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The unsymmetric finite element formulation and 
variational incorrectness*

Discussion by S. Rajendran†

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 

Singapore 639798

The above paper by Prathap et al. presents an interesting investigation into the recently introduced

unsymmetric formulation (Rajendran and Liew 2003, Rajendran and Subramanian 2004, Ooi et al.

2004, Prathap and Mukherjee 2004, Liew et al. 2006, Prathap et al. 2006). The paper concludes that

although the elements based on this formulation work surprisingly well under mesh distortions, the

formulation is “variationally incorrect”. This discussion is aimed at revisiting this conclusion. This

author is of opinion that the unsymmetric formulation strictly conforms to the principle of virtual

work and hence must be variationally correct. On the other hand, the numerical examples reported

by Prathap et al. do show clearly that the unsymmetric formulation does not give the best-fit

approximation to the exact solution, and hence it seems correct to conclude that the unsymmetric

formulation must be variationally incorrect. Why is this contraction? Is the formulation then

variationally correct or incorrect?

Prathap et al. point out three inter-related aspects of a finite element formulation:

(i) Variational correctness (i.e., existence of a variational basis for the formulation).

(ii) Orthogonality condition (satisfaction of an orthogonality equation that arises from the

projection theorem), and

(iii) Best approximation property (i.e., the ability to give best-fit solution in the trial space).

In the symmetric (Galerkin) formulations, the three aspects are closely inter-related and refer to

the same idea. They mutually imply one another (see Fig. 1(a)). As a result, the variational

correctness of a given symmetric formulation can be assessed simply by checking if the given

formulation satisfies the best-approximation property. However, this approach to assess variational

correctness does not seem appropriate for unsymmetric formulation. Prathap et al., however, have

used the same approach for the assessment of unsymmetric formulation. 

One way to resolve the apparent contradiction is to disassociate the best-fit property from

variational correctness, and view variational correctness and best-fit property as two independent

aspects of an unsymmetric formulation. We may still associate the property of variational

correctness with orthogonality condition (see Fig. 1(b)) because the orthogonality equation itself

arises from the virtual work principle. Therefore, for a given unsymmetric formulation, the
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variational correctness may have to be assessed by checking if the formulation satisfies

orthogonality condition. Thus, we have to conclude that the present unsymmetric formulation

(Rajendran and Liew 2003, Rajendran and Subramanian 2004, Ooi et al. 2004, Prathap and

Mukherjee 2004, Liew et al. 2006, Prathap et al. 2006) is variationally correct because we can

show that it satisfies the orthogonality condition. And at the same time, we have to acknowledge

that it does not have best-fit approximation property.

1. Orthogonality conditions for different formulations

The specific form of orthogonality condition applicable to the PP, MM and PM formulations

(Rajendran and Subramanian 2004) depends on the choice of test and trial functions in the

formulation concerned:

 (PP element)  (2)

 (MM element) (3)

 (PM element) (4)

where ,  and  are the solutions given PP, MM and PM formulations, and

 and  are the weight (test) functions. P is the parametric space defined using the

parametric shape functions  as the basis functions and M is the metric space defined

using the metric shape functions  as the basis functions. 

For the one-element bar problem of Prathap et al., the conditions (2)-(4) can be easily verified to

be satisfied by the PP, MM and PM formulations, respectively, using a computer algebra system

(like Mathematica@). The details are not shown here due to page limitation. Thus, it turns out that

all the three formulations (viz., PP, MM and PM) do satisfy their respective orthogonal conditions

which emerge directly from the virtual work principle. Thus, all the three formulations should be

viewed variationally correct.
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2. Graphical representation of orthogonality conditions (2)-(4)

The orthogonal conditions can be represented graphically as in Fig. 2. The graphical

representation presented here is rather different from that of by Prathap et al. Before attempting to

interpret this figure, it is important to realise that the vectors  and , which are

represented by lines CA and BA respectively in Fig. 2, must be collinear. This is because both of

them have to pass through point A and at the same time have to be orthogonal to P-space (by virtue

of Eqs. (2) and (4), respectively). Several interesting interpretations emerge from Fig. 2:

1.  is an orthogonal projection of u in the M-space and hence is the best-fit approximation of

u in the M-space. However,  is not an orthogonal projection of u in the M-space and hence

is not the best-fit approximation of u in the M-space (These observations are the same as that of

Prathap et al.).

