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Abstract. The aim of this contribution is to present a new link/beam finite element suitable for electro-
thermo-structural analysis of uni-axially graded materials. Continuous polynomial variation of geometry
and material properties will be considered. The element matrix and relations for solution of Joule’s heat
(and its distribution to the element nodes) have been established in the sense of a sequence method of a
coupled problem solution. The expression for the solution of nodal forces caused by a continuously
distributed temperature field has also been derived. The theoretical part of this contribution is completed
by numerical validation, which proves the high accuracy and effectiveness of the proposed element. The
results of the performed experiments are compared with those obtained using the more expensive
multiphysical link element and solid element of the FEM program Ansys. The proposed finite element
could be used not only in the multiphysical analysis of the current paths and actuators but also in analysis
of other 1D construction parts made of composite or uni-axially graded materials. 

Keywords: FEM; uni-axially graded materials; coupled problems.

1. Introduction 

Materials that are made by mixing two or more different materials together (evenly or unevenly)

can acquire much better properties than their single components. These new materials (composite or

functionally graded-FGM (http://www.eumat.org 2006, Koizumi 1997, Koizumi and Niino 1995,

FGM Forum 1991, Müller et al. 2003, Kawasaki and Watanabe 1997) are characterized with a

continuous or discontinuous variation of material properties. Simultaneously with the production of

such materials, new numerical methods have been developed and the existing methods have been

enhanced for their numerical simulation.

The most frequent area of application of such new materials is mechatronics, where a solution of

multiphysical problems has to be found (weak or strong coupled) (Felippa and Park 2004). For

example, in an electro-thermo-structural problem the electric losses cause the accompanying or

required deformation of the actuator (or of the conductor path) by the generated Joule’s heat.

Comercial FEM programs contain link and solid elements with constant or average material
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properties, e.g. (ANSYS 2007). These elements can also be used for analysis of functionally graded

materials but the solution accuracy very strongly depends on the mesh density and preparation of

input data is very time consuming. This disadvantage could be particularly removed by using

meshless methods (Atluri and Shen 2004) or by improving classical finite elements (Chakraborty

et al. 2003, Zhu and Sankar 2004, Lee 2005, Agarwal et al. 2006).

The aim of this contribution is to establish expressions of a new beam finite element for solution

of weak coupled electro-thermo-structural problem with a sequence method. This element can have

a longitudinally varying cross-section (cross-sectional area and area moment of inertia) and uni-

axially graded material properties (electrical and thermal conductivity, elasticity modulus and

thermal expansion coefficient). The element matrix contains transfer constants which depend on the

material properties and the cross-sectional variation. A simple numerical algorithm for solution of

these transfer constants will be proposed as well.

All the main equations of this new element will be satisfied exactly and the solution accuracy will

not depend on the mesh density. The accuracy and effectiveness of the derived beam element will

be shown by the solution of chosen multiphysical problems.

2. Definition of the geometry and material properties variation 

Fig. 1 shows a 2D beam element with variation of geometry (cross-sectional area A(x) and area

moment of inertia Iy(x)) and material properties (electrical conductivity σ (x), thermal conductivity

λ (x), thermal expansion coefficient αT(x) and elasticity modulus E(x)) along the element length L.

We assume that all previously mentioned geometry and material parameters can be expressed in

polynomial form – see the following sections. 

2.1 Variation of geometry 

2.1.1 Variation of cross-sectional area 

Variation of the cross-sectional area is defined by the polynomial 

(1)

where Ai is the cross-sectional area at node i and polynomial ηA(x) expresses the variation of the

cross-sectional area along the element length L. The order of this polynomial is n. Constants ηAk,

where k = 1, ..., n, and the order n of the polynomial depend on the cross-sectional area variation. 

2.1.2 Variation of area moment of inertia 

Variation of the area moment of inertia is defined in a similar way 

(2)

where Iyi is the area moment of inertia at node i and polynomial ηI(x) expresses the variation of the

area moment of inertia along the element length L. Constants ηIk and order p have a similar

meaning as in the cross-sectional area variation mentioned above. 
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2.2 Variation of material properties 

2.2.1 Electrical conductivity variation 

Electrical conductivity is a material property which depends on the type of material and

temperature. For example, if the beam in Fig. 1 is produced by a powder metallurgy process with a

non-uniform composition of powders along the element length, the material properties will vary

along the element length. The continuously varying electrical conductivity of the link conductor is

assumed in the polynomial form

(3)

 
where σi is the electrical conductivity at node i, and  is the polynomial of varying

conductivity along the element length L - see Fig. 1. Its constants ησk, where k = 1, ..., q, and the

order q of the polynomial depend on the conductivity variation. 

