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Abstract. This paper outlines the development of a computational model in order to analyze the
dynamic behaviour of coupled fluid-structure systems such as a) liquid containers, b) a set of parallel or
radial plates. In this work a hybrid fluid-solid element is developed, capable of simulating both membrane
and bending effects of the plate. The structural mass and stiffness matrices are determined using exact
integration of governing equations which are derived using a combination of classical plate theory and a
finite element approach. The Bernoulli equation and velocity potential function are used to describe the
liquid pressure applied on the solid-fluid element. An impermeability condition assures a permanent
contact at the fluid-structure interface. Applications of this model are presented for both parallel and radial
plates as well as fluid-filled rectangular reservoir. The effect of physical parameters on the dynamic
behaviour of a coupled fluid-structure system is investigated. The results obtained using the presented
approach for dynamic characteristics such as natural frequency are in agreement to those calculated using
other theories and experiments.
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1. Introduction

Plates and shells constitute important components of complex structures for modern applications

in fields such as construction engineering, aerospace and aircraft structures, nuclear power plant
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components and naval structures. Structural systems composed of parallel plates, rectangular

reservoirs as well as turbine hubs can be considered as shell-type structures. Often these structures

work in interaction with either a stationary or flowing fluid, which has a considerable influence on

their dynamic responses. The first works in the fluid-structure interaction domain were developed in

the nineteenth century by Rayleigh (1945) and Lamb (1945). These works constitute the

fundamental theory of fluid-filled cylindrical and spherical shells. Later, Berry and Reissner (1958)

studied the behaviour of a fluid-filled cylindrical shell under pressure. Vibration analysis of partially

fluid-filled cylindrical shells was investigated by Lindholm et al. (1962). Lakis and Paidoussis

(1971) developed a circumferential hybrid element based on classic shell theory for dynamic

analysis of a partially fluid-filled cylindrical shell. The vibration responses of an orthotropic

cylindrical shell filled with an incompressible fluid were calculated by Jain (1974). Amabili and

Dalpiaz (1995) developed an analytical approach to model a horizontal cylindrical shell, partially or

fully filled with fluid. Selmane and Lakis (1997) developed a longitudinal hybrid element for

dynamic analysis of open and closed horizontal cylindrical shells which are either partially or fully

filled with liquid. 

Circular and rectangular plates in interaction with fluid were the subject of a large number of

research works since the beginning of the twentieth century. The effects of boundary conditions, the

free surface of the fluid and fluid level as well as the membrane effect have been studied using

experiments and computational approaches in Lamb (1920), Lindholm et al. (1965), Fu and Price

(1987), Kwak (1994, 1997), Amabili and Kwak (1999) and Kwak and Han (2000). A detailed

bibliographic survey on plate dynamic behaviour in interaction with a stationary fluid is outlined in

Kerboua et al. (2005).

Jeong et al. (1998) analytically studied the dynamic behaviour of two identical circular plates

coupled with the movement of an ideal incompressible fluid using the Rayleigh method. Precise

results were obtained for the case of in-phase modes whereas results for out-of-phase modes were

unsatisfactory except for mode m = 0. In order to improve the out-of-phase lateral vibration

frequencies, Jeong (2003) applied Fourier-Bessel’s finite set and Rayleigh-Ritz’s approach to re-

analyze his former model and this time obtained very satisfactory results. Jeong et al. (2004) studied

the case of two identical rectangular plates coupled with the movement of fluid. Kim and Lee

(1997) analyzed the hydro-elastic behaviour of an open rectangular reservoir completely filled with

water based on the MSC/NASTRAN DMAP’s formulation. Only the first two frequencies for the

in-phase and out-of-phase modes are analytically calculated. Bauer (1981) studied the hydro-elastic

behaviour of a completely or partially fluid-filled rectangular reservoir. This container is composed

of rigid lateral walls and an elastic plate that forms its base. Cheung and Zhou (2000) calculated the

natural frequencies of a plate forming the base of an open rectangular reservoir completely filled

with liquid. The fluid-free surface effect was not considered in this calculation. The case of a

circular plate composing the base of a rigid cylindrical tank filled with fluid was studied by Cheung

and Zhou (2002) by considering the fluid free surface effect. The velocity potential function was

used to model the fluid media and the Galerkin approach was adopted to calculate the natural

frequencies of the coupled system. Santanu and Sinhamahapatra (2005) studied the coupled slosh

dynamics of fluid-filled containers. They calculated natural frequencies of sloshing and also studied

the forced vibration responses of the fluid-structure system. A semi analytical method was

developed by Ding and Weiqing (2007) to study the three dimensional vibration of flexible

rectangular tanks partially filled with liquid. The vibrating modes of liquid-tank system are divided

to various distinct categories each of these categories is separately investigated. The bulging and
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sloshing mode were considered.

