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Abstract. Earthquake induced hysteretic energy demand for a structure can be used as a limiting value
of a certain performance level in seismic design of structures. In cases where it is larger than the
hysteretic energy dissipation capacity of the structure, failure will occur. To be able to select the limiting
value of hysteretic energy for a particular earthquake hazard level, it is required to define the variation of
hysteretic energy in terms of probabilistic terms. This study focuses on the probabilistic evaluation of
earthquake induced worst failure probability and approximate confidence intervals for inelastic single-
degree-of-freedom (SDOF) systems with a typical steel moment connection based on hysteretic energy.
For this purpose, hysteretic energy demand is predicted for a set of SDOF systems subject to an ensemble
of moderate and severe EQGMs, while the hysteretic energy dissipation capacity is evaluated through the
previously published cyclic test data on full-scale steel beam-to-column connections. The failure
probability corresponding to the worst possible case is determined based on the hysteretic energy demand
and dissipation capacity. The results show that as the capacity to demand ratio increases, the failure
probability decreases dramatically. If this ratio is too small, then the failure is inevitable. 

Keywords: failure probability; hysteretic energy demand; hysteretic energy capacity; confidence interval;
non-linear analysis.

1. Introduction

Structural failure will occur when the earthquake induced hysteretic energy demand for a structure
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is larger than the hysteretic energy dissipation capacity of the structure. Structures in seismic regions

are expected to dissipate seismic input energy through controlled inelastic deformations of the

structure. Energy input to the structure subject to an earthquake ground motion (EQGM) is

considered to be the most rational and reliable way to estimate damage of a structure, because

energy parameters take into account not only the peak response of EQGM but also the ability of

structure to absorb and dissipate energy. Part of the energy input consists of hysteretic energy

dissipated through the hysteretic behaviour. Since the damage in structures is related to the

hysteretic energy dissipated by the structure, it can be used as a seismic design parameter when the

damage is expected not to exceed some specified limits (Bertero 2005). Hysteretic energy can be

used as a limiting value of a certain performance level in seismic design of structures such as drift,

ductility, structural damage and storey drift indices, etc. Determining the energy absorption and

dissipation capacity and level of damage of the structure to a predefined EQGM is one of the

questions involved in predicting the structure’s response for low-performance levels (life safe, near

collapse, collapse) in performance-based earthquake resistant design (PB-EQRD) (Vision-2000

1995, Bertero and Bertero 1999, Hamburger 1997, ATC-40 1996, FEMA-273 1997). To be able to

select the limiting value of hysteretic energy for a particular earthquake hazard level, it is required

to define the variation of hysteretic energy in terms of probabilistic terms. Performance-based

earthquake resistant design based on energy approach have also gained great attention in recent

years (Akbas et al. 2001, Choi and Shen 2001, Chai and Fajfar 2000, Chou and Uang 2000).

Researches on estimating the hysteretic energy demand in single-degree-of-freedom (SDOF) as well

as in multi-degree-of-freedom (MDOF) systems have also been carried out extensively (Sari 2003,

Cruz and Lopez 2000, Tso et al. 1993, Leger and Dussault 1992, Uang and Bertero 1990). Chou

and Uand (2003, 2004) proposed a procedure for evaluating the total energy demand through elastic

dynamic analysis and its distribution throughout the height of multi-storey frames using inelastic

energy spectra. Ordaz et al. (2003) presented a relationship between the the Fourier amplitude

spectrum and the elastic energy input spectrum for SDOF systems. Manfredi et al. (2003) studied

128 near-fault earthquake ground motions using energy input and plastic cycles demand related

parameters. Yamaguchi and El-Abd (2003) investigated the effect of earthquake characteristics on

hysteretic dampers in multi-storey frames. Mollaioli et al. (2004) tried to establish a relation

between the seismic energy and displacement for R/C multi-storey frames. They have conluded that

the results obtained from SDOF systems could be extended to MDOF systems

This study focuses on the probabilistic evaluation of earthquake induced worst failure probability

and approximate confidence intervals for inelastic single-degree-of-freedom (SDOF) systems with a

typical steel moment connection based on hysteretic energy. For this purpose, hysteretic energy

demand is predicted for a set of SDOF systems subject to an ensemble of moderate and severe