2.2.2 Thermal conductivity variation 

Thermal conductivity as well as electrical conductivity are material properties which depend on

the type of material and temperature. 

The variation of thermal conductivity will be assumed in polynomial form as 

(4)

where λi is the value of thermal conductivity at node i and  expresses the variation along the

element length L - see Fig. 1. Constants ηλk and the order r have a similar meaning as in the

electrical conductivity variation mentioned above. 
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Fig. 1 Beam element with variation of geometry and material properties 
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2.2.3 Thermal expansion coefficient variation 
Variation of the thermal expansion coefficient will be assumed in a similar polynomial form 

(5)

where αTi is the value of thermal conductivity at node i, and  expresses its variation.

Constants ηαk and the order of polynomial s depend on the thermal expansion coefficient variation. 

2.2.4 Elasticity modulus variation 

Variation of the elasticity modulus will be assumed in a similar polynomial form as above 

(6)

where Ei is the value of thermal conductivity at node i, and  expresses its variation. Its

constants ηEk and the order of polynomial t depend on elasticity modulus variation. 

3. FEM equations for the weak coupled electro-thermo-structural problem 

The basic FEM equations of the multiphysical link/beam finite element according to the sequence

solution method of the weak coupled electro-thermo-structural problem have the form

(7)

where  is the electric conductance matrix,  is the thermal conductance matrix,  is the

stiffness matrix, Ve is the vector of nodal electric potentials, Te is the vector of nodal temperatures,

u
e is the vector of local nodal displacements, Ie is the vector of nodal currents, Pe(V) is the vector

of heat flows, and Fe(T) is the vector of local nodal forces.

In our case (2D beam element) all nodal parameters are as follows – see Fig. 2: 

• unknown parameters Ve = [Vi, Vj]
T, Te =[Ti, Tj]

T and ue = [ui, vi, ϕi, uj,vj, ϕj]
T

• reaction parameters Ie = [Ii, Ij]
T, Pe (V) = 

 
and 

  

All parameters (specially  and ) will be explained in the next sections.

3.1 FEM equations of electric conduction 

After minimization of the potential energy functional (Jin 2002), we get the element matrix

equation (the first line of the above-mentioned matrix Eq. (7))

(8)
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or in expanded form 

(9)

where  is the electrical conductivity, Vi, Vj are the nodal electric potentials and Ii, Ij

are the nodal currents.

Quantity  is the transfer constant of the varying electric conductance and is defined as the first

integral along the length L of expression

(10)

where the polynomial  describes the electric conductance variation. The

above-mentioned transfer constant and the all following transfer constants in the below can be

solved using a simple numerical algorithm (Murín and Kuti  2002, Rubin 1999) which is briefly

described in section 4.

3.2 FEM equations of heat conduction 

The heat conductance relation can be expressed in a similar form to Eq. (8) as 

(11)
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Fig. 2 Coupled problem – unknown parameters and reactions
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or in expanded form 

(12)

where  is the thermal conductance, Ti, Tj are the nodal temperatures, Pi, Pj are the

nodal heat flows and  are the Joule heat obtained by transformation of generated heat to the

nodal points. 

Quantity  is the transfer constant of the varying thermal conductance and is defined as in

Eq. (10), i.e., as the first integral of the following expression

(13)

where polynomial  describes the heat conductance variation. How to obtain

the Joule heat and how to transform it into nodes is presented in the following section.

3.2.1 Computation of the Joule heat

Differential of the electrical performance is defined by the scalar product

(14)

where E(x) is the electric intensity vector and J(x) is the current density vector. Expression E(x) ·

J(x) = pJ(x) is the Joule heat generated per volume. For 1D problem, the current density vector is

 (15)

where i is unit vector of x direction, A(x) is the cross-sectional area where the current is applied on

and J(x) is the current density. The cross-sectional area and electrical conductivity along the element

length have been defined by Eqs. (1) and (3), respectively. In our case, the current I(x) has constant

value along the element length because there is no distributed load in electric analysis, and its value

is I(x) = I = Ii = −Ij.

