
Structural Engineering and Mechanics, Vol. 29, No. 3 (2008) 351-354 351

Application of continuous wavelet transform to detect 
damage in thin-walled beams coupled in 

bending and torsion

Hakan Gökda

Department of Mechanical Engineering, College of Engineering and Architecture, 

Uluda  University, Görükle, Bursa 16059, Turkey

(Received May 16, 2007, Accepted January 25, 2008) 

1. Introduction

The continuous wavelet transform (CWT), which provides redundant scale information, is a

suitable vibration-based damage detection tool in that it can easily detect subtle changes or local

discontinuities due to damage in mode shapes or in their derivatives (Gentile and Messina 2003).

While an extensive literature review is available in the work of Kim and Melhem (2004), the

significant works appeared recently such as Gentile and Messina (2003), Douka et al. (2003),

Chang and Chen (2005), Rucka and Wild (2006) can be given as current examples of CWT

applications. In these works one of the bending vibration modes of damaged beam is analyzed with

CWT to obtain transform coefficients which include damage information. Damage is generally

modeled as notch, crack, or decrease in modulus of elasticity. Next, the wavelet coefficients, which

are functions of scale and translation (spatial variable of beam) parameters, are plotted for different

scales to seek sharp changes possibly caused by damages. Once damage location is determined its

extent can be estimated, for the magnitudes of wavelet coefficients are proportional to loss of

resistance. 

Apart from the previous studies this note is interested in damage assessment in thin-walled beams

using CWT. Because of asymmetric cross section, slightly different mode shapes will be measured

for different offsets from shear centre of beam1. Therefore, that magnitude of wavelet coefficients

for the same distance from beam root point will be different for various offsets from shear center is

emphasized, and practical consequence of this reality is discussed. 

2. Theory

The CWT of a function  is defined as , where a and b are
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positive real numbers called scale and translation parameters, respectively.  is the wavelet

function obtained by a mother wavelet  with the scale and translation parameters; =

, and overstar stands for complex conjugate. The mother wavelet should 1) have finite

energy; , 2) satisfy the admissibility condition; , where 

is Fourier transform of Ψ (Addison 2002). Singularities, sharp change locations in  can be

accurately determined by dilating and translating the wavelets with a and b parameters. On the other

hand, a wavelet satisfying the equation = 0, (k = 0, 1, 2,…, n − 1) is known to have n

vanishing moments, i.e., it is orthogonal to the polynomials up to order of (n − 1) (Douka et al.

2003).

The beam geometry is depicted in Fig. 1, where L is the length, c is the shear centre offset, w and

θ are vertical displacement and rotation about the shear centre of beam cross section located at x at

time t, respectively. S and C, respectively, denote the shear centre and the centroid of cross section.

Following the well-known finite element modeling procedure one comes out with 4N+4 (N: number

of finite elements) natural frequencies and corresponding eigenvectors. The elements of ith

eigenvector Qi are the nodal deformation components, that is ,

where ,  (j = 1, 2, …, N+1). Using the elements of ith eigenvector, one can

extract the ith modal shape of elastic curve, Yi, and ith torsional mode Θi. However, in an experiment

one will attach displacement transducer to a point somewhere on beam’s flange, so that the modal

function to be determined is Ui = Yi + dΘi, where e < d < e + bf (see Fig. 1, 3(a)). On the other

hand, damage is modeled as decrease in the modulus of elasticity. Hence, showing damage extent

by D, D = 10 means there is 10% decrease in bending, uniform and warping stiffness, respectively. 

3. Results and discussions

The following geometric and material properties are employed in this work: t = 2 mm, h = 50 mm,

bf = 40 mm, c = 16.4 mm, e = 3.7 mm, L = 1.5 m, Γ = 2.0513 × 10−11 m6 (warping constant), Izz =

1.1941 × 10−7 m4 (second moment of inertia), J = 3.6768 × 10−10 m4 (polar moment of inertia). The

selected material is Aluminum 2024-T3 whose properties are: E = 7.31 × 1010 Nm−2 (modulus of

elasticity), ρ= 2770 kgm−3 (density), ν= 0.33 (Poisson’s ratio). Finite element number is set as

N=100, and only the first mode shape is considered for the computations. 

