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Design optimization of vibration isolation system through 
minimization of vibration power flow
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Abstract. A vibration power minimization model is developed, based on the mobility matrix method,
for a vibration isolation system consisting of a vibrating source placed on an elastic support structure
through multiple resilient mounts. This model is applied to investigate the design optimization of an X-Y
motion stage-based vibration isolation system used in semiconductor wire-bonding equipment. By varying
the stiffness coefficients of the resilient mounts while constraining the dynamic displacement amplitudes
of the X-Y motion stage, the total power flow from the X-Y motion stage (the vibrating source) to the
equipment table (the elastic support structure) is minimized at each frequency interval in the concerned
frequency range for different stiffnesses of the equipment table. The results show that when the equipment
table is relatively flexible, the optimal design based on the proposed vibration power minimization model
gives significantly little power flow than that obtained using a conventional vibration force minimization
model at some critical frequencies. When the equipment table is rigid enough, both models provide
almost the same predictions on the total power flow.
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1. Introduction

Vibration isolation using multiple resilient mounts has received considerable attention in a broad

domain of industrial fields, including those associated with the automobile, marine, aerospace,

aeronautics, and automation industries. With the rapid development of computational technology in

recent years, the design of vibration isolation systems through optimization techniques has become a

promising approach for minimizing vibration transmission from vibrating sources to their isolated
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structures under some competitive constraints with minimal engineering efforts (Ashrafliuon 1993,

Swanson et al. 1993, Snyman et al. 1995, Nayfeh et al. 1997, Leo et al. 1999, Tao et al. 2000, Yu

et al. 2001, Ahn et al. 2003, Alkhatiba et al. 2004, Brake et al. 2005). Over the past decade,

various design optimization methods have been developed or investigated for vibration isolation

system applications. Some representative examples include gradient-based programming methods

for isolating aircraft, marine, and automotive vehicle engines (Ashrafliuon 1993, Swanson et al.

1993, Snyman et al. 1995, Tao et al. 2001, Yu et al. 2001), genetic algorithms for designing passive

linear suspensions (Alkhatiba et al. 2004) and optimizing vibration isolation of flex circuits in hard

disk drives (Brake et al. 2005), nonlinear normal mode localization for optimizing vibration

isolation systems with nonlinear isolators (Nayfeh et al. 1997), quadratic programming approach for

designing active-passive vibration isolation systems (Leo et al. 1999), as well as artificial life

algorithm for designing fluid mounts (Ahn et al. 2003). It should be noted that all the studies

involving vibration isolation of vibrating sources from support structures solely considered rigid

support structures, and the objective of design optimization problem was to minimize the total force

transmitted from the vibrating sources to these rigid support structures.

Although the existing vibration force minimization models based on the assumption of rigid

support structure generally yield reasonable predictions of what would observe in many real

engineering situations, they may not be valid for some critical applications associated with the

marine, aerospace, and automation equipment industries (Soliman and Hallam 1968, Ashrafliuon

1993, Choy and Wong 2004). For instance, highly accelerated motion stages (e.g., 20 m/s2) (i.e., the

vibrating sources) are commonly installed on relatively flexible equipment tables (i.e., the support

structures) via multiple resilient mounts to facilitate good vibration isolation performance during

high-speed operation in semiconductor manufacturing equipment (e.g., wire-bonding and die-

bonding equipment). It has been found experimentally that the vibrations transmitted from such

motion stages generally excite their underneath equipment tables to exhibit noticeable elastic

dynamics in the concerned frequency range (Choy and Wong 2004). This is different from the

traditional vibration isolation system designs summarized in the previous paragraph, suggesting that

the conventional vibration force minimization models may not be accurate enough to describe the

vibration transmission behavior of such an isolation system.

By contrast, the power flow concept, which essentially combines the transmitted force and

velocity responses into a single quantity (Goyder and White 1980, Pinnington 1987), provides a

more complete description of vibration isolation systems equipped with elastic support structures as

compared with the transmitted force or velocity response. For a multiple degree-of-freedom system

having a number of multidirectional resilient mounts, the use of power flow concept has a great

benefit to obtaining an insight into the mechanism of vibration transmission among system

components (Koh and White 1996, Gardonio et al. 1997). Lee and Kim (2004) have demonstrated

the capability of power flow technique to analyze the vibration and sound radiation levels of the

compressor system mounted in the outdoor unit of an air conditioner. Moreover, it has been

indicated that the minimization of power flow can be used as a cost function for active isolation

design owing to its proven capability of providing optimal control results in comparison with other

techniques (Gardonio et al. 1997). Therefore, it would be valuable to designers of vibration isolation

systems to evaluate the system performance and improve the design if a vibration power

minimization model tailored specifically to those systems with elastic support structures could be

provided to substitute the conventional vibration force minimization models.