The product of the cross-sectional area A(x) and of the electrical performance per volume E(x) ·

J(x) gives the length electrical performance

(16)

In thermal analysis, pJl(x) represents the internal heat source distributed along the element length.

By integration of Eq. (16) along the element length L, the electrical losses (Joule heat) in element

volume are given by

(17)

Expression (17) can be rewritten using the transfer constant  to the form

 (18)
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3.2.2 Transformation of Joule heat in the nodal heat flows vector 
In thermal analysis the Joule heat per length pJl(x) represents the distributed load along the

element length and has to be transformed to the nodal heat flows. If we assume a functional graded

materials (FGMs), the Wiedemann-Franz law does not exist between thermal and electrical

conductivity because the material is mixed of metal and non-metal materials. The effective material

properties are computed from the mixture rules (Altenbach et al. 2003). It causes unequality

between electrical conductivity variation and thermal conductivity variation Eq. (22). The

Wiedemann-Franz law for metal materials can be written in the form

(19)

where k is a constant parameter. Since k must be constant, we can write for metal materials 

(20)

which suggests

(21)

This equation is correct for metal materials, but FGMs are a mixture of metal and non-metal

materials and therefore we get 

(22)

which suggests 

(23)

By using a similar concept as for the transformation of distributed loads in 3D beam element

(Murín and Kuti  2002, Kuti  2001), we can write the transformed nodal heat flow vector from the

Joule heat per length pJl(x). From the viewpoint of FGMs and the mixture rules, the best solution

for the transformation of the Joule heat to the nodal heat flow vector is to divide the length L into

halves and adequate Joule heat put to the nodal heat flow vector. It means that  represents the

Joule heat generated into the first half part of the element, from 0 to L/2.  is the Joule heat

generated into the second half part of the element, from L/2 to L. The nodal heat flow vector has

the form

 (24)

The transformation of distributed load pJl(x) according to Eq. (24) is valid for any orders of

polynomials A(x), σ(x) and λ(x).
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3.3 FEM equations of structural analysis 

The stiffness matrix of 2D beam element with variation of the cross-section including the 1st and

2nd order beam theory has been published in (Murín and Kuti  2002, Kuti  2001, Kuti  and Murín

2006). If the beam material properties are varied along the element length L, this  stiffness matrix

must be modified and the final equation for 2D beam with variation of cross-section and material

properties has the matrix form

 (25)

or in expanded form

(26)

where  is the axial stiffness and has the form 

(27)

Parameters kv2, kv3,  and  represent the bending stiffness and their forms are 
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 are the local nodal displacements and rotations,  are the nodal forces and

moments and  represent the thermal loading.

The transfer constant for axial loading  is defined as the first integral along the element

length L of the expression
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(33)

(34)

where polynomial ηIE(x) = ηI(x)ηE(x) describes the bending stiffness variation. 

In the case of thermal loading, the thermal element nodal forces have been derived as follows

(35)

where B is the strain-displacement matrix, D is the elasticity matrix, ε0 is thermal strain matrix,

 is temperature rise and Tref is reference temperature. In our 1D case (dV = A(x)dx)

(36)
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The polynomial of the varying temperature rise field can be derived using the shape functions of

the temperature field, and has the form

 (39)

If the element thermal conductance is constant, then the axial variation of temperature is linear.

4. Transfer constants 

Determination of the transfer functions and transfer constants occurring in the previous matrices

and shape functions is based on the following expression (Rubin 1999)
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(43)

with parameters 

and initial values are 

5. Numerical experiments 

5.1 Example 1 – straight actuator with variation of cross-section and material properties

A 1D-current path (actuator) with variation of the cross-section and material properties along the

longitudinal axis has been considered. The aim is to perform an electro-thermo-structural analysis

using the new link element. The results of this analysis will be compared with the results obtained

using the classical multiphysical finite elements of code ANSYS (2007).

The current path has been chosen in a such way that constant and also varying parameters

(geometry and material) have been taken into consideration. The FEM model has been created using

three new link elements.