EQGMs, while the hysteretic energy dissipation capacity is evaluated through the previously

published cyclic test data on full-scale steel beam-to-column connections. The approximate

confidence intervals for 95% and 90% degree of confidence levels are constructed. Then, the failure

probability corresponding to the worst possible case is determined based on the hysteretic energy

demand and dissipation capacity. 

2. Probabilistic evaluation of SDOF systems based on hysteretic energy

For a SDOF system, energy dissipation capacity of the system requires the yielding and
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dissipating energy of only one plastic hinge at the base of the system (Fig. 1). The structure

collapses when the earthquake induced hysteretic energy demand due to the plastic deformation

(EED) is larger than the hysteretic energy dissipation capacity of the structure (EEC) (Bertero and

Bertero 1999). The hysteretic energy dissipation capacity (EEC) of the plastic hinge and the

hysteretic energy demand (EED) have unknown parametric probability density functions (PDF) (let

us assume the hysteretic energy dissipation capacity of the plastic hinge (EEC) and the hysteretic

energy demand (EED) as statistically independent random variables). Let  and  are the

population mean values of energy dissipation capacity at ultimate deformation of the plastic hinge

and hysteretic energy demand, respectively; and  and  are the population standard

deviations of energy dissipation capacity at ultimate deformation of the plastic hinge and hysteretic

energy demand, respectively. Since it is practically impossible to determine the population means

and standard deviations of the hysteretic energy demand and capacity, the estimators for these

parameters, which are sample means ( , ) and standard deviations ( , ), can be

used instead.  and  are the sample mean value and standard deviation of EED,

respectively; ,  are the sample mean value and standard deviation of EEC, respectively. 

Since the underlying distribution of EED and EEC are unknown, Central Limit Theorem (CLT) can

be applied to determine asymptotic failure probability when we have large samples of size (Ott

1993). The following steps are required for that:

a. First, the hysteretic energy dissipation capacity needs to be evaluated based on experimental

studies,

b. Second, an analytical study is required to investigate the hysteretic energy demand,

c. Third, the asymptotic failure probability is determined based on the average hysteretic energy

demand ( ) and the average energy dissipation capacity ( ).

μEEC
μEED

σEEC
σEED

mEED
mEEC

SEED
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SEED
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SEEC

EED EEC

Fig. 1 Energy parameters for a SDOF system subjected to an EQGM 
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3. Hysteretic energy dissipation capacity of steel moment connections

Steel moment connections are part of the moment-resisting frames, which are frequently used as

lateral load resisting systems in many steel building structures. Cyclic behavior of a moment

connection is of particular interest in structural engineering. A steel moment connection should

dissipate the hysteretic energy induced by a severe EQGM to prevent partial or total collapse. The

hysteretic energy dissipation capacity of a steel moment connection (the area enclosed by the

hysteresis loop) system can be stated as (Uang and Bertero 1988)

 (1)

where Mp is the plastic moment of the section,  is the accumulated positive deformation,  is

the accumulated negative deformation, Zf is the plastic section modulus of the element’s flange, and

Fy is the yield strength of the element. 

