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Abstract. In this paper, we present an idea of the geometry-dependent MITC method. The simple
concept is exemplified to improve a 2-node iso-beam (isoparametric beam) finite element of varying
section. We first study the behavior of a standard 2-node iso-beam finite element of prismatic section,
which has been widely used with reduced integration (or the equivalent MITC method) in order to avoid
shear locking. Based on analytical studies on cantilever beams of varying section, we propose the axial
strain correction (ASC) scheme and the geometry-dependent tying (GDT) scheme for the 2-node iso-beam
element. We numerically analyze varying section beam problems and present the improved performance
by using both ASC and GDT schemes.
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1. Introduction

For several decades, finite element method has been dominantly used to analyze various structural

engineering problems. Despite of the long history and the success in engineering fields, there have

been unsolved issues in finite element method and continuous challenges are still desirable. 

Structural finite elements (shells, plates, and beams) have been derived from basic continuum

mechanics and standard isoparametric procedures (Bathe 1996). However, the displacement-based

finite elements are too stiff in bending-dominated situations when the thickness is small, regardless

of the displacement interpolation order. The phenomenon is called as locking and numerous
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researches have been performed to overcome the locking in the development of the structural finite

elements (Lee and Bathe 2002).

Among various techniques for locking alleviation, the MITC (Mixed Interpolation of Tensorial

Components) method or similar assumed strain schemes have been successfully used (Dvorkin and

Bathe 1984, Bucalem and Bathe 1993, Choi and Paik 1994, Bathe 1996, Choi et al. 1999, Hong et al.

2004). Its performance has been presented for various benchmark problems using well-established

benchmark procedures. The basic idea of the MITC method is to interpolate displacements and

strains separately and “connect” these interpolations at “tying points.” The displacement and strain

interpolations are chosen so as to satisfy the ellipticity and consistency conditions, and as closely as

possible the inf-sup condition (Lee and Bathe 2004).

The key of the MITC method is how to design the tying scheme determined by “strain

interpolation functions” and “tying positions”, which depend on element types (shell, plate, beam…)

and the number of nodes (4-nodes, 9-nodes…). Considering a structural finite element, the tying

points of the MITC method are fixed at certain positions in the natural coordinate system

irrespective of the element geometry. However, the behavior of the finite elements depends on the

positions of the tying points and the dependency has not been well studied.

For finite element analyses of beams, beam elements directly derived from various beam theories

have been frequently used and, specially, a 2-node Hermitian beam gives exact solutions with the use

of the single element (Bathe and Bolourchi 1979, Bathe 1996). However, the 2-node beam element

has a quadratic interpolation along the longitudinal beam direction and this induces incompatibility

when the element is coupled with shell elements or 2D- or 3D-solid elements, see Fig. 1.

Iso-beam elements are degenerated form 3D-solid elements. The single element cannot give exact

solutions but, as the number of elements used increases, the solutions quickly converge into the

exact solutions. The primary applications of the iso-beam elements are for coupled uses with shell

elements or 2D- or 3D-solid elements (Bathe 1996). In the cases, the element does not result in the

incompatibility because the interpolations of the elements well match with shell elements or 2D- or

3D-solid elements. For example, the 2-, 3- or 4-node iso-beam elements together with the 4-, 9-, 16-

node shell elements, respectively, can provide an effective finite element discretization of the

stiffened shell structures.

In the following sections, exemplifying a 2-node iso-beam (isoparametric beam) finite element of

prismatic section, we first study the role of tying position. The axial strain correction scheme is

introduced to improve the axial behavior of varying section beam elements. To find the optimal

tying position of the 2-node iso-beam element of varying section, a cantilever beam problem under

Fig. 1 Coupled use of 2-node beam elements with a 4-node shell element
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pure bending is investigated. We then improve the 2-node iso-beam element using a geometry-

dependent tying scheme used with the axial strain correction scheme. Finally, various numerical

tests are performed and the results are discussed in detail. 

In this paper, we restrict our study within the framework of linear elasticity and isotropic material.

However, the methods proposed can be generally used without the limitation.