Geometry, material parameters and boundary conditions:

• geometry

  − part I : length aI = 0.1 m, diameter dI = 0.02 m

  − part II : length aII = 0.1 m, diameter dII(xII) = dI (1 − 9xII +30  + 100 )

  – part III : length aIII = 0.1 m, diameter dIII = 0.01 m

 • material properties

  − part I: electric conductivity σI = 10000Sm−1, thermal conductivity λI = 40 W/mK, elasticity

modulus EI = 2 × 1011 Pa, thermal expansion coefficient αTI = 1 × 10−5K−1

  − part II: electric conductivity σII = σI (1 + 20  + 200 ), thermal conductivity λII = λI (1 +

 + 200 ), elasticity modulus EII = EI (1 + 50 +500 ), thermal expansion coefficient

αTII = αTI (1 + 200  + 2000 )
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Fig. 3 1D-current path (actuator) 
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  − part III: electric conductivity σIII = 14000Sm−1, thermal conductivity λIII = 56 W/mK, elasticity

modulus EIII = 4 × 1011 Pa, thermal expansion coefficient αTIII = 5 × 10−5K−1

  − reference temperature: Tref = 273K

•  boundary conditions

− electrical: current I4 = 1A, potential V1 = 20V

− thermal: thermal flow P1 = 1W, temperature T4 = 323K

− structural: in the static determined case (SD): u1 = 0 m, in static undetermined case (SU): u1 =

u4 = 0 m

The global FEM equation for electric analysis has the form

(44)

The global electric conductance matrix contains the conductance  of elements 1, 2 and 3. After

applying electric boundary conditions, the following values of unknowns have been determined: V2

= 20.0318 V, V3 = 20.1016 V, V4 = 20.1925 V and current I1 = 1 A. The Joule heat in a volume

element can be solved using expression (17) and its transformation into element nodes can be

performed by (24). Their values in individual nodes are:  = 0.0159155 W,  =

0.0454728 W,  = 0.0454728 W, where the second superscript represents the element

number. Joule heat per length and current density are shown in Fig. 4.

The heat conductance equations of the current path have the form

(45)
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Fig. 4 Example 1 – Joule heat per length and current density
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where the thermal conductance matrix contains the element conductance  of elements. After

applying thermal boundary conditions the nodal temperatures have been solved: T1 = 375.8 K,

T2 = 367.7 K, T3 = 349.1 K. The distribution of temperature rise along the current path is shown

in Fig. 5. 

In order to obtain deformation of the system, the determined nodal temperatures from thermal

analysis have to be used as thermal loads in the structural analysis. Thermal loads are transfered to

the structural loads through the thermal element nodal force-expression (35). For a statically

undetermined case (SU) the stiffness relation has the form

(46)

where R1 and R4 are reactions in the constraints, and  to  are the nodal thermal forces

according to expression (35). Their values are:  =  = 62027.29 N,  =  =

59878.37 N,  =  = 99022.21 N. In the statically determined case (SD), the reactions are

equal to zero, and on the right hand side of Eq. (46) we get only thermal forces.

For a statically undetermined case (SU) we get: u2 = −2.345 × 10−5 m, u3 = −7.085 × 10−5 m, and

R1 = −R4 = 76763.4 N, and for the statically determined case (SD): u2 = 0.9872 × 10−4 m, u3 =

2.810 × 10−4 m, u4 = 5.960 × 10−4 m.

The same problem has been solved using the multiphysical element LINK68 (ANSYS 2007). To

show the effectiveness and accuracy of our element each of the three parts of the current path was

divided to 1, 10, and 150 LINK68 elements. The comparison of the two solution results is given in

Tables 1, 2 and 3. The last line in these tables contains the results obtained using only one our link

element for each part of the conductor. The comparison of results shows that the LINK68 results

converge anyway to our element results.
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Fig. 5 Example 1 – the distribution of temperature rise along the actuator length
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From these tables it can be seen that the maximal difference between both analyses occurs in the

results of structural variables. 

5.2 Example 2 – Electro-thermo-structural analysis of the FGM actuator 

Electro-thermo-mechanical actuator with variation of a rectangular cross-section and material

properties has been considered (Fig. 6). The actuator is made from functional graded materials

(FGMs). The actuator is loaded by an electric current and has an ideal thermal insulation. The goal

is to perform an electro-thermo-structural analysis using the new beam element. The results of this

analysis will be compared with the results obtained using the coupled analysis with classical electro-

thermal link and structural beam elements of code ANSYS (2007).

The FEM-model has been created with only six new beam elements. 

Geometry, material properties and boundary conditions: 

• geometry

 Whole actuator has the same width w = 0.003 m.