The objective of this work is to develop a computational model based on a fluid-plate element to

study the dynamic responses of fluid-structure systems, i.e., a set of parallel or radial plates which

could represent turbine blades that are in contact with an incompressible and non-viscous fluid. This

new element also permits calculation of the high and low frequencies of the system with precision

and can take into account any combination of boundary conditions without changing the

displacement field. This hybrid element is applied to simulate a number of industrial structures such

as a set of parallel or radial plates in vacuum or submerged in fluids.

2. Structural modeling

2.1 Mass and stiffness matrices of a plate in local co-ordinates

A typical finite element in its local coordinates is shown in Fig. 1. Each element is presented by

four nodes (i, j, k, l) and five degrees of freedom at each node consisting of three displacements and

two rotations. The in-plane displacement functions are represented by bilinear polynomials and the

out-of-plane displacement functions are derived from the plate’s equation of equilibrium (details are

presented in references Kerboua et al. 2005). The in-plane displacement field is defined as

(1a)

(1b)

where U and V are the displacement components of the reference surface in X and Y directions,

respectively. A and B are the plate dimensions in X and Y directions. The transversal displacement

component of the reference surface is defined as
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Fig. 1 Finite element geometry and nodal displacement vector in local co-ordinates X, Y, Z 
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where W is the out-of-plane displacement component, ω is the natural frequency of plate in rad/sec,

i is the complex number (i2 = −1), and Ci are unknown constants. The transverse displacement W

defined in Eq. (2) can be developed in Taylor’s series as (Charbonneau and Lakis 2001)

(3)

Finally, components of the displacement field are defined in the following form

 (4)

where [R] is a matrix of order (3 × 20) given in Eq. (A.1) of Appendix and {C} is the unknown

constants’ vector. These constants can be defined as a function of twenty degrees of freedom for the

chosen element. Then, substituting the components of the constant vector into Eq. (4) leads to the

following relationship

 (5)

where  is a matrix of order (20 × 20) defined in Eq. (A.3) of Appendix and  is the

displacement vector of the finite element given in Eq. (A.4) of Appendix. Strain-displacement

relations for the rectangular plates are given as (Sanders 1959)

 (6)

Introducing the displacement components defined by Eq. (5) into the deformation vector, one

obtains the following equation that describes the deformation vector as a function of nodal

displacements. 

 (7)

where  is a matrix of order (6 × 20) given in Eq. (A.5) of Appendix. The stress vector is

defined by the following relation

 (8)

where  is the elasticity matrix (6 × 6) whose components are given in Eq. (A.6) of Appendix.

Using Eq. (5) to Eq. (8), the stiffness and mass matrices in the local co-ordinates of developed

element are expressed by the following equations

 (9a)

 (9b)

where ρs is the structural density, h is the plate thickness and xe and ye are the element dimensions

in X and Y directions, respectively (see Fig. 1).
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2.2 Transformation matrix

As shown in Fig. 2, the finite element is defined in its local co-ordinates, (X, Y, Z), which do not

coincide with the global axes of the structure system . Therefore, the local mass and

stiffness matrices must be transformed to the global system before assembling into the global

matrices that will describe the dynamic equations of motion. The displacement vector at each node

in local co-ordinates may be defined as 

 (10)

The nodal displacement relationships between the local and global co-ordinates are expressed by

the following equation

(11)

where [Ti] is a transformation matrix and  is the nodal displacement vector in global co-

ordinates whose components are given as

 (12)

With application of Eq. (11) for all four nodes (i, j, k, l), one can obtain the following relation that

describes the displacement components of each element in the global system.
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Fig. 2 Local and global co-ordinate systems of the structure
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 (13)

where  and  are the displacement vectors of each element in local and global co-ordinates,

respectively. Consequently, the stiffness and mass matrices of each element in global co-ordinates

are determined by the following equations

(14)

where  and  are the stiffness and mass matrices of the element, calculated using Eq. (9),

and  et  are the corresponding matrices in global co-ordinates.