2. A 2-node iso-beam finite element of prismatic section

Iso-beam finite elements are very attractive because the formulation is directly derived from three-

dimensional continuum mechanic and easily extended for nonlinear analysis as well as simple and

general. Locking can be simply removed using reduced integration or the equivalent MITC method1

(Bathe 1996, Lee and McClure 2006).

The basic kinematic assumption of the beam formulation is that plane cross sections originally

normal to the central axis of the beam remain plane and undistorted under deformation but not

necessarily perpendicular to the central axis of the deformed beam (Bathe 1996, Lee and McClure

2006).

In this section, we briefly review the formulation of a 2-node iso-beam finite element of prismatic

section and the MITC method for beam elements. We study the pure bending behavior of the beam

element formulated with the MITC method and investigate the role of tying position. 

2.1 Interpolation of geometry and displacement fields

The geometry of the q-node beam finite element is interpolated by

(1)x r s t, ,( ) hk r( )xk

k 1=

q

∑
t

2
---akhk r( )V t

k

k 1=

q

∑
s

2
---bkhk r( )Vs

k

k 1=

q

∑+ +=

1It is important to understand the close relation between reduced integration and the MITC method. The
MITC method is a superset of reduced integration, that is, the finite element formulations using reduced
integration can be expressed by the MITC method in general. However, the inverse relation does not hold.

Fig. 2 A 2-node iso-beam finite element
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where  are the interpolation polynomials (shape functions) in usual isoparametric procedures,

 are the Cartesian coordinates of node k, ak and bk are the cross-sectional dimensions at node k,

and the unit vectors  and  are the director vectors in directions t and s at node k, see Fig. 2.

Note that  and  are normal to each other (Bathe 1996). 

From Eq. (1), the displacement of the element is given by 

(2)

in which  is the nodal displacement vector of node k in the global Cartesian coordinate system

and the rotation vector at node k is

(3)

For a 2-node beam finite element, q is 2 and the shape functions are

(4)

The linear part of the covariant strain components are directly calculated by

(5)

where

, with (6)

The three covariant strain components are considered in beam finite elements

, , (7)

2.2 The MITC method

Using the MITC method for beam finite elements, the transverse shear and normal covariant

strain components are interpolated

(8)

where  are assumed covariant strain components in the beam finite element,  are

the covariant strain components of Eq. (5) calculated from the displacement-based beam finite

element at tying point  and  are the assumed interpolation functions satisfying
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In Eq. (9), nij is the number of tying points for the strain component .

The assumed strain components and the tying points depend on the displacement interpolation

functions used (or the number of element nodes). As an example, for the 2-node iso-beam finite

element, we use one tying point at r = 0 for the covariant strains ers and etr but two tying points at

 for the covariant strains ers, etr and err need to be used for the 3-node element in

general.

2.3 Pure bending behavior

In this section, we study the behavior of the 2-node iso-beam finite element of prismatic section

under pure bending. Considering a cantilever beam structure of length L in Fig. 3, a moment Mz is

applied at free tip. The boundary condition of this beam problem at the clamped tip is

(10)

The cantilever is modeled by one finite element and, from the geometry, we have

 (11)

in which the subscripts are the node numbers. 

This is a pure bending problem and the exact analytical solution corresponds to

 (12)

in the whole domain.

When the iso-beam finite element is used for the cantilever problem as shown in Fig. 3, we have

the conditions

(13)

where  and  are the unit base vectors in the global Cartesian coordinate system.

e ij

r ±1/ 3=

u v w θx θy θz 0= = = = = =

x1 0= y1 0= z1 0 and x2 L= y2 0= z2 0=, ,=, ,

ers esr 0 and εxy εzx 0= == =
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0

0⎩ ⎭
⎪ ⎪
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⎨ ⎬
⎪ ⎪
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, θ k=

0

0

θz
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, V s
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k
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Fig. 3 A 2-node iso-beam finite element of prismatic section (a1 = a2 = a and b1 = b2 = b)
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From Eqs. (1) and (2), we then obtain the geometry and displacement interpolations

(14)

Using Eq. (7), the covariant strain field of the displacement-based 2-node iso-beam finite element

are determined

(15a)

(15b)

(15c)

Of course, it is well known that this strain field induces shear locking.