EEC is difficult to obtain due to the fact that it is not a constant value and depends on the

deformation and/or loading path and on the type of connection (Shen and Akbas 1999, Uang and

Bertero 1988). Shen and Akbas (1999) investigated EEC of the predominantly used welded flange-

bolted web connections in steel moment-resisting frames. A summary of their results is given in

Fig. 2 that shows a variation of EEC from 9.74 × 106 Nmm to as high as 383.73 × 106 Nmm. In most

of the connections, EEC varies between 0-130 × 106 Nmm and it is not likely for a connection to

reach 400 × 106 of EEC, unless it is repaired or upgraded. The statistical values  and  are

found to be 101.625 × 106 Nmm and 85.72 × 106 Nmm, respectively. The beam sizes used in the

tests include small size beams (W410 and W460) as well as medium and large size beams (W530,

W610, W760, and W920). A total of 70 test results are investigated. For the small and medium

beam sizes, large variations in θpa were observed. The tests are carried out on typical exterior

moment connections subject to quasi-static loading. θpa differs from 0.08% to 132.23%, depending

on the connection type. Failure modes of the connections change from the fracture of the welded

beam top flange to column flange connection to the fracture through the column flange and into the

panel zone adjacent to the beam bottom flange.

EEC Mp θpa

+
θpa

 –
+( ) FyZf( )θpa= =

θpa

+
θpa

 –

mEEC
σEEC

Fig. 2 Frequency distribution of the experimental results on the hysteretic energy dissipation capacity 
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4. Hysteretic energy demand

To determine the hysteretic energy demand (EED) on SDOF systems, non-linear dynamic time

history analyses are carried out using DRAIN-2DX (Prakash et al. 1993). For this purpose, a set of

SDOF system having natural periods (T) in the range of 0.1 sec to 3.0 sec are designed at 0.1 sec

increments. The bilinear inelastic behaviour is assumed with no strain hardening. P-Δ effect is not

included in the analysis. Damping ratio (ζ ) is assumed to be 2% of critical damping. Stiffness

proportional damping is used in the study. 

The analyses are performed for three different strength indices: η = 0.1, 0.3, and 0.5. The strength

index (η) is defined as the ratio of the base shear value (Vy) at which the structure begins its

inelastic deformation to the seismic weight of the structure (W). A total of 27 representative

EQGMs from significant earthquakes in USA and Turkey (1940 El Centro 1949, Olympia 1952,

Taft 1966, Parkfield 1978 Miyagi 1994, Northridge Earthquake 1998, Ceyhan Earthquake 1999,

Izmit Earthquake) are used for the analyses. These EQGMs are recorded at different types of soils,

and have different peak ground accelerations, frequency contents, strong motion duration, distance

and magnitude. Normalized response spectra of these EQGMs are plotted in Fig. 3. The peak

ground accelerations (PGA) of the EQGMs are scaled to 0.3 g and 0.6 g to evaluate the hysteretic

energy demand of SDOF systems subject to moderate and severe EQGMs. 

The selected EQGMs are classified with respect to the predominant period of the EQGM record,

Tg. The EQ Group (EQG) I, II, and III consist of the EQGMs having 0 < Tg ≤ 0.7 sec, 0.7 sec < Tg ≤
1.0 sec, and Tg ≥ 1.0 sec, respectively. To have a better understanding of the hysteretic energy

demand on SDOF systems subject to the EQGMs in the EQG-I, -II, and -III, the SDOF systems are

also classified with respect to T. The SDOF systems having natural periods 0 < T < 0.7 sec (very

short to short period systems), 0.7 sec ≤ T ≤ 1.0 sec (medium period systems), and 1.0 < T < 2.0

sec (long to very long period systems) are referred to as Building Group (BG) I, II, and III,

respectively. Then, the hysteretic energy demand for each building group subject to the EQGMs in

each EQG is evaluated. The cell numbers for each possible case as well as the number of samples

Fig. 3 Normalized response spectra of the EQGMs
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in each cell are given in Table 1, i.e. Cell No. I-III refers to the SDOF systems in BG-III subject to

the EQGMs in EQG-I. The statistical values in each cell obtained from the non-linear dynamic time

history analyses are given in Table 2. 

When subject to moderate EQGMs (PGA = 0.3 g) in EQG-I and -III, the SDOF systems in BG-

III have the highest  for any η. However, the systems in BG-II have the highest  when

subject to EQGMs in EQG-II for η = 0.3 and 0.5. The systems in BG-II, in general, have the

mEED
mEED

Table 1 Classifying buildings and EQs and cell numbers

Building group I II III

EQ group

Sample no.