2.  lies at the intersection between M-space and a subspace spanned by u and . Let us call

the latter as the P-constraint space. It is so named because this constraint space comes about

because of our very choice of P-space as the weighting space for PM formulation. Thus, the PM

formulation gives a solution that lies at the intersection of M-space and P-constraint space. 

Alternatively, we may interpret PM solution, , as a projection of exact solution u in the M-

space subject to the constraint that  must also lie in the P-constraint space. Thus  is a

constrained optimal solution rather than the best-fit solution. On similar lines, we can re-interpret

the MM and PP formulations: MM solution, , is a projection of exact solution in the M-space

subject to the constraint that  must also lie in the M-constraint space (a subspace spanned by u

and ). PP solution, , is a projection of exact solution in the P-space subject to the constraint

that  must also lie in the P-constraint space.
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Fig. 2 Graphical representation of the orthogonality conditions related to PP, MM and PM formulations.
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Thus, every formulation, whether it is PM, MM or PP, is variational in nature in the sense that we

are dealing with a constrained minimization problem, i.e., we search for an optimum solution vector

in the respective trial space subject to the condition that the solution vector also lies in the

respective constraint space. In this sense, the PM formulation seems to have nothing

contravariational about it. The only difference is that PP and MM formulations give the best-fit

solutions whereas the PM formulation does not give a best-fit but gives only an ‘optimal-fit’

solution.

   

The conclusions of this discussion are as follows:

It seems reasonable to argue that the PM formulation is variationally correct although it does not

give the best possible approximation of u in the M-space. The idea mooted here is that for an

unsymmetric formulation to be variationally correct, the formulation need not give the best-fit

solution.

Theoretically, MM formulation gives the best approximation of u in the M-space. Unfortunately,

this best-fit property of MM formulation cannot always be taken for granted. Although the MM

formulation does give good results for the 1-D element tried out by Prathap et al., the MM

formulation for 2-D and 3-D elements (Rajendran and Liew 2003, Rajendran and Subramanian

2004, Ooi et al. 2004, Liew et al. 2006) does not in general give a better approximation to exact

solution than the PM formulation. The reason for this is that, for 2-D and 3-D elements, the metric

shape functions loose their inter-element compatibility property particularly when mesh distortions

are present. The incompatible metric shape functions then become unsuitable for use as test

functions. (Note that virtual work principle demands the test function to be compatible. In this

respect, we should rather say that the MM formulation tends to become variationally incorrect for

2D and 3D applications whenever mesh distortions are present.) Note that inter-element

compatibility is never an issue in 1-D problems, but is of serious concern in 2-D problems and even

more so in 3-D problems.
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Rajendran must be congratulated for offering a vastly improved graphical representation of the

orthogonality conditions related to the PP, MM and PM formulations. It is clear from this that the

strain/stress obtained from the PM formulation is not the best possible approximation of strain/stress

in the M-space. However, it is the best possible solution where the continuity conditions (inter-

element compatibility) are scrupulously maintained when mesh distortion is present. 

Engineers are often concerned about whether the stress/strain computed is the best-fit of the actual

state of stress. Prathap et al. interpret variational correctness in this utilitarian sense. Rajendran

prefers the definition where variational correctness is linked to the orthogonality condition and we

see this as a matter of preference rather than a contradiction. 

It might be useful to point out that the quadrilateral area coordinate formulations which have been

gaining attention recently as the answer to the problem of sensitivity to mesh distortion attempt

solutions in the M-space but are forced to relax the continuity requirements through generalized

conforming conditions. It appears therefore that the unsymmetric PM approach is the only one that

maintains completeness and continuity rigorously, albeit at the cost of compromising on the best-fit

aspect which the symmetric formulation permits. 




