Eq. (10) by setting the angular displacement, velocity and acceleration equal

to zero. In the case of homogeneous bodies without a gravity load N, Eq. (12) can be simplified to

(13)
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It can be observed from Eq. (13), presented in a slightly different form in Wilhelm et al. (2007),

that the threshold acceleration is not a function of the size of the system, as experimentally

confirmed for other assemblies (Winkler et al. 1995). 

However, the perfect parallelepiped assumption usually leads to overestimation of the threshold

acceleration (Ishiyama 1984), and is not feasible to fully reproduce experimental time histories of

masonry walls or even rigid blocks, at least if no special experimental setting is used (Tso and

Wong 1989). This can be stated also for the particular case considered here. Making reference e.g.,

to Figs. 5.18 and Figs. 5.20 in ABK (1981), plotted under synchronous motion of both supports,

rocking was observed before the theoretical threshold acceleration was reached. However, in the

same research campaign cracking of the wall and formation of the intermediate hinge was not

recorded under some strong motion, therefore showing that a certain minimum acceleration is

indeed necessary to set the system into rocking.

Setting equal to zero the vertical component of the ground acceleration, considering homogenous

bodies and expressing Eq. (12) as a function of b, h and h1, one gets 

(14)

with ξ = N/W, and W weight of the whole wall. Eq. (14) represents the static collapse load

multiplier of the mechanism considered. The non dimensional height h1/h that minimizes the

threshold acceleration of Eq. (14) is

(15)

Both Eq. (14) and Eq. (15) were presented, although in a slightly different form, in Giuffrè

(1993). The latter clearly states that the height of the intermediate hinge is a function of the sole

non dimensional load ξ: the higher ξ the lower h1/h. Such a trend was confirmed by static

experimental tests, using a tilting table, on dry stacked stone masonry walls (Giuffrè 1993). It is

perhaps interesting to note that, for : h1/h→2- . Although a very small amount of

non dimensional superimposed load is enough to lower its position, on the other hand if ξ tends to

zero the hinge tends to form at the very top of the system. There have only been a few tests

conducted without superimposed load. Meisl et al. (2006), whose specimens were built placing

brick units dry in order to create a weak bond with the mortar, reported interference of the top

restraint and a dislodged row of bricks due to limited moment resistance at the top of the wall.

Wilhelm et al. (2007) observed multiple cracks in the upper third of the wall and a major crack

moving down from top of the wall and back up. However, if average to good quality mortar is

present the intermediate crack is usually far from the top of the wall (Gülkan et al. 1979, ABK

1981, Anderson and Held 1982, Doherty 2000).

Let us consider the wall as a beam clamped at the base subjected to a uniformly distributed load

perpendicular to its axis line, a rough representation of inertia forces prior to cracking that can be at

first stage accepted due to the very small deflections the wall undergoes up to this point (Doherty

2000). Further parameters are the self weight, and the axial superimposed load. Moreover, let us

assume that the mortar in the bed joints has a uniformly distributed tensile strength fmt, which can

be made non dimensional through the stress induced by the wall self weight: . Under

the previous assumptions, it is possible to show that the height where the first crack develops if,

x··t

g
---
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h h1–

-------------
2b 1 ξ+( )

h1

-----------------------+=

h1
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1

1
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after cracking at the base, a redistribution among horizontal reactions takes place, is equal to

(16)

A plot of Eq. (16) is presented in Fig. 3(a). It is clear that very small values of mortar tensile

strength are sufficient to let the hinge migrate much lower, thus t plays an important role in the

response of the system although it does not explicitly appear in the equation of motion as the

superimposed load N does. Values of t in ABK (1981) spanned from 5 to 21, while in Doherty

(2000) varied between 7 and 9. It should be noted that in Wilhelm et al. (2007) t was equal, on

average, to 1.6, thus contributing to explain the observations about the crack position. For large

values of t and no superimposed load the hinge location tends towards the wall mid-height (h1/h =

0.5), while for both t and ξ increasing the asymptotic limit of Eq. (16) is again . Moreover,

the difference between the curve for t = 0 in Fig. 3(a) and a plot of Eq. (15) is negligible. 

Irrespective of the assumed model, it is very difficult to exactly predict the hinge height due to

mortar tensile strength variability and precracking that may occur during the construction and curing

stages, thermal stresses, foundation settlements, and so on. Experimental tests have shown that it is

usually positioned at 50-70% of the wall’s height (refer to Table 1, Simsir et al. 2004, Meisl et al.