   

6 4 10

 I
0 < Tg ≤ 0.7 sec

10
I-I

(60)
I-II

(40)
I-III

(100)

II

0.7 sec < Tg ≤ 1.0 sec
8

II-I

(48)
II-II

(32)
II-III

(80)

III

Tg ≥ 1.0 sec
9

III-I

(54)
III-II

(36)
III-III

(90)

Note: Numbers in parenthesis refer to the number of samples in that cell.

 

 
Table 2 Statistical values of the EED /m with respect to the cells, (cm/sec)2

PGA
(g)

η

Building
group

EQ group

I II III

(×1000) (×1000) (×1000)

0.3 0.1 I 2.609 1.417 3.536 3.169 3.776 2.988

II 2.841 1.299 4.618 4.016 4.779 3.372

III 1.794 1.096 2.134 2.775 3.759 2.418

0.3 I 2.241 2.232 2.167 2.583 2.767 2.933

II 2.474 2.185 6.037 7.222 3.852 4.270

III 0.616 1.296 1.249 3.282 1.914 2.943

0.5 I 1.588 2.338 1.076 1.415 1.909 2.421

II 1.520 2.503 4.810 7.962 2.306 3.264

III 0.256 0.783 0.667 2.626 0.853 2.583

0.6 0.1 I 8.390 3.775 11.583 8.744 13.276 8.925

II 9.260 3.649 12.800 9.982 15.697 9.727

III 7.482 3.414 8.367 8.070 13.319 8.278

0.3 I 10.403 6.899 13.257 13.582 14.396 13.016

II 11.293 6.211 21.700 20.945 19.337 16.340

III 5.106 5.046 7.600 12.639 13.855 10.613

0.5 I 9.309 8.677 9.958 11.429 12.029 12.380

II 10.419 8.139 24.373 27.020 17.161 17.238

III 3.169 5.436 5.723 13.187 9.559 11.456
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ED
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ED

SE
ED

mE
ED
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highest , while the systems in BG-I have the smallest  for any η, i.e. the EED is not much

scattered and can be predicted more accurately for the buildings in this group.  is, in general,

the highest for η = 0.1, except for η = 0.3 in Cell II-II, and decreases dramatically as η gets higher.

However, the change in  is not that drastic and does not follow a uniform pattern of increasing

or decreasing. It looks stable for the systems in BG-III for any η. 

When subject to severe EQGMs (PGA = 0.6 g) in EQG-I and -III, the SDOF systems in BG-III

have the highest  for any η. However, the systems in BG-II have the highest  when

subject to EQGMs in EQG-II for η = 0.3 and 0.5. The systems in BG-II, in general, have the

highest , while the systems in BG-I have the smallest  for any η, i.e. the EED is also not

much scattered and can be predicted more accurately for the buildings in this group.  is, in

general, the highest for η = 0.3, except for Cell II-II. The most dramatic increase in  occurs in

BG-II subject to EQGMs in EQG-II. And the most dramatic decrease occurs in BG-I and II subject

to EQGMs in EQG-III. The change in  is also very drastic and it even exceeds  in almost

all the Cells for η = 0.5. 

In cases where the population mean of hysteretic energy demand ( ) is not known, one may

want to estimate it by constructing a (1-α)% confidence interval (or statistical interval) for EED.

Considering of making no distributional assumption, one can construct an approximate (1-α)%

confidence interval when having large sample size as (Wadsworth 1998)

(2)

where α is a small fraction and tα/2 is standard normal distribution value exceeded by an area of α/2.

Note that when the population standard deviation of hysteretic energy demand, , is not known,

it can be replaced by  if there is large enough sample size. In this case an approximate (1-α)%

confidence interval is

 (3)

When α is to be taken as 0.05 and 0.10, the corresponding tα/2 values are 1.96 and 1.65,

respectively. Thus, approximate 90% and 95% confidence intervals can be stated as

(4a)

 (4b)

Using Eqs. (4a) and (4b), one can easily obtain the 90% and 95% approximate confidence

intervals of hysteretic energy demand, EED, for an inelastic SDOF system.