In this paper, we aim to develop a vibration power minimization model for the design of a
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vibration isolation system comprising a vibrating source placed on an elastic support structure

through multiple resilient mounts. First, the said model is derived using the mobility matrix method

(Soliman and Hallam 1968, Gardonio et al. 1997). Second, the model is applied to a design case

study involving the use of such an isolation system in industrial automatic wire-bonding equipment

for semiconductor manufacturing. This characteristic type of vibration isolation system is formed by

multiple resilient mounts situated between a highly accelerated X-Y motion stage and a

comparatively flexible equipment table. The objective of design optimization is to minimize the

total power flow to the equipment table through all resilient mounts. The stiffness coefficients of the

resilient mounts are selected as the design variables with the upper and lower bounds. Constraints

on the dynamic displacement amplitudes are imposed to the center of gravity (CG) of the X-Y

motion stage. Sequential quadratic programming (SQP) algorithm (Schittkowski 1985, Fletcher

1987) is used to solve the design optimization problem. Third, the total power flow minimized

using the developed model is investigated at each frequency interval in the concerned frequency

range for different stiffnesses of equipment table, and the results are compared with those obtained

using a conventional vibration force minimization model. Finally, some concluding remarks are

provided.

2. Modeling of vibration isolation system with elastic support structure

2.1 Description of the vibration isolation system

Fig. 1 shows the vibration isolation system considered in the study. The rigid body represents the

vibrating source. The resilient mounts are assumed to possess multidirectional elastic properties with

hysteresis damping. The elastic panel that is simply supported on the floor is used to model the

elastic support structure so as to take its naturally elastic dynamics into account. The rigid body

mechanically couples with the elastic panel through N resilient mounts, and is subject to excitations

during operations of the system. Two local coordinate systems, namely X-Y-Z and X0-Y0-Z0, are used

to describe the motions of the isolation system. The origin of the local coordinate system X0-Y0-Z0 is

taken to coincide with the CG of the rigid body.

2.2 Equations of motion for the vibration isolation system

Fig. 2 illustrates the motion analysis scheme for the vibration isolation system in Fig. 1. The

excitations due to the operations of the system are modeled as an external concentrated force vector

Fig. 1 Schematic diagram of the vibration isolation system
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(fe) applied directly to the CG of the rigid body, giving

(1)

where F is the force, M is the moment, the subscripts x, y, and z represent the components of the

variables in the x-, y-, and z-directions, respectively, and the superscript T denotes the transpose of a

vector or a matrix.

All resilient mounts are vertically orientated and assumed to possess three-directional elastic

properties with hysteresis damping. Thus, the force acting on each resilient mount junction is

characterized by a force junction vector (f) including three linear force components. For the ith

resilient mount, the force junction vector associated with the rigid body-resilient mount junction and

that associated with the elastic panel-resilient mount junction can be written, respectively, as

(2)

and

(3)

where the subscripts r and p represent the rigid body-resilient mount junction and the elastic panel-

resilient mount junction, respectively. Similarly, the velocity at each resilient mount junction is

characterized by a velocity junction vector (v) grouped by three linear velocity components. The

velocity junction vectors at the rigid body-resilient mount junction and the elastic panel-resilient

mount junction are expressed, respectively, as

(4)

(5)

where , and  denote the linear velocities in the X0-, Y0-, and Z0-directions, respectively.

Grouping all rigid body-resilient mount junction force vectors into a single force junction vector

and all rigid body-resilient mount junction velocity vectors into a single velocity junction vector, we

have

fe Fx Fy Fz Mx My Mz, , , , ,[ ]T=

fri Frxi Fryi Frzi, ,[ ]T=

fpi Fpxi Fpyi Fpzi, ,[ ]T=

vri u· ri v· ri w· ri, ,[ ]T=

vpi u· pi v·pi w· pi, ,[ ]T=

u· v·, w·

Fig. 2 The motion analysis scheme for the vibration isolation system shown in Fig. 1
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(6)

Similarly, for the elastic panel-resilient mount junctions, the single force and velocity junction

vectors are as follows

(7)

Using the mobility matrix method (Soliman and Hallam 1968, Gardonio et al. 1997), the

dynamics of the rigid body can be described by the following mobility equation

(8)

where Mr1 and Mr2 are the mobility matrices of the rigid body associated with the rigid body-

resilient mount junction force vector fr and the external concentrated force vector fe, respectively.