2006, Wilhelm et al. 2007). Nonetheless, for those interested in performing nonlinear time history

analyses (Meisl et al. 2006, Goretti et al. 2007), Eq. (16) is a tool to estimate intermediate hinge

height based on the wall characteristics.

In order to highlight some characteristics of the VSSW it is useful to compare it to a free standing

or parapet wall (PW), that is a wall whose top has no significant displacement restriction. By

modelling the PW as a rigid rocking body it is possible to extract a wealth of information since the

so-called Housner inverted pendulum has been extensively studied in the last decades (e.g., refer to:

Sorrentino et al. 2006). 

Let us assume to compute the intermediate hinge of the VSSW position through Eq. (14), with h1/h

h1

h
----- 1

ξ t 2 t 2ξ+ +( ) t ξ+( )–+

2 ξ+
---------------------------------------------------------------+=

2 2–

Fig. 3 (a) Non dimensional intermediate hinge height as a function of non dimensional superimposed load and
mortar tensile strength, (b) Ratio between threshold accelerations of two walls differing only for the
top restraint: absent (PW) or present (VSSW)
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defined by Eq. (15). It is possible to compute the threshold acceleration for the PW from simple

statics using Eq. (17)

(17)

The ratio between the threshold accelerations for a VSSW and PW can be written as

(18)

Considering the two walls equal (same b and h refer to Fig. 1(a)) except for the top restraint

condition, the threshold acceleration of the VSSW is of course higher than that of a PW. The

difference is greater for increasing values of non dimensional load ξ, since the latter causes the

hinge to form lower and lower. Nonetheless, due to the limit of Eq. (15), the ratio of the two

accelerations, after a rapid growth, approaches the limit of  (refer to Fig. 3(b)).

5. Energy dissipation 

Until now no energy dissipation has been considered. The hypothesis that will be assumed is that,

as in other rocking systems (Housner 1963, Spanos et al. 2001), energy is damped only when an

impact occurs. Due to the restraint conditions, when the lower body hits the ground the former is hit

by the upper one. Depending upon the boundary conditions, a VSSW could have two impact

sections (cracks) closing whereas a PW has only one. The amount of kinetic energy dissipated can

be computed by means of the usual assumptions of impulsive dynamics. These are: infinitesimal

impact duration, no variation in the configuration, instant variation in velocity. Moreover, elastic

rebound will be excluded; that is, after the impact the rotation corner will change, and it will be

assumed that the impact impulse will pass through the rotation hinge. Since the impact duration is

infinitesimal, the contributions of body weights, restraint reactions, and the eventual superimposed

load to angular momentum are negligible, whilst the inner impact impulses vanish due to the third

law of Newton’s mechanics. Therefore, if angular momentum is computed with respect to the

rotation hinge it will be conserved. Thus, equating the angular momentum before and after the

impact it will be possible to compute the energy dissipation. 

Recurring to Eqs. (5a and b), and equating the angular momentum after and before the impact it

is possible to write down the ratio e between angular velocities after, superscript +, and before,

superscript –, the impact

(19)

“e” is usually called the coefficient of restitution, although the term is more appropriate for impact

involving points rather than finite surfaces (Shenton and Jones 1991). For homogenous bodies and

for an intermediate hinge at mid-height it is possible to simplify Eq. (19). Various plots of the

coefficient of restitution are presented in Fig. 4. Therein it is clear that e is more sensitive to α1

than to α2. Such behaviour is due to the asymmetry of the mechanism, whose upper body vertical
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component of motion is affected by the rotation of the lower one. Furthermore, it is interesting to

note that the plot of e versus α1 is qualitatively similar to the one of e versus α in a single rocking

body (Yim et al. 1980). 

For a given wall the coefficient of restitution will decrease, (i.e., damping increases) for stockier

(larger α) walls and the lower the intermediate hinge (higher N) (Fig. 5(a)). Therefore it is clear that

the superimposed gravity load as well as the tensile strength, although not present in Eq. (19)), play

Fig. 4 Coefficient of restitution e varying α1 (a) and α2 (b)

Fig. 5 (a) Coefficient of restitution varying non dimensional intermediate hinge height and wall height to
thickness ratio. The practical range of interest of the abscissa is between 0.5 and 0.7. (b) ratio of
coefficients of restitutions of a VSSW and of a PW, differing only for the top restraint condition, for
various height to thickness ratios, and for different VSSW intermediate hinge heights
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a role in energy absorption by positioning the hinge height.