The assumed covariant strain field of the beam finite element using the MITC method, which is

equivalent to one-point reduced integration, can be simply obtained

, (16)

where  is the position of the tying point in the natural coordinate system.

We then use

(17)

where  is the assumed strain tensor defined in the local Cartesian coordinate system of the beam

( ) and  are the contravariant base vectors satisfying . Since 

and  in this beam problem, the strain components are obtained

(18)

In a matrix form
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Using the standard procedure of finite element method 
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 (20)

the corresponding equilibrium equation is

(21)

where V is the volume of the beam.

In the pure bending problem considered, from the first row of Eq. (21), we have

(22)

which exactly corresponds to  in the second equation of Eq. (18).

Therefore, the solution of Eq. (21) needs to satisfy Eq. (22), that is 

or (23)

Here, it is very important to recognize that the ratio of the tip displacements (v2/ ) is determined

by , the tying position of the transverse shear strain in the MITC method. 

When applying the MITC method in the 2-node iso-beam finite element, the fixed tying position

 is used in spite of that the beam section is varying or not. This is exactly equivalent to the

one-point reduced integration technique in the beam element. The ratio of the tip displacements in

the solution is then given 

(24)

and this is the exactly same to the analytical ratio of the prismatic cantilever beam structure under

the pure bending condition by the tip moment Mz only.

Therefore, it is clear that, for prismatic beam problems, the point  is the optimal tying

position which can result in the analytical ratio of the tip displacements. However, we here can have

a question, “Is the same point is optimal for varying section beam problems?” Indeed, this question

was the motivation of this study.

3. A 2-node iso-beam finite element of varying section

In this section, studying a cantilever beam problem of varying section under axial stretching and

pure bending, we find the optimal tying positions of the beam finite element with linearly varying

width. Of course, the assumptions of the Timoshenko beam theory are considered.

As shown in Fig. 4, we consider a cantilever beam structure with linearly varying width along the

beam
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with , (25)

but the height of the beam section (b) is constant ( ).

The cantilever problem is modeled using one element and the beam is clamped at x = 0

(26)

From the geometry, we have

 

(27)

and the director vectors are

(28)

For this cantilever beam, the interpolation of geometry is 
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Fig. 4 A 2-node iso-beam finite element with linearly varying width (b1 = b2 = b)



Geometry-dependent MITC method for a 2-node iso-beam element 211

and, from , we obtain the 3D contravariant base vectors

(31)

3.1 Axial strain correction

One 2-node iso-beam finite element gives the exact solution for the behavior of axial stretching

when the beam section is prismatic. However, for the beam problems of varying section, the single

element cannot give the exact solution. It is not hard to improve the prediction accuracy of the

beam element under stretching and this is discussed in this section.

We first find the analytical solution of the cantilever beam problem of length L, where an axial

loading (Px) at free tip is applied as shown in Fig. 5(a). Since the area of the beam section is

varying, we solve

(32)

and the solution is 
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The free tip displacement in axial direction is 
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Fig. 5 Cantilever beam problems with varying section (Beam length = L)
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To investigate the behavior of the iso-beam finite element, we model the cantilever using one

beam element and then, under axial force only, the tip displacements are

 (35)

Using Eqs. (26) and (2), the displacement interpolation of the 2-node iso-beam finite element is 

(36)

The resulting covariant strain components are

(37)
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prismatic beams ( ), the correction factor is equal to 1, that is, the correction is not

necessary. 

It is important to note that we derived Eq. (42) for single finite element model of the cantilever

problem but, for multi-element models, the equation can be applied. Then, a1 and a2 are the cross-

sectional dimensions of each finite element at nodes 1 and 2 in Eq. (1). The convergence results

depending on the number of elements used will be discussed in the numerical examples. 