– part I: length aI = 0.02 m, hight hI(xI) = 2(0.003 − 0.15x + 3.75x2)m 

– part II: length aII = 0.015 m, hight hII =0.003 m 

Table 1 Comparison of the nodal variables – potential and temperature rise

NOE 
Electric potential [V] Temperature rise [K]

V2 V3 V4 ΔT1 ΔT2 ΔT3

1 20.031 20.104 20.195 103.693 95.600 76.151 

10 20.031 20.101 20.192 102.777 94.682 76.081 

150 20.032 20.102 20.193 102.760 94.677 76.080 

1 20.032 20.101 20.192 102.762 94.677 76.079 

Table 2 Comparison of the nodal variables – displacement, SU and SD case 

NOE 
Displacements – SU × 10−5 [m] Displacement – SD × 10−4 [m] 

u2 u3 u2 u3 u4

1 −1.180 −9.246 0.965 2.499 5.653 

10 −2.354 −7.146 0.987 2.808 5.969 

150 −2.365 −7.127 0.987 2.811 5.972 

1 −2.345 −7.085 0.9872 2.810 5.960 

Table 3 Reactions and stress in SU case 

NOE 
Reactions [N] Stress [MPa] 

R1 = −R2 σ1 σ3

1 70030 −222.9 −891.6 

10 76842 −244.6 −978.3 

150 76907 −244.8 −979.2 

1 76763.4 −243.3 −977.4 
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– part III: length aIII = 0.005 m, hight hIII = 0.003 m 

– part IV: length aIV = 0.005 m, hight hIV = 0.003 m 

– part V: length aV = 0.015 m, hight hV = 0.003 m 

– part VI: length aVI = 0.02 m, hight hVI(xI) = 2(0.0015 + 3.75x2)m 

• material properties 

Each part of the actuator is made from FGM. The parts consist of two different materials, namely

matrix and fibre. The rule of mixture for the volume fraction of each material (Altenbach et al.

2003) has been used to determine effective constitutive properties (CP) of each part. FGM has a

unidirectional variation of the fibres along the axis of the part and therefore the effective CP will

also be varied along the part length according to expression

 (47)

because 

(48)

where, X(x) is the effective constitutive property, Xf and Xm are CPs of the fiber and matrix,

respectively, vf (x) and vm(x) are volume fractions of the fiber and of matrix, respectively.

Individual parts have the following fiber, matrix and effective material properties: 

– part I: fiber Al2O3, matrix Fe,

vf = 0.05 + 375  − 12500 ,

electric conductivity

σIf = 1 × 10−12 Sm−1, σIm = (7.6 × 10−7)−1 Sm−1,

σI = 65789.5(1 + 7500  − 250000 )Sm−1,

thermal conductivity

λIf = 25 W/mK, λIm = 60.5 W/mK,

λI = 26.775(1 + 497.199  − 16573.296 )W/mK,

elasticity modulus

EIf = 300 GPa, EIm = 200 GPa,
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Fig. 6 Electro-thermo-mechanical actuator from FGMs materials
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EI = 295(1 − 127.1186  + 4237.2881 )GPa,