A comparison between the coefficient of restitution of two walls, equal in all except for the top

restraint condition, is presented in Fig. 5(b). Therein it is possible to observe that the coefficient of

restitution of a vertical spanning strip wall is always lower than that of a parapet wall. Nevertheless,

the difference between the two conditions decreases as a wall becomes more slender and/or the

intermediate hinge moves up. The reduction of e that the passage from a PW to a VSSW involves

can markedly reduce the free vibration duration of two walls with same size and height to thickness

ratio (same b and h), as well as initial conditions (Fig. 6). PW free vibrations are computed using

the nonlinear Housner (1963) model, while VSSW ones are obtained from Eq. (10). In both cases

numerical integration has been carried out in a state-space formulation using a Runge-Kutta

algorithm of variable order and time step (The Mathworks 2003), whose default error tolerances

have been reduced (Sorrentino et al. 2006). After being released, the VSSW stops in less than a

quarter of the time required by the PW (Fig. 6). 

Such higher energy dissipation capacity has a laboratory confirmation. As a matter of fact, Lam

et al. (1995), after an experimental campaign on unreinforced masonry parapet walls of 0.9 m

rocking height and 0.11 m thickness, proposed a 3% equivalent viscous damping ratio, while

Doherty (2000), after testing vertical spanning strip walls likewise built, but with a 1.5 m height

(thus more slender), and with an intermediate hinge near mid height, suggested a value of 6%. As

remarked by these authors and as will be shown in the next section, energy dissipation through

coefficient of restitution is amplitude dependent. However, it is possible to estimate an equivalent

viscous damping ratio from logarithmic decrement of free vibrations, computed analogously to those

of Fig. 6. Starting in both cases from a non dimensional initial rotation equal to 0.7, the values

calculated after four cycles are 3.0% for the Lam et al. wall and 6.5% for the Doherty et al. wall. 

Therefore, the addition of the top restraint not only increases the collapse static load multiplier

(refer to § 4) but it also enhances the energy dissipation capacity of the system, as observed for

other rocking systems (Makris and Black 2002). Moreover, in this case damping appears to be more

Fig. 6 Free vibrations of a parapet wall (a) and of a vertical spanning strip wall (b), differing only for the top
restraint condition. b = 0.2 m, h = 2 m, ξ = 0, h1/h = 0.7, θ0/α = θ1,0/α1 = 0.9, θ

·
0 θ

·
1 0, 0= =
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related to the mechanism than the material. This is a further difference between rocking and elastic

oscillators. Finally, this dynamic analysis proves highly valuable in delivering information that is

otherwise not available from pure static analysis. For those interested in performing nonlinear time

history analyses (Wilhelm et al. 2007, Goretti et al. 2007), Eq. (19) is a tool to estimate energy

dissipation based on the wall characteristics. 

6. Amplitude dependency of energy dissipation and period of vibration

An explanation of the increase in damping due to increasing displacements can be gained by

considering the linearised equation for free vibrations when the superimposed load N is absent 

(20)

with

(21a)

(21b)

Eq. (20) has the same form of that of single rocking body in free vibrations (Housner 1963), with

the parameter A being equivalent to the angle α. From Eq. (21a) it is evident that A ≅ α1 in the

practical range of values of α1 and α2. Since the coefficient of restitution of a single rocking body is

a function of α (Housner 1963), the top restraint, by increasing its value, increases the energy

dissipation.

Integrating Eq. (20) in closed form it is possible to compute the period of free vibration, T, based

on one quarter of a cycle

(22)

with  being the initial rotation of the system. A plot of Eq. (22) is presented in Fig. 7(a), where

it is compared to the analogous plot for the Housner rocking block. The amplitude dependency has

the same shape, however the introduction of the upper restraint involves a reduction of the period.

The latter is a function of the aspect ratio and the position of the intermediate hinge (Fig. 7(b)), not

of the size of the system nor the amplitude of motion.

As previously mentioned, it is possible to prove that energy dissipation is amplitude dependant.

When a VSSW in free vibrations gets its maximum rotation all its energy is potential, whereas at
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the impact the energy is fully kinetic, if potential energy is measured from rest position. In such

time interval it is possible to resort to the principle of energy conservation, since under the assumed

hypothesis, energy dissipation is concentrated at impacts. Therefore, assigned the coefficient of

restitution it is possible to plot the ratio between two (absolute) peak angular displacements, one

half cycle apart. A sample plot is presented in Fig. 8(a), where it is evident that the higher the

amplitude the higher the damping in agreement to what has been experimentally observed (Doherty

2000). In Fig. 8(b) the dependency upon the non dimensional period of vibration is highlighted by

means of Eq. (22).