To construct the approximate confidence intervals, a parametric analysis of non-linear systems is

done considering SDOF systems with 11 discrete fundamental natural periods (T) of 0.1, 0.2, 0.3,

0.5, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5 and 3.0 sec. For each period range, the sample mean ( ) and the

standard deviation ( ) of hysteretic energy demand are obtained using the same EQGMs through

non-linear dynamic time history analyses. The statistical values are given in Table 3. Among all the

structures, the very short and short period systems have the smallest coefficient of variation (COV)

(0.77-1.14) (Table 3), i.e. less variation in EED for these systems. COV is defined as the ratio of the
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sample standard deviation ( ) to the sample mean ( ). However, the very long period systems

have the highest COV (2.92-3.03), i.e. higher variation in EED for these systems. The highest  is

in the short and medium period systems as expected (Table 3). There is a dramatic reduction in

 for very short and very long period structures.

Figs. 4 and 5 are plotted to see the approximate confidence intervals in graphical form. The

highest approximate confidence intervals for EED always occur in the short- and medium-period

range, while the lowest approximate confidence intervals occur in the very-long period range

(Figs. 4 and 5). The approximate confidence interval decreases as η increases for PGA = 0.3 g,

while it increases for PGA = 0.6 g. This means when a structure subject to a severe EQGM, the

hysteretic energy input increases as the strength of the structure increases. However, when the

structure subject to a moderate level EQGM, the structure may not yield as the strength of the

system increases and this will decrease the hysteretic energy input to the structure.

 

5. Asymptotic failure probability based on hysteretic energy

If the underlying distribution of the hysteretic energy dissipation capacity and demand had known,

SEED
mEED

mEED

mEED

Table 3 Statistical values of EED/m

η = 0.1 η = 0.3 η = 0.5

PGA

(g)
T

(sec)