thermal expansion coefficient

αIf = 7.5 × 10−6 K−1, αIm = 15.3 × 10−6 K−1,

αTI = (7.1289 × 10−6)(1 − 390.4203  + 13014 )K−1

– part II: fiber Al2O3, matrix Fe,

vf =0.1 − 666.667  + 29629.63 ,

electric conductivity

σIIf = 1 × 10−12 Sm−1, σIIm = (7.6 × 10−7)−1 Sm−1,

σII = 131579(1 − 6666.667  + 296296.296 )Sm−1,

thermal conductivity

λIIf = 25 W/mK, λIIm = 60.5 W/mK,

λII = 28.55(1 − 828.955  + 36842.447 )W/mK,

elasticity modulus

EIIf = 300 GPa, EIIm = 200 GPa,

EII = 290(1 + 229.885  − 10217.113 )GPa,

thermal expansion coefficient

αIIf = 7.5 × 10−6 K−1, αIIm = 15.3 × 10−6 K−1,

αTII = (6.7578 × 10−6)(1 + 732.196  − 32542.032  )K−1

– part III: fiber Fe, matrix Cu, 

vf = 0.1 − 6000  + 800000 , 

electric conductivity

σIIIf = (7.6 × 10−7)−1 Sm−1, σIIIm = (1.71 × 10−8)−1 Sm−1, 

σIII = 7032163.743(1 − 48773.389  + 6503118.503 )Sm−1, 

thermal conductivity 

λIIIf = 60.5 W/mK, λIIIm = 391 W/mK, 

λIII = 93.55(1 − 21197.221  + 2.826 × 106  )W/mK, 

elasticity modulus 

EIIIf = 200 GPa, EIm = 115 GPa, 

EIII = 191.5(1 + 2663.185  − 355091.384  )GPa, 

thermal expansion coefficient 

αIIIf = 15.3 × 10−6 K−1, αIIIm = 17 × 10−6 K−1, 

αTIII = (1.770 × 10−6)(1 − 57357.652  + 764768.697  )K−1 

– part IV: fiber Fe, matrix Cu, 

vf = 0.05 + 6000  − 800000 ,

electric conductivity 

σIVf = (7.6 × 10−7)−1 Sm−1, σIVm = (1.71 × 10−8)−1 Sm−1, 

σIV = 7032163.743(1 + 82171.629  − 10956217.163  )Sm−1, 

thermal conductivity 

λIVf = 60.5 W/mK, λIVm = 391 W/mK, 

λIV = 77.025(1 + 25744.888  − 3432651.736 )W/mK, 

elasticity modulus 

EIVf = 200 GPa, EIm = 115 GPa, 

EIV = 195.75(1 − 2605.364  + 347381.865 )GPa, 

thermal expansion coefficient 

αIVf = 15.3 × 10−6 K−
1, αIVm = 17 × 10−6 K−

1, 
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αTIV = 9.241 × 10−7(1 + 109876.442  − 14650192.233 )K−
1 

– part V: fiber Al2O3, matrix Fe, 

vf = 0.05 + 666.667  − 29629.63 , 

electric conductivity 

σVf = 1 × 10−12 Sm−1, σVm = (7.6 × 10−7)−1 Sm−1, 

σV = 65789.5(1 + 13333.333  − 592592.593 )Sm−1, 

thermal conductivity 

λVf = 25 W/mK, λVm = 60.5 W/mK 

λV = 28.55(1 − 828.955  + 36842.447  )W/mK,

λV = 26.775(1 + 883.91  − 39284.85 )W/mK,

elasticity modulus 

EVf = 300 GPa, EIm = 200 GPa,

EV = 295(1 − 225.989  + 10043.942 )GPa,

thermal expansion coefficient

αVf = 7.5 × 10−6 K−
1, αVm = 15.3 × 10−6 K−

1,

αTV = (7.1289 × 10−6(1 − 694.0805  + 30848.023  )K−
1

– part VI: fiber Al2O3, matrix Fe,

vf = 0.1 − 375  +12500 , 

electric conductivity

σVIf = 1 × 10−12 Sm−1, σVIm = (7.6 × 10−7)−1 Sm−1, 

σVI = 131579(1 − 3750  + 125000 )Sm−1, 

thermal conductivity

λVIf = 25 W/mK, λVIm = 60.5 W/mK,

λVI = 28.55(1 − 466.287  + 15542.907 )W/mK, 

elasticity modulus 

EVIf = 300 GPa, EVIm = 200 GPa, 

EVI = 290(1 + 129.310  − 4310.3448 )GPa, 

thermal expansion coefficient 

αVIf = 7.5 × 10−6 K−
1, αVIm = 15.3 × 10−6 K−1, 

αTVI = 6.7578 × 10−6(1 + 411.860  − 13728.67 )K−1 

– reference temperature: Tref = 273K 

• boundary conditions 

– electrical: current I7 = 2A, potential V1 = 20V 

– thermal: thermal flow P1 = 0W, temperature T7 = Tref = 273K 

– structural: in static undetermined case(SU): ux1 = uy1 = 0 m, ϕz1 = 0o, ux7 = uy7 = 0 m, ϕz7 = 0o

This coupled problem has been solved as sequential coupling. In the first step the electric analysis

has been performed according to Eq. (9). The output from this analysis has been the transformed

Joule heat – Eq. (24). The second analysis has been thermal analysis – Eq. (12), where the

determined Joule heat has been used as loading. The output from this analysis have been thermal

forces which are computed according to Eq. (35). The last step has been to perform structural

analysis – Eq. (26), where the determined thermal forces act as loads. The final output was

structural displacements and rotations and also reaction forces and moments. The deformed and

undeformed shape is shown in Fig. 7.
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The same problem has been analyzed by a sequential method using the multiphysical element

LINK68 and beam element BEAM3 (ANSYS 2007). To show the effectiveness and accuracy of our

element each of the six parts of the actuator was divided to 1 and 25 elements. LINK68 element is

used for the electro-thermal analysis and BEAM3 element is used for the structural analysis. The

comparison of the two solution results is given in Tables 4-10. The last line in these tables contains

the results obtained using only one our link/beam element for each part of the actuator.