3. Fluid modeling 

The fluid pressure applied on the structure can be expressed as a function of acceleration of the

system (Lakis and Paidoussis 1971). The effects of a non-flowing fluid can be introduced by an

added mass that increases the inertia of the coupled system (see Fig. 3). The set of equations of

motion expressing the dynamic behaviour of a coupled fluid-structure system is defined by the

following relation

 (15)

where  and  are, respectively, the mass and stiffness matrices of the structure and  is

the added mass matrix representing the inertia force effect due to the presence of the fluid.  is

the global displacement vector. The fluid-structure element in local coordinates is shown in Fig. 3.

The boundary condition assures permanent contact at the fluid-structure interface. To develop the
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Fig. 3 Solid-fluid finite element in local co-ordinates X, Y, Z with free surface at (Z = h1)
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governing dynamic equations in the case of fluid-structure interaction, one assumes that the fluid is

incompressible, non-viscous and irrotational. Therefore, the velocity potential function is used to

determine the fluid force relations. Based on the aforementioned hypothesis the potential function,

which satisfies the Laplace equation, is expressed in the Cartesian coordinate system as

 (16)

where φ is the velocity potential function. Using Bernoulli’s equation, the fluid pressure at the solid-

fluid interface may be expressed as

(17)

Using the mathematical technique of separation of variables, the velocity potential function is

defined by the following relationship

 (18)

At the fluid-structure interface, the impermeability conditions which assure permanent contact

between the fluid and the structure are defined by 

 (19)

where W is the transverse displacement of the plate in local co-ordinates and φ is the potential

function. Using Eqs. (18) and (19), one can express the potential function as follows

 (20)

To determine the potential function, one has to calculate the function F(z). Substituting Eq. (20)

into Eq. (16), one obtains the following differential equation 
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where A and B are plate lengths in the X and Y directions, respectively. The function F(z) is

obtained by solving the differential Eq. (21). The general solution of F(z) is defined as
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The potential function ‘φ ’ must be verified for given boundary conditions at the fluid-structure

interface (Z = 0) and the fluid extremity surfaces (Z = h1 or Z = h2) as well. The fluid boundary

conditions are introduced separately for each element, which allows us to investigate the dynamic

behaviour of totally or partially fluid-filled structures as well as submerged structures. The coupled

fluid-structure system can take various forms.

3.1 Solid-fluid model bounded by free surface

Assuming that perturbations due to free surface motion of the fluid are insignificant, the following

condition may be applied at the fluid free surface to the velocity potential (See Fig. 3)

 (24)

where ‘g’ is acceleration due to gravity. Using Eqs. (19) and (24) we can calculate the constants A1

and A2 corresponding to this last boundary condition. Substituting these constants in Eq. (23) we

obtain the following expression for the potential function

 (25)

where

 (26)

It is proven (Kerboua et al. 2005) that the coefficient C tends asymptotically toward (−1). This

approximation is made in order to avoid non-linear eigenvalue problem. The corresponding dynamic

pressure at the fluid-structure interface becomes
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Fig. 4 Solid-fluid finite element, in a local co-ordinate X, Y, Z, bounded by a rigid wall
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3.2 Plate-fluid model bounded by a rigid wall

The boundary condition at the upper surface of the fluid represented in Fig. 4 was studied by

Lamb (1920) and referred to as the null-frequency condition. This rigid wall boundary condition is

expressed as

 (28)

Similarly, by introducing Eq. (23) into relations (19) and (28), we obtain the following expression

for the velocity potential as follows

(29)

The dynamic pressure at the fluid-structure interface for this case is determined as

(30)

3.3 Fluid-solid element for the parallel/and radial plates

In case of a rectangular reservoir, (see Fig. 5) as well as in case of parallel plates (Figs. 6 and 7)

and radial plates (Fig. 8), the fluid acts on the inner surface of elastic walls. These components can

vibrate according to in-phase or out-of-phase modes with each other. The impermeability condition

for each element of this fluid-structure system remains unchanged, while the boundary conditions

vary in terms of vibrational modes. Both cases are discussed in the following subsections.

3.3.1 In-phase vibrational mode of parallel plates

In the case of in-phase vibration of two elastic walls shown in Fig. 5, the boundary condition at

fluid level Z = h1 is defined by the following relation.
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Fig. 5 Fluid-filled rectangular reservoir with vertical rigid walls
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Substituting Eq. (23) simultaneously into Eqs. (19) and (31), one obtains the constants A1 and A2.