/ m
×1000

(cm/sec)2

/ m
×1000

(cm/sec)2
COV

/ m
×1000

(cm/sec)2

/ m
×1000

(cm/sec)2
COV

/ m
×1000

(cm/sec)2

/ m
×1000

(cm/sec)2
COV

0.3

0.1 1.42 1.19 0.84 0.10 0.15 1.50 0.03 0.07 2.33

0.2 2.43 1.95 0.80 0.77 0.68 0.89 0.33 0.38 1.14

0.3 3.15 2.56 0.81 2.13 2.02 0.95 1.30 1.69 1.30

0.5 3.68 3.00 0.81 3.53 2.77 0.79 2.40 2.25 0.94

0.6 3.69 3.14 0.85 3.74 3.20 0.86 2.60 2.92 1.12

0.8 3.64 3.22 0.89 3.62 4.43 1.22 2.23 3.25 1.46

1.0 3.55 3.22 0.91 3.40 5.25 1.54 2.01 4.74 2.36

1.5 2.10 2.14 1.02 0.64 1.23 1.92 0.08 0.14 1.75

2.0 1.91 2.16 1.13 0.50 1.27 2.52 0.36 1.10 3.03

2.5 1.14 1.58 1.39 0.20 0.51 2.55 0.20 0.51 2.55

3.0 1.00 1.57 1.56 0.23 0.62 2.72 0.34 0.75 2.24

0.6

0.1 6.64 5.32 0.80 3.35 2.62 0.78 0.74 0.75 1.01

0.2 9.03 6.97 0.77 7.80 6.42 0.82 3.99 3.44 0.86

0.3 9.99 8.05 0.81 11.92 9.83 0.82 9.42 8.59 0.91

0.5 11.40 8.61 0.76 15.78 13.26 0.84 14.71 11.58 0.79

0.6 11.38 8.69 0.76 15.81 14.16 0.90 15.68 13.61 0.87

0.8 11.40 9.01 0.79 15.65 15.63 1.00 15.42 18.19 1.18

1.0 11.13 8.77 0.79 14.54 16.07 1.11 14.46 19.88 1.38

1.5 8.74 9.56 1.09 6.70 8.80 1.31 3.84 6.21 1.62

2.0 7.41 6.56 0.89 6.25 9.61 1.54 3.24 7.29 2.25

2.5 5.92 6.14 1.04 2.74 4.73 1.73 1.78 5.62 3.16

3.0 5.21 6.08 1.17 2.63 5.96 2.26 0.66 1.97 2.97
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Fig. 4 Approximate confidence intervals (CI) of EED/m, PGA = 0.3 g

Fig. 5 Approximate confidence intervals (CI) of EED/m, PGA = 0.6 g
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the exact failure probabilities could have been calculated as (Fig. 6(a)), i.e. 

(5)

Since, making any underlying distribution assumption (especially normal distribution) is not

reasonable at all; asymptotic failure probability might be used instead that can be computed as 

(6)

where  and  are the sample average of hysteretic energy demand and capacity. Let safety

margin be defined as , then  is the probability density function of the safety

margin (Fig. 6(b)). Failure will occur when ( < 0) in this case. Thus, the asymptotic failure

probability is

(7)

Thus, the asymptotic distribution of  will be a standard normal distribution. Defining

 and , Eq. (7) becomes

(8)

where  means that the distribution function of  has an asymptotic standard

normal distribution function and  are the number of samples for EEC and EED, respectively.

In this case, the asymptotic failure probability in Eq. (8) is equal to the area on the left side of
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Fig. 6 Frequency distributions of EEC and EED and probability density function of z
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–( ) (shaded area in Fig. 6(b)). To investigate the Pf in terms of an over-energy capacity

as the ratio between the population mean values of hysteretic energy dissipation capacity and

hysteretic energy demand can be defined as follows

 (9)

And finally, Eq. (8) becomes 

 (10)

The failure probabilities can be obtained by using Eq. (10). Using Eq. (10) in the calculation of Pf

can provide valuable information about the change in Pf in cases where the systems are over-

designed. It is practically impossible to determine the population means and standard deviations of

the hysteretic energy demand and capacity. However,  can be estimated for instance by

using a (1-α)% confidence interval. A (1-α)% confidence interval for  is

 

(11)

Then, the extreme failure probabilities, Pf, lb and Pf, ub, can be determined from Eq. (11) by using

the boundary values of the confidence interval. The Pf, lb and Pf,ub should be evaluated as the worst

(left hand side of Eq. (11)) and best (right hand side of Eq. (11)) ones. In this study, the worst

failure probability (Pf, lb) is of particular interest. 

The Pf, lb is evaluated for the inelastic SDOF systems designed against moderate EQGMs (PGA =

0.3 g) and subject to the same level EQGM (Case 1), severe EQGMs (PGA = 0.6 g) but subject to

a moderate level EQGM (PGA = 0.3 g) (Case 2), and severe EQGMs (PGA = 0.6 g) and subject to

the same level EQGM (Case 3). α and the corresponding tα/2 value are taken as 0.05 and 1.96,

respectively. ΘE ratio is taken to be 1.25, 1.50, and 2.0. The results are given in Table 4 in which

PGA = 0.3 g, 0.6 g(a), and 0.6 g(b) correspond to Case 1, Case 2, and Case 3, respectively. Note

that for ΘE = 1, Pf is equal to 0.5 (or 50%) and for ΘE ≤ 1, Pf is theoretically greater than 0.5 but it

is assumed to be equal to 0.5, because it would not be rational to discuss the failure probability for

cases in which the hysteretic energy demand is higher than the hysteretic energy dissipation

capacity. Each case is evaluated for different strength ratios (η = 0.1, 0.3, and 0.5) with respect to

the cell numbers given in Table 1. 