Fig. 7 Example 2 – deformed and undeformed shape of actuator

 

 

Table 4 Comparison of the nodal variables - Electric potential [V]

NOE
 Electric potential [V] 

V1 V2 V3 V4 V5 V6

1 20.0360 20.0698 20.0700 20.0702 20.1040 20.1400

25 20.0356 20.0714 20.0716 20.0718 20.1075 20.1431

1 20.0356 20.0714 20.0716 20.0718 20.1075 20.1433

Table 5 Comparison of the nodal variables - Temperature rise [K]

NOE
Temperature rise [K]

ΔT1 ΔT2 ΔT3 ΔT4 ΔT5 ΔT6

1 36.6916 34.3761 27.9994 27.0886 26.1753 15.6806

25 37.1214 34.6131 28.4347 27.4994 26.5612 15.4821

1 37.1195 34.8210 28.8313 27.8961 26.9579 15.6906 

Table 6 Comparison of the nodal variables - Displacements Ux [m]

NOE
Displacements Uxi [×10−6m]

Ux2 Ux3 Ux4 Ux5 Ux6

1 4.9047 2.24937 2.42084 2.58616 −1.05899

25 5.02142 2.46304 2.63814 2.8059 −0.97073

1 4.98519 2.46033 2.63824 2.80881 −0.93455 
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The comparison of result shows very good effectiveness of the new link/beam finite element.

6. Conclusions

A new multiphysical two nodal link finite element has been presented in this contribution which

can be used for effective solving of weak coupled electro-thermo-structural problems. Polynomial

variations of electric and thermal conductance, thermal expansion coefficient and elasticity modulus

have been taken into consideration. The element matrix and the right hand side vector containing

the Joule heat and thermal forces have been derived. The 1D electric and temperature field can be

coupled from the stiffness element matrix point of view with the bar or with the beam finite

element (with varying stiffness and thermal expansion coefficient) as well. The basic element

 

 

Table 7 Comparison of the nodal variables - Displacements Uy [m]

NOE
Displacements Uyi [×10−6 m]

Uy2 Uy3 Uy4 Uy5 Uy6

1 −1.4252 −4.6715 −4.8434 −4.2550 −2.0734 

25 −0.94808 −4.2661 −4.3807 −3.7385 −1.5108 

1 −0.9347 −4.24733 −4.35789 −3.71962 −1.49722 

Table 8 Comparison of the nodal variables - Rotation Rotz [rad]

NOE
Rotation Rotzi [×10−6 rad]

Rotz2 Rotz3 Rotz4 Rotz5 Rotz6

1 −148.41 −112.59 42.729 191.53 201.45 

25 −147.63 −102.35 54.287 201.71 210.58 

1 −145.735 −100.732 54.3004 200.119 208.689 

Table 9 Comparison of the reactions

NOE 
Electric-Thermal reactions 

I1 [A] P7 [W] 

1 −2 −0.28002 

25 −2 −0.28629 

1 −2 −0.28628 

Table 10 Comparison of the reactions

NOE 
Structural reactions 

Fx1 [N] Fy1 [N] Mz1 [Nm] Fx7 [N] Fy7 [N] Mz7 [Nm] 

1 4.8985 −0.34088 0.02521 −4.8985 0.34088 −0.04225 

25 4.8066 −0.47934 0.02038 −4.8066 0.47934 −0.044346 

1 4.75607 −0.479534 0.020035 −4.75607 −0.479534 −0.044011 



An effective solution of electro-thermo-structural problem of uni-axially graded material 713

relations contain transfer constants which depend on variations of geometry and material properties.

These transfer constants can be solved using the simple numerical algorithm. The results of

numerical experiment prove the effectiveness and accuracy of our new element for a coarse mesh -

the solution accuracy does not depend on the mesh density. Using a finer mesh has no effect on the

obtained results. This new element can be very effectively used for electro-thermo-structural

analysis of constructional parts built from composite or uni-axially graded materials.
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