Introducing these constants into Eq. (23), one can express the following velocity potential function

 (32)

Substituting relation (32) into Eq. (17), the dynamic pressure is expressed as

(33)

When the two walls are radials (see Fig. 8), the term on the right-hand side of Eq. (31) to Eq. (33)

must be multiplied by a factor of cos(α), where α is the angle between two adjacent walls.

3.3.2 Out-of-phase vibrational modes of parallel plates 

In the case of out-of-plane vibrational modes, the boundary condition at the fluid level Z = h1 is

given by 
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Substituting Eq. (23) into Eqs. (19) and (34), the constants A1 and A2 can be calculated.

Introducing these constants into Eq. (23) results in the following expression for the velocity

potential function

 (35)

The fluid pressure at the fluid-structure interface is determined by substitution of the potential

function (35) into Eq. (17)
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4. Calculation of fluid-induced force

The fluid-induced force vector in the local coordinate system can be expressed as
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 (38)

where Zfi (i = 1, 4), depends on the fluid boundary conditions (see Eqs. (27), (30), (33) and (36))

and [Rf] is matrix of order (3 × 20) given in Eq. (A.2) of Appendix. Replacing the pressure

expression (38) into Eq. (37), the force vector for each element is given by

 (39)

where dA is an elementary surface and  is the fluid mass matrix of order (20 × 20)

corresponding to one finite element in local co-ordinate system.

The pressure expressed by Eqs. (27), (30), (33) and (36) and the velocity potential expressed by

Eqs. (25), (29), (32) and (35) describe the effect of the column of fluid (either above or below) on a

single finite element of the elastic structure. The fluid effect on the entire structure is described by

the global system of equations by introducing the global matrix of added mass generated by the

fluid pressure. This global matrix is created by assembling the added mass matrices of each

element.

For X and Y in the finite element domain, the potential and pressure at the interface are coupled

by the transverse movement of the plate W(x, y, t) and its derivatives. Eq. (20) describes the

function in terms of this transverse movement of the structure W(x, y, t) which itself varies as a

function of structure geometry and time. Therefore, the movement of the liquid at any point on the

interface (including the boundaries X and Y) is intimately linked to the movement of the edges of

the elastic structure. The boundary conditions in X and Y are those of the transverse movement of

the plate; W(x, y, t). X and Y are limited at the medium of the interaction fluid-solid because the

concept of the method eliminates the need for an analytical solution for the integrity of the fluid-

solid medium.

5. Calculation of [Ks], [Ms] and [Mf] and eigenvalue problem

The structure is subdivided into a set of quadrilateral elements. The stiffness and mass (solid and

fluid) matrices are determined for each element in its local co-ordinates. Then, they are transferred

to the global system of co-ordinates in order to assemble the global matrices defined in Eq. (15).

We will assume that

 (40)

where  is the global displacement vector, ω is the natural frequency of system (rad/sec); and

 is the global displacement amplitude vector for each mode. Substituting Eq. (40) into

Eq. (15) leads to the following eigenvalue problem

 (41)
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6. Results and discussions

Many works have been carried out to study the axisymetric structures, such as cylindrical shells

and circular plates. Research works dealing with hydro-elastic analysis of structures composed of

plates and shells components are rare. The developed fluid-solid element in this work is used to

study the hydro-elastic behaviour of:

a. Two identical parallel plates in interaction with a bounded fluid 

b. A set of plates fixed at a rigid wall

c. A set of plates used in a heat exchanger 

d. A set of radial plates

e. A set of plates fixed at an elastic wall

a. The first structure is a fluid-filled rectangular reservoir that was studied by Jeong et al. (2004).