3.2 Geometry-dependent tying position

Let us consider a cantilever beam of varying section under tip moment in Fig. 5(b). For this

problem, the governing equations are (Baker 1996)

, ,  (43)

in which E is Young’s modulus and  is the moment of inertia of the varying beam section about

the z-axis, .

The solutions of Eq. (43) are given
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The ratio between deflection and rotation at the free tip is 
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Fig. 6 Correction factor for axial covariant strain depending on a1/a2. (0 < k < ≤ 1)
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which depends on how rapidly the beam section is varying, .

In this case, when we model the cantilever problem using one beam element, the displacement

field of the finite element discretization is 

(46)

Here, we use the correction for err as discussed in the previous section and the covariant strains

are obtained by Eq. (7)

, (47)

Considering a tying position  for ers  and, using Eq. (17), the strain

components in the local Cartesian coordinate system are 

 (48)

The same procedure in Eqs. (19)~(22) results in
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and, from Eq. (45), we obtain the tying position which gives the analytical ratio between tip
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which is presented in Fig. 7. The figure shows that  and, when  for prismatic

beams, the tying position  is 0 which corresponds to the center of the beam element2.

As mentioned in the previous section, for general finite element models, a1 and a2 are the cross-

sectional dimensions of each finite element at node 1 and 2 in Eq. (1). Note that the pure-bending

mode can be exactly captured only when the tying position of Eq. (50) for the transverse shear

strain and the correction factor for axial strain in Eq. (42) are used together.

The cantilever beam problem in Fig. 5(c) can be used to determine the geometry-dependent tying
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based on the beam theory when the section is rapidly varying, we do not use the geometry-

dependent tying scheme for etr. 
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2Since, when a1 = a2, the second term in the right side of Eq. (50) becomes infinite, special care is required in
the numerical implementation for the case. 



Geometry-dependent MITC method for a 2-node iso-beam element 215

4. Numerical tests

In the previous sections, we studied the role of tying position and presented the axial strain

correction (ASC) scheme and the geometry-dependent tying (GDT) scheme. In this section, we

analyze some beam structures with varying section using the MITC method with “GDT” or

“GDT+ASC.” The results are compared with the beam element using reduced integration or the

equivalent MITC method with fixed tying (FT) position.

It is important to note that reduced integration (or the equivalent MITC method with FT) and the

MITC method with GDT or GDT+ASC do not result in locking for beam problems of varying

section. Therefore, the solution accuracy of the results presented in this section does not depend on

the ratio between sectional dimension and overall length. As well known, locking deteriorates the

solution accuracy when the ratio becomes smaller.

4.1 Cantilever beam problems

We first analyze a cantilever beam structure of length L with decreasing and increasing sections,

see Figs. 8 and 9. For the decreasing case, the beam structure is clamped at point A and free at

point B. The structure is loaded with forces and moments at the free tip. As shown in Figs. 8 and 9,

we are considering three cases of loading: axial force Px, moment Mz and transverse force Py. The

finite element meshes used are shown in Fig. 10. 

Figs. 11-13 show the ratio between the finite element solutions obtained and the exact solutions at

free tip of the cantilever structure under the three different load cases when the beam section is

decreasing as shown in Fig. 8. In the figures, “FT” represents the 2-node iso-beam finite elements

formulated using reduced integration or using the corresponding MITC scheme where the tying

points for transverse shear strains is fixed at r = 0 and no correction factor is used for axial strain.

“GDT” represents the beam finite element formulated by the MITC scheme using Eq. (50) and

“ASC” denotes the axial strain correction in Eq. (42).