In Cases 1 and 3 for ΘE = 1.25, the Pf, lb, is 50% indicating the failure for any η. For ΘE = 1.50, in

Case 1, the highest Pf, lb occurred in Cell II-II for η = 0.1 (34.2%), while the lowest occurred in Cell

III-III (10.2%). For the same case, the highest Pf, lb occurred in Cells I-III, II-II, and II-III for η =

0.3 (50%), while the lowest occurred in Cell I-I (26.1%). However, for η = 0.5, failure (Pf, lb =

50%) is observed in many of the cells and the lowest Pf, lb is %40.1 in Cell III-I. For ΘE=2.00, in

Case 1, the Pf, lb’s are 0% in all the cells for η = 0.1. For the same case, the highest Pf, lb occurred in

Cell II-III for η = 0.3 (16.9%), while the lowest occurred in Cell I-I (0.1%). For η = 0.5, the

highest Pf, lb occurred in Cell II-III (45.3%), while the lowest occurred in Cell III-I (1.1%). For ΘE =

1.50, in Case 3, the highest Pf, lb occurred in Cell II-II for η = 0.1 (29.0%), while the lowest

occurred in Cell I-III (7%). For the same case, the highest Pf, lb occurred in Cell II-III for η = 0.3
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(44.1%), while the lowest occurred in Cell III-III (12.8%). However, for η = 0.5, failure (Pf, lb =

50%) is observed in Cell II-III and the lowest Pf, lb is 23.5% in Cell I-I. For ΘE = 2.00, in Case 1,

the Pf, lb’s are 0% in all the cells for η = 0.1. For the same case, the highest Pf, lb occurred in Cell II-

III for η = 0.3 (1.8%), while the lowest occurred in Cells I-I, I-II, I-III, III-I, and III-III (0.0%). For

η = 0.5, the highest Pf, lb occurred in Cell II-III (10.2%), while the lowest occurred in Cells I-I and

I-II (0%). For Case 2, the Pf, lb is 0% in all the cells and for any ΘE and η indicating that there is

risk of failure for systems subject to a moderate EQGM if designed for a severe EQGM.

It was interesting to see that in all the cases, as η increases, the Pf increases as well. This result

might seem irrational because of the intuitive feeling that the failure probability should decrease for

systems having higher strength than for systems having lower strength. The reason for this result in

Table 4 The worst failure probabilities (Pf, lb)

PGA
Cell No
(Table 1)

ΘE = 1.25 ΘE = 1.50 ΘE = 2.0

η = 0.1 η = 0.3 η = 0.5 η = 0.1 η = 0.3 η = 0.5 η = 0.1 η = 0.3 η = 0.5

Pf, lb Pf, lb Pf, lb Pf, lb Pf, lb Pf, lb Pf, lb Pf, lb Pf, lb

0.3 g

I-I 0.500 0.500 0.500 0.106 0.261 0.428 0 0.001 0.016

I-II 0.500 0.500 0.500 0.110 0.296 0.500 0 0.002 0.107

I-III 0.500 0.500 0.500 0.091 0.500 0.500 0 0.038 0.193

II-I 0.500 0.500 0.500 0.263 0.399 0.452 0 0.011 0.021

II-II 0.500 0.500 0.500 0.342 0.500 0.500 0 0.039 0.167

II-III 0.500 0.500 0.500 0.315 0.500 0.500 0 0.169 0.453

III-I 0.500 0.500 0.500 0.197 0.311 0.401 0 0.003 0.011

III-II 0.500 0.500 0.500 0.226 0.437 0.500 0 0.018 0.069

III-III 0.500 0.500 0.500 0.102 0.368 0.500 0 0.007 0.221

0.6 g
(a)