The vessel dimensions are given in Fig. 5 and the plate thickness is h = 2 mm. The physical

properties of the material are as follows: Young’s modulus = 69 GPa, Poisson’s ratio = 0.3 and

mass density = 2700 kg/m3. Water is used as the fluid in contact with plates, having a density of

1000 kg/m3. The lateral walls of the reservoir are rigid. The top and base plates are elastic and fixed

to the lateral walls. The elastic plates vibrate in the presence of fluid in both in-phase and out-of-

phase modes. Some vibration modes are not permitted in order to not violate the mass conservation

of incompressible fluid (Jeong et al. 2004). Table 1 lists natural frequencies for in-phase modes of

the two plates coupled with the movement of an incompressible fluid. The results presented in Table 1,

show an excellent agreement between our presented theory and that of Jeong et al. (2004). The

natural frequencies of the two parallel plates coupled with an incompressible fluid and vibrating in

out-of-phase mode (0,1) are listed in Table 2. Only the frequency corresponding to the mode (0,1) is

presented since it preserves the mass conservation that was also met by Jeong et al. (1998) in the

analysis of two circular plates coupled with fluid. Regarding the dynamic analysis of two identical

rectangular plates in interaction with fluid as studied by Jeong et al. (2004), the displacement

function for the in-phase and out-of-phase modes is not the same. Another displacement function is

adopted so that the mode shape compensates for the change of fluid volume in the Z direction. To

Table 1 In-phase vibrational frequencies (Hz) of a fluid-filled reservoir 

Mode number (n, m) Jeong et al. (2004) Present theory

(0,0) 113.3 112.9

(0,1) 192.5 188.7

(1,0) 272.4 265.6

(0,2) 326.5 314.0

(1,1) 348.4 332.9

(1,2) 479.6 447.7

(0,3) 516.1 485.6

(2,0) 525.9 498.2

Table 2 Out-of-phase vibration frequencies (Hz) of a fluid-filled reservoir

Mode number (n, m) Jeong et al. (2004) Present theory

(0,1) 61.2 66.5
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calculate the other modes one must therefore impose some conditions in the displacement field such

that the assumption for incompressible fluid is respected. This problem arises in closed structures

completely filled with an incompressible fluid.

b. Some structures are composed of a set of identical parallel or radial plates that are in

interaction with the fluid. An example is MTR-type flat-plate fuel elements in nuclear reactors. If

the height of fluid between the plates is relatively low, the fluid transports the kinetic energy from

one plate to another. Therefore, one studies the case of three parallel plates fixed to a rigid wall as

shown in Fig. 6. The material properties are as follows: Young’s modulus = 69 GPa, Poisson’s ratio

= 0.3 and mass density = 2700 kg/m3. When the system is submerged in a large reservoir, every

plate experiences a different pressure at its two sides caused by the fluid on both top and bottom of

the plate. In addition, the plates vibrate according to in-phase or out-of-phase modes. For each

mode, there is a distinct fluid pressure that is presented in Table 3. Among several possible

combinations, one distinguishes three modes of vibration of the system. The remaining cases are

only repetitions of one of the three modes. Table 4 presents vibration frequencies according to the

three distinct modes of plate. From these results, we note that the dynamic behaviour of this system

can be studied by considering only one internal plate that vibrates according to out-of-phase mode

relatively to the two others since this mode provides the lowest frequency.

c. Assembled parallel plates are often used in different industrial sectors. Fig. 7 shows a part of a

structural system composed of a set of thin plates, each with two parallel sides fixed to lateral rigid

Fig. 6 A set of parallel plates fixed at a rigid wall and totally submerged in fluid

Table 3 Number of equations for expressing the pressure corresponding to each vibration mode of submerged
plates (see Fig. 6)

Vibrational mode

Plate 1 Plate 2 Plate 3

Upper 
pressure

Lower 
pressure

Upper 
pressure

Lower 
pressure

Upper 
pressure

Lower 
pressure

Three plates vibrating in-phase (33) (30) (33) (33) (27) (33)

Plate (2) is out-of-phase with plates (1) 
and (3)

(36) (30) (36) (36) (27) (36)

Plate (2) is out-of-phase with plate (3) 
and is in-phase with plate (1)

(33) (30) (36) (33) (27) (36)
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walls. All plates have the same properties and they are distributed uniformly. Guo and Paidoussis

(2000) studied an identical system submitted to a flowing fluid in channels formed by rectangular

plates. They only considered the out-of-phase vibration modes since they are most problematic.

Here, it is assumed that the fluid velocity is null and only the inertia force due to the fluid is taken

into account. A dimensionless frequency parameter is defined by the following expression

(42)

where K is the bending rigidity, ω is the natural frequency in rad/sec,  is the dimensionless

natural frequency. ‘hp’, ‘b’, and ‘l’ are represented in Fig. 7. To put the results in the non-

dimensional form, the following parameters are defined

(43)

where η is the mass ratio. ζ and ψ are geometric ratios. 