For the axial stretching case (by axial force) and the pure bending (by tip moment) case, the use

Fig. 7 Typing position for transverse shear covariant strain depending on a1/a2 ( )1– r 1< <
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Fig. 8 Cantilever beam problems with decreasing section (Beam length = L): (a) axial force, (b) moment (pure
bending case), (c) transverse force

Fig. 9 Cantilever beam problems of increasing section. (Beam length = L): (a) axial force, (b) moment (pure
bending case), (c) transverse force

Fig. 10 Meshes used (a) 1 element, (b) 2 elements, (c) 4 elements, (d) 8 elements (N = the number of
elements used)
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Fig. 11 Axial displacements at the free tip under axial force (decreasing section)

Fig. 12 Displacements at the free tip under tip moment (decreasing section): (a) deflection, (b) rotation, (c)
rotation/deflection (α = θ/v)
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Fig. 13 Displacements at the free tip under transverse force (decreasing section): (a) deflection, (b) rotation

Fig. 14 Displacements at the free tip under moment (increasing section): (a) deflection, (b) rotation,
(c) deflection /translation
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of both GDT and ASC gives the exact solutions regardless of the number of elements used. In the

case of a transverse force at free tip, the rotation is exactly predicted by GDT+ASC but deflection

converges from below. The fixed tying scheme (FT) gives better convergence than GDT+ASC but

the fixed tying scheme overestimates the displacements as shown in Figs. 12(a) and 13(b), that is,

the element is too flexible when the number of elements used is few3. Note that the geometry-

dependent tying scheme does not overestimate the displacements.

Considering the increasing section, Figs. 14 and 15 present that the geometry-dependent tying

scheme gives much better solution accuracy and the exact solutions in most cases. We here do not

show the axial behavior for the increasing section because the solutions are exactly the same to the

graphs in Fig. 11.

4.2 Simple beam problems

We next consider simple beam problems of length L as shown in Fig. 16. The beams are simply

supported and subjected to the moments at both ends (pure bending case) and the distributed

transverse force, see Figs. 16(a) and (b).

Figs. 17 and 18 display the ratio between the finite element solutions obtained and the exact

solutions. In the pure bending case by tip moments, the geometry-dependent tying scheme (GDT)

used with the axial strain correction scheme (ASC) gives the exact solution regardless of the

number of the beam elements used. When the distributed transverse force is applied along the beam,

the displacements obtained using FT and GDT+ASC converge to the exact solutions and their

solution accuracy is similar. 

In the numerical tests presented, we only consider the beam problems of varying width from 10 to

1. Note that, as the beam width is more slowly varying, the numerical results of FT and GDT+ASC

get closer and finally become the same when the beam width is constant along the beam. 

3This is not a good property of finite element solutions when used in engineering applications because, in
general, finite element models of coarser mesh are stiffer.

Fig. 15 Displacements at the free tip under transverse force (increasing section): (a) deflection, (b) rotation
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Fig. 17 Displacements at the beam center in the pure bending case in Fig. 15(a): (a) deflection, (b) rotation

Fig. 16 Simple beam problems: (a) moments at both ends (pure bending case), (b) uniformly distributed
transverse force (  per area)qy 1–=

Fig. 18 Displacements in the distributed transverse loading case in Fig. 16(b): (a) deflection at center, (b)
rotation at right end
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5. Conclusions

We introduced the concept of the geometry-dependent MITC method applying it to improve a 2-

node iso-beam finite element of varying section. We first studied the pure bending behavior of a 2-

node iso-beam finite element of prismatic section. Investigating the detailed behaviors of the

cantilever beams of varying section modeled by a single beam element and connecting them with

analytical solutions, the geometry-dependent correction factor k for axial strain and the geometry-

dependent tying positions for transverse shear strains were proposed. The resulting Eqs. (42) and

(50) were implemented and some numerical analyses were performed to show the effectiveness of

the geometry-dependent MITC method.

In this study, we obtained the following observations:

• In 2-node iso-beam finite elements formulated with the MITC method, the tying position

determines the ratio between transverse translational displacement and rotation.

• When the two proposed schemes (GDT+ASC) are used together, the exact displacements of the

beam elements are predicted regardless of the number of elements used in pure bending and

axial stretching cases. 

• Considering the transverse shearing behaviors, the fixed tying scheme gives more flexible

responses than GDT+ASC. However, in some cases (as observed in this study), the scheme

results in more flexible responses in coarser mesh models.

Since the geometry-dependent MITC method is more general than the original MITC method, it

can be extended to improve other structural finite elements suffering from locking. However, it is

not easy to find the optimal tying positions for general finite elements of arbitrary geometries.
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