The relation between damage and wavelet coefficients is shown in Fig. 2, where three locations

and five cases are considered for damage. The sharp picks in the figure correspond to damage

positions whereas their magnitudes are proportional to loss of resistance. Generally wavelet

coefficients get extremely high values at the boundaries since mode function is bounded, i.e., it does
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Fig. 1 The beam geometry
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not extent to infinity. Hence damage in the proximity of edge is difficult to observe from the

coefficients. In this work this deficiency is overcome by extending mode function from free end by

cubic polynomial and from fixed end by its symmetry. The fixed end can also be extended by curve

fitting, however using mode shape’s symmetry is experienced to be more efficient. After several

trials, symlet wavelet with two vanishing moments is preferred to enable good visual presentation.

Furthermore, damage location is best determined when the scale parameter is fixed to 3. Since

damage is modeled as decrease in modulus of elasticity, curvature discontinuity, which is

proportional to loss of resistance, will occur between damaged and undamaged elements. Therefore,

magnitudes of sudden picks tend to decrease as damage location gets closer to the free end, for

curvature has smaller value in these locations. 

Mode shapes of thin-walled beam vibrating out of symmetry plane will be slightly different for

various d values (see Fig. 3(a)), thus wavelet coefficients for the same damage location and extent

will vary depending on d. Then, what is the suitable offset d to measure the first mode shape so that

Fig. 2 Variation of wavelet coefficients wrt damage location and extent. I: D = 0, II: D = 20, III: D = 40, IV:
D = 60, V: D = 80. Scale parameter: a = 3, DL: Damage Location, d = 0.5bf + e

Fig. 3 (a) Transducer location d. (b) Normalized wavelet coefficients versus di distances. di = e + i(bf /8),
i = 1, 2,…,7. D = 80, I: DL = 0.1L, II: DL = 0.2L, III: DL = 0.3L, IV: DL = 0.4L, V: DL = 0.5L, VI:
DL = 0.6L, VII: DL = 0.7L, VIII: DL = 0.8L, IX: DL = 0.9L
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wavelet coefficients have more information about damage? The answer can be extracted by

examining Fig. 3, where variation of the magnitudes of wavelet coefficients wrt d is illustrated for

ten damage locations. In view of the figure, d should be maximum if damage is in the vicinity of

fixed end (case I). For cases III and IV, however, the smallest distance d will produce the most

sensitive wavelet coefficients to damage. One should avoid measuring especially from the vicinity

of the half of flange if damage is around the beam midpoint (case IV). On the other hand,

coefficients appear to be less prone to d for the cases II and IX. For damages located on the half of

free end side, large d values seem to be more suitable to determine the first mode shape since the

magnitudes of wavelet coefficients get higher values as d becomes wider (cases V, VI, VII, VIII). In

fact, damage location is not known a priori in most practical applications, so how can this figure be

useful? In this case, mode shape can be determined through an arbitrary distance d, so that damage

location is approximately estimated via CWT in the first step. Then, to get more damage-sensitive

coefficients, this graph can be used to re-measure the most suitable mode shape.

In most of the practical applications certain amount of noise will contaminate measured data. The

knowledge that coefficients are sensitive to d will particularly be useful when noisy data is handled.

Generally lower scale wavelet coefficients will be affected the most by the presence of noise.

However, as already indicated the damage existence is realized through lower scale coefficients if

damage is modeled as decrease in the modulus of elasticity. Therefore, the mode shape derived

from properly selected d distance will enable the wavelet coefficients with maximum amplitude, so

that location and extent of damage can be more effectively evaluated. Although the discussions

regarding the Fig. 3 are valid for the selected beam geometry, similar conclusions for various beam

type structures coupled in bending and torsion can be extracted through the procedure in this note.

Then, the significance of the current study becomes obvious. The analysis can be extended to other

mode shapes and various kinds of damage, as well. 
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