ω 1/b( )2 K/ ρshp( )ω=

ω

η ρf b/ρsh 1; ζ l/b 0.5; ψ hp/b 0.05= = = = = =

Table 4 Vibration frequencies (Hz) of a set of three plates fixed to rigid wall (see Fig. 6)

Mode number 
Three submerged plates 

vibrating in-phase
Plate (2) is out-of-phase 
with plates (1) and (3)

Plate (2) is out-of-phase with plate 
(3) and is in-phase with plate (1)

1 12.3 9.7 10.5

2 12.3 10.5 11.1

3 13.4 15.7 12.3

4 30.1 23.8 25.7

5 30.1 25.7 27.3

6 32.8 38.5 30.1

7 75.9 60.0 64.6

8 75.9 64.6 68.7

9 82.7 75.7 75.9

10 95.7 81.5 81.5

Fig. 7 A set of parallel plates with two parallel sides fixed to lateral rigid walls η = ρf b/ρsh = 1, ζ = l/b = 0.5;
ψ = hp/b = 0.05
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The structure is discretized into a number of quadrilateral elements. All nodal degrees of freedom

belonging to the rigid walls are eliminated. The pressure applied on the middle plate is the sum of

the calculated pressure acting on the upper and lower surfaces of the plate. Because of geometrical

symmetry the pressure applied on the top and bottom plates is the same. It is for this reason that

analysis of a set of plates reverts to the study of only one plate subjected to the calculated pressure

on the side walls in an out-of-phase vibration mode. Table 5 lists the non-dimensional natural

frequencies of the fluid-structure model for the case of non-flowing fluid along with the

corresponding results calculated by Guo and Paidoussis (2000). 

d. the developed solid-fluid model was used to study the dynamic behaviour of a system

composed of several radial plates having one side of each plate welded to a rigid axis as shown in

Fig. 8. The angle between each pair of plates is 45 degrees. All plates have the same geometrical

dimensions and mechanical properties which are given as follows: 

B = 0.655 m, A = 0.2016 m, h = 9.36 mm, E = 207 GPa, ρs = 7850 kg/m3 and ν = 0.3

In this structural model, the fluid level on the top and bottom of the plates varies from one

element to another. Considering the axial symmetry of the system and the uniform distribution of

the plates in the circumferential direction, dynamic analysis of such a system comes back to study

only one plate that vibrates according to three different modes in relation with its neighbouring

plates (Guo and Paidoussis 2000). The fluid pressures applied on plate 2, corresponding to each

mode of vibration are listed in Table 6. Natural frequencies of this structure without fluid and when

totally submerged in a large water reservoir according to the three distinct modes are enumerated in

Table 7. 

It is important to note that the dynamic analysis of a set of parallel or radial plates can only be

reduced to the dynamic analysis of one plate when all plates have the same dimensions and the

Table 5 Non-dimensional out-of-phase vibration frequencies (see Fig. 7)

Mode number Present theory Guo and Paidoussis (2000)

1 16.3 16.6

2 26.5 32.5

3 45.0 48.5

Fig. 8 A structural system composed of n radial plates welded to a common rigid axis
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Table 6 Number of equations for expressing the pressure corresponding to each vibration 
mode of radial submerged plates (see Fig. 8)

Vibrational mode
Plate 2

Upper pressure Lower pressure

Three plates vibrating in-phase Eq. (33) cosα Eq. (33) cosα

Plate (2) is out-of-phase with plates 
(1) and (3)

Eq. (36) cosα Eq. (36) cosα

Plate (2) is out-of-phase with plate (3) 
and is in-phase with plate (1)

Eq. (36) cosα Eq. (33) cosα

Table 7 Vibration frequencies (Hz) of radial plates (see Fig. 8)

Mode number In air 

In fluid

Three plates vibrating 
in-phase

Plate (2) is out-of-phase 
with plates (1) and (3)

Plate (2) is out-of-phase 
with plate (3) and is

 in-phase with plate (1)

1 199.1 140.0 116.4 126.5

2 242.6 170.6 141.6 154.0

3 361.9 255.1 210.7 229.5

4 558.1 394.3 323.6 353.4

5 851.5 602.6 491.9 538.4

6 1243.6 885.1 683.0 773.0

7 1251.1 917.6 699.1 780.6

8 1311.6 957.9 732.2 815.0

9 1440.9 1056.7 785.3 889.3

10 1679.4 1233.8 911.2 1034.2

Table 8 Vibration frequencies (Hz) of a set of three plates fixed to elastic wall