Fig. 7 (a) Non dimensional period of vibration of Vertical Spanning Strip Wall as a function of non
dimensional amplitude of the motion, (b) ratio between the periods of a Vertical Spanning Strip Wall
and a Parapet Wall as a function of aspect ratio and non dimensional intermediate hinge height.
N/W = 0 

Fig. 8 Ratio between two peak angular displacements, one half cycle apart, as a function of non dimensional
amplitude of motion. h/b = 10 
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Moreover, the same concept can be used to measure an experimental coefficient of restitution

when displacements, not velocities, have been surveyed. Equating potential and kinetic energies it is

possible to express the coefficient of restitution as a function of the amplitude of rotation before and

after the impact. Hence, by means of Eqs. (6), (7) and (11a-b) one gets

(23)

with .

7. Sample time histories. Scale effect

The response of the VSSW to four seismic ground motions has been evaluated. Information about

the four recorded accelerograms used is reported in Table 2.

Time history results presented in Fig. 9 include plots of non dimensional rotation, angular

velocity, mechanical (i.e., potential plus kinetic) and dissipated energies. The displacement has been

normalised by angle α1, where a value of unity corresponds to the instability threshold under gravity
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Table 2 Recorded accelerograms used and their main features

Event Date MW
a Station

Dc 
km

Soild
PGAe

g
PGVe

cm/s
PGDe

cm
Δtf

s
Record

1 Romania 1977-III-4 7.5
Bucarest, Romania 
Building Research 

Institute
150 S3 0.21 73.6 24.4 16.2 Bucar0

2 Irpinia, Italy 1980-XI-23 6.8b Calitri 20.7 S2 0.18 18.7 5.1 68.9 CalitWE

3
Northridge, 
CA, USA

1994-I-17 6.7
Rinaldi Receiving 

Station
0.1 S2 0.84 166.1 28.8 14.945 RRS228

4
ChiChi, 
Taiwan

1999-IX-20 7.6 TCU129 1.2 S1 1.01 60 50.4 89.995 TCU129W

aMW = moment magnitude.
bMS = surface waves magnitude.
cD = Distance from the surface projection of the source.
dSoil: S1 = stiff, S2 = intermediate, S3 = soft (Decanini and Mollaioli 1998).
ePeak Ground: PGA = Acceleration, PGV = Velocity, PGD = Displacement.
f
Δt = Duration.
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forces alone. Velocity was normalised by the reference angular velocity 

(24)

this being the velocity that brings a resting VSSW to the position θ1 = α1. Mechanical energy, E,

and the cumulated dissipated energy (sum of the kinetic energy lost at every impact), ED 

(25)
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Fig. 9 Sample time histories of, from top to bottom, normalised angular displacement and velocity,
mechanical energy, dissipated energy and ground acceleration. N/W = 0.1, h1/h = 0.6. Amplitudes of
accelerogram (a) are scaled
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were both normalised by the difference in potential energy, Vr, between the values for θ1 = α1 and

θ1 = 0.

As noted elsewhere for a simple rocking body (Sorrentino et al. 2006), the rotation is closely

related to overturning of the system, with non dimensional velocity and mechanical energy more

easily exceeding the unity threshold without collapse. This is especially true if the system is very

slender (small α) and relatively tiny because its potential energy is a minor fraction of the input

energy. As a matter of fact, in these cases it is the driving force that brings the system back to a

bounded oscillation. Sometimes the normalised displacement can also show this kind of behaviour

(Fig. 9(a)). Nonetheless, such occurrences are far less frequent than in a PW due to the presence of

the superimposed load which induces a pronounced P-Δ effect. However, this requires integration to

be performed up to the violation of the top restraint, i.e., when the distance between the

intermediate hinge and normal to the roller support axis equals the diagonal of the upper body

(2R2). This happens for a limit rotation θ1, lim

(26)

In Fig. 10 a plot of the maximum absolute rotations for a set of VSSW is presented. For the sake

of representation, α values start from zero (corresponding theoretically to an infinitely slender

VSSW), assuming fictitiously values of unity for normalised displacement, velocity and mechanical

energy and zero dissipated energy. As for the Housner inverted pendulum, it is possible to observe,

at least in a statistical sense, that the stockier (i.e., higher α) and the bigger (i.e., higher R) the