I-I 0 0 0 0 0 0 0 0 0

I-II 0 0 0 0 0 0 0 0 0

I-III 0 0 0 0 0 0 0 0 0

II-I 0 0 0 0 0 0 0 0 0

II-II 0 0 0 0 0 0 0 0 0

II-III 0 0 0 0 0 0 0 0 0

III-I 0 0 0 0 0 0 0 0 0

III-II 0 0 0 0 0 0 0 0 0

III-III 0 0 0 0 0 0 0 0 0

0.6 g
(b)

I-I 0.500 0.500 0.500 0.086 0.139 0.235 0 0 0

I-II 0.500 0.500 0.500 0.093 0.142 0.245 0 0 0

I-III 0.500 0.500 0.500 0.070 0.172 0.398 0 0 0.011

II-I 0.500 0.500 0.500 0.201 0.323 0.379 0 0.004 0.009

II-II 0.500 0.500 0.500 0.290 0.395 0.470 0 0.010 0.025

II-III 0.500 0.500 0.500 0.197 0.441 0.500 0 0.018 0.102

III-I 0.500 0.500 0.500 0.153 0.243 0.297 0 0 0.003

III-II 0.500 0.500 0.500 0.184 0.300 0.385 0 0.003 0.009

III-III 0.500 0.500 0.500 0.098 0.128 0.253 0 0 0.001
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this study was due to the fact that as the structure’s strength increased, the COV increased as well

(Tables 2 and 3). It should also be noted that the failure probabilities given in Table 4 are very high

and not valid for engineering design, in which case they must be very small.

6. Conclusions and recommendations

For a given performance level, the variation of hysteretic energy in terms of probabilistic terms is

required to define the limiting value of hysteretic energy for a particular earthquake hazard level. In

this study, a methodology was developed for evaluating the failure probability of non-linear

systems. Then, this proposed methodology was applied on inelastic SDOF systems by carrying out

non-linear dynamic time history analyses .The failure probabilities for 95% degree of confidence

level corresponding to the worst failure probability were determined and the approximate

confidence intervals for hysteretic energy demand for 95% and 90% degree of confidence levels

were constructed. From the results obtained in this study, the following observations are reached:

a. As the capacity to demand ratio increases, the failure probability decreases dramatically. If this

ratio is too small, then the failure is inevitable. 

b. In general, the highest Pf occurs for systems subject to EQGMs having the predominant ground

motion period (Tg) between 0.7 sec-1.0 sec.

c. Pf decreases, in general, as the natural period of the systems gets far away from the

predominant ground motion period for both = 0.3 g and 0.6 g.

d. Failure probability is very sensitive to strength of the system and demand to capacity ratio.

e. As can be seen from the frequency distributon of Eec, the underlying distribution of energy

dissipation capacity is not normal. If it were, we could have obtained the exact failure

probabilities. That is why asympototic failure probaility is used in this paper. 

f. It is practically impossible to determine a unique Pf for a structure. The Pf for a structure can

only be evaluated for a lower and upper bound range.

g. The failure probability is generally higher for systems designed against moderate level EQGMs

than for systems designed against severe EQGMs.

Based on the results, the following recommendations are proposed.

a. Statistical values for the hysteretic energy dissipation capacity of steel moment connections are

assumed to be independent of the strength of the system, i.e. the same statistical values are

taken for any η based on the test results. The validity of this assumption needs to be further

investigated both experimentally and analytically.

b. It is obvious that Pf will change dramatically in MDOF systems due to the effect of earthquake

redundancy degree of the system. That is why Pf in MDOF systems with different structural

configurations should be investigated considering the effect of redundancy (for example, multi-

varied normal distribution) and the results should be compared with that of SDOF systems.

c. This study has been carried on SDOF systems with typical steel moment connections, i.e. the

results are only valid for the systems with these type of connections. Using the same principles,

the same study can be repeated for the SDOF systems with a typical R/C moment connection.

d. Approximate confidence intervals can only give engineers a general idea about the energy input

to the structure. To be able to develop an energy-based earthquake-resistant design method, not

only the hysteretic energy demand should be known, but also the hysteretic energy dissipation

capacities of the structure and structural elements.

u··g max,
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