Mode number
Present theory 

(in vacuum)
ANSYS

(in vacuum )
Three submerged plates 

vibrating in-phase 

1 28,71 28,71 7,58

2 37,73 37,739 10.49

3 ND 52,6 ND

4 83,35 84,98 29.59

5 97,74 93,29 54.06

6 105,3 105,26 57.58

7 ND 134 ND

8 147 150 59.6

9 174,7 174,4 68.09

10 186 ND 74.25

11 246,4 245,31 92.17

12 290,7 289,21 92.93

13 317,8 316,09 93.38

14 357,4 358,94 100

15 358,8 360,57 104.7



Computational modeling of coupled fluid-structure systems with applications 107

same mechanical properties. In addition, the fluid height has to be even between every pair of plates

and the axis (Fig. 8) or the wall (Fig. 6) that attaches all plates together must be rigid.

e. The dynamic behaviour of the system represented in Fig. 6 is studied while assuming that the

vertical wall plate is elastic and no displacement condition is imposed (free-free). In Table 8, we

have the natural frequencies of the system calculated without fluid by our program and by

ANSYS software as well as the frequencies corresponding to in-phase mode vibration of the

three plates when the system is completely submerged in a reservoir of infinite size. We note that

the frequencies are not repeated, which is contrary to the case of plates clamped to a rigid wall

(see Fig. 6), since this repetition is due to the effects of the boundary conditions. In this case, it

is necessary to study all the possible combinations of in-phase and out-of-phase modes of the

plates. 

When the system composed of parallel plates fixed to elastic or rigid wall (see Fig. 6) is

submerged in a large reservoir, the fluid height between the plates is a very important parameter.

Resonance frequency variation as a function of fluid height to plate length ratio (h1/Length) for the

structural systems is plotted in Fig. 9 when the three plates vibrate according to in-phase and out-of-

phase modes. We note that when we increase the fluid-height between the plates the in-phase

frequency decreases whereas the out-of-phase frequency increases. This behaviour was underlined

by Jeong 2003 in the case of two circular plates and that of two rectangular plates (Jeong et al.

2004) in interaction with the fluid. As shown in Fig. 9, the fluid height at which there is no

difference between the in-phase and out-of-phase frequencies is equal to the plate length.

7. Conclusions 

A hybrid element is developed for dynamic analysis of coupled fluid-structure systems such as

parallel plate assemblies or radial plates. The structure may be empty, partially or completely filled

with fluid or submerged in a liquid. The structural mass and stiffness matrices are determined by

exact analytical integration. The in-plane and out-of-plane displacement components are modelled

using bilinear polynomials and exponential functions, respectively. The velocity potential and

Fig. 9 In-phase and out-of-phase vibration frequencies (Hz) of a set of parallel plates as a function of fluid
level to plate length ratio
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Bernoulli’s equation are adopted to express the fluid pressure acting on the structure. The product of

the pressure expression and the developed structural shape function is integrated over the structure-

fluid interface to assess the virtual added mass due to the fluid. 

It is noted that increasing the fluid height results in a reduction of frequencies for in-phase

modes and an increase of frequencies for out-of-phase modes. When the height of the fluid is

equal to the length of the plate, there is no difference between the in-phase and out-of-phase

modes. This means that the fluid transports the kinetic energy from one plate to another along a

limited distance. 

While calculating frequencies and vibration modes of several structures having different

geometries, it is proven that the developed computational approach is a powerful and reliable tool

for dynamic analysis of a variety of plate and shell structures. While comparing our results with

those of other researchers (either analytical or experimental works) we can conclude that the

developed fluid-structure element generates satisfactory results. This hybrid element can be applied

for vibration analysis of non-uniform structures supported by any combination of various boundary

conditions. 

The important result of this work was the confirmation of the applicability of this element to

represent the hydro-elastic behaviour of different structures. The next step is to apply this element to

study the effect of other aspects such as material and structural discontinuity, and structural

curvature on the dynamic responses of coupled fluid-structure systems.
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Displacement vector 

(A.4)

Matrix Q (6 × 20)
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Matrix P (6 × 6)
In the case of isotropic material the non vanishing terms of the elasticity matrix are

(A.6)
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