VSSW system the lower its response. However, the latter phenomenon, also known as “scale

effect”, can vary significantly with the excitation as the comparison of Figs. 10(a) and (b)

highlights. As proved for a single rocking body (Sorrentino et al. 2006), such differences are due to

the difference in potential energy Vr, with the potential energy being defined in Eq. (6). Vr, is a

θ1 lim,
arcsin

sinα1

sinα2

-------------⎝ ⎠
⎛ ⎞ α1+=

Fig. 10 Rocking curves of VSSW as a function of α and R in terms of normalised maximum absolute rotation
for different accelerograms. The circle indicates an overturning. N/W = 0.1, h1/h = 0.6
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measure of the energy that is necessary to bring a resting VSSW to the instability (θ1 = α1)

position. For example, let us consider two systems with identical aspect ratio, nondimensional

intermediate hinge height and superimposed load, but different size, R. Vr increases as α increases

(i.e., the two walls become stockier). However, to set into motion a stockier wall, the amplitude of

the signal needs to be higher. Hence, the scale effect is more noticeable for accelerograms with high

amplitude. This is also observed when comparing the responses for the same record but at differing

amplitudes: the curves of equal size R begin to differ significantly once the accelerations increase

(compare Figs. 11(a) to 11(b)). Therefore, the “scale effect” is expected to be more significant in

higher seismicity areas than in lower ones. The Italian Seismic Code (OPCM 2005, annex 11.C)

currently accounts for this scale effect in the check against local mechanisms in existing

unreinforced masonry buildings. However, it does not differentiate the role of the size of the wall in

the different seismic zones, as it should based on what has been highlighted here and elsewhere

(Sorrentino et al. 2006). 

8. Conclusions

The equation of motion for a vertically spanning strip wall has been presented. If the system is

homogenous, it can be fully described by three geometrical parameters (α1, α2 and R1, or b, h1 and

h2), its mass density, and the superimposed gravity load N. Furthermore, it has only one degree of

freedom: the rotation of the lower body. 

The nonlinear equation of motion, with non constant coefficients and a Coriolis acceleration, was

derived under the assumptions that α1 is small or tends to α2 (as observed in both field and

laboratory tests), no slip occurs, the centre of mass of each body is coincident with the geometrical

centre, and the two bodies are perfect rectangles. 

Fig. 11 Maximum absolute rotations response plots to the same accelerogram, TCU129W, with PGA scaled
(a) and unscaled (b). The circle indicates an overturning. N/W = 0.1, h1/h = 0.6
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The latter hypothesis involves the existence of a threshold acceleration necessary to trigger

rocking motion. Such acceleration depends only on the shape (α1, α2), the density, and N, but not

on the size of the wall. With the exception of the position of the intermediate hinge, all these

parameters are measurable. The hinge location cannot be precisely predicted, as previous

experimental tests confirm. Both the intensity of N, compared to the wall’s self weight, and the

tensile strength play a role in determining hinge location. An analytical formulation has been

suggested in this paper, which shows that the hinge position is lower for higher N and tensile

strength, and which is useful to perform time history analyses. Irrespective of the height of the

intermediate crack, the addition of the top restraint causes an increase of the threshold acceleration

of the vertical spanning strip wall compared to that of a simple standing, or parapet, wall. 

Significantly, this is not the only benefit of having a top restraint. In fact, modelling energy

damping by means of impulsive dynamics has shown that the dissipation of energy in a vertical

spanning strip wall is higher than in a parapet wall of equal size and shape. This phenomenon,

already reported in the literature after experimental tests, was theoretically explained in this paper,

and an equation to assess the so-called coefficient of restitution has been proposed. The similarity

between a VSSW and a PW holds even when it comes to energy dissipation and period of vibration

dependency upon amplitude of vibration. A closed form relationship has been derived for the

linearised free-vibration equation of motion. This shows that both damping and period increases, in

a non-linear way, as the amplitude increases which is in agreement with experimental data. A few

sample time histories have been computed, showing again a similarity to those of a single rocking

body. Again, a VSSW proves safer the stockier (larger α) and the bigger (larger R) it is. The latter

behaviour, also known as scale effect, is however more evident with high amplitude accelerograms

because the difference in the energy that is necessary to overturn two walls with same shape but

different size builds up the stockier they are. Therefore, scale effect is expected to be noticeable in

high seismicity areas.
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