For harmonic excitations of the form e jωt, the six degree-of-freedom motion equation of the rigid

body in the local coordinate system X0-Y0-Z0 can be expressed in terms of the velocities of its CG at

a single frequency ω as follows (Harris 2002)

(9)

(10)

(11)

(12)

where Mc is the mass matrix of the rigid body, vc is the velocity vector of the CG of the rigid body,

Ri is the location matrix of force acting on the rigid body by the ith mount, m is the mass of the rigid

body, Ixx, Iyy, and Izz are the moments of inertia of the rigid body with respect to the X0-, Y0-, and Z0-

axes, respectively, and x0i, y0i, and z0i are the position coordinates of the ith rigid body-resilient mount

junction in the local coordinate system X0-Y0-Z0. Combining Eqs. (6) and (9), we have

(13)

fr

fr1

fr2

frN

,  vr

vr1

vr2

vrN

= =… …

fp

fp1

fp2

fpN

,  vp

vp1

vp2

vpN

= =… …

vr Mr1fr Mr2fe+=

jωMcvc Rifri

i 1=

N

∑ fe+=

Mc diag m m m Ixx Iyy Izz, , , , ,( )=

vc u· c v·c w· c θ
·
cx θ

·
cy θ

·
cz, , , , ,[ ]

T
=

Ri

1  0  0

0  1  0

0  0  1

0  z0i  – y0i

z0i  0  x0i–

y0i–   x0i  0

=

jωMcvc Rfr fe+=
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(14)

It is known that the rigid body-resilient mount junction velocity vector vr is related to the velocity

vector vc of the CG of the rigid body by Harris (2002)

(15)

where RT is the transpose of R. Substituting Eq. (15) into Eq. (13), the mobility matrices of the

rigid body in Eq. (8) can be expressed as

(16)

(17)

To facilitate description of the dynamics of the elastic panel, a local coordinate system X-Y-Z is

used as shown in Fig. 1. Accordingly, the mobility equation of the elastic panel in the local

coordinate system X-Y-Z can be expressed as

(18)

(19)

where Mp is the mobility matrix of the elastic panel. It is noted from Eq. (19) that the diagonal

element mpii is the point mobility matrix at the ith elastic panel-resilient mount junction, while the

non-diagonal element mpik is the transfer mobility matrix between the ith elastic panel-resilient

mount junction (i.e., the response point) and the kth elastic panel-resilient mount junction (i.e., the

excitation point). mpik in Eq. (19) can further be expressed as

 (20)

Generally, the flexural wave motion is more important than the in-plane shear and longitudinal

wave motions in the vibroacoustic and power flow analyses of plate-like structures (Koh and White

1996, Gardonio et al. 1997). Hence, the contributions of the two horizontal components of each

elastic panel-resilient mount junction force vector are only modeled as the concentrated moments

about the X- and Y-axes due to the thickness of the elastic panel for the dynamic analysis of the

elastic panel. Consequently, the following relationships among the three components of the ith

elastic panel-resilient mount junction velocity vector hold valid 

(21)

R R1  R2  …  RN[ ]=

vr R
T
vc=

Mr1 1/jω( )RT
Mc

1–
R=

Mr2 1/jω( )RT
Mc

1–
=

vp Mpfp=

Mp

mp11  mp12  …  mp1N

mp21  mp22  …  mp2N

      

mpN1  mpN2  …  mpNN

= … … ……

mpik

mpik

u·Fx
  mpik

u·Fy
  mpik

u·Fz

mpik

v·Fx
  mpik

v·Fy
  mpik

v·Fz

mpik

w· Fx
  mpik

w· Fy
  mpik

w· Fz

= i 1 … N; k, , 1 … N, ,= =( )

u· pi
h

2
---

∂ w· pi

∂ x
-----------–=
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(22)

where h is the thickness of the elastic panel.

Using Eqs. (21) and (22), and according to the mobility formula of finite panel (Cremer et al.

1988), the elements in mpik (Eq. (20)) for an elastic panel with the simply supported boundary

condition can be expressed as

(23a)

(23b)

(23c)

(23d)

(23e)

(23f)

(23g)

(23h)

(23i)

where ωm,n and ϕm,n are the (m, n)th natural frequency and modal shape function of the elastic

panel, respectively;  and  are the partial differentials of ϕm,n with respect to x and y,

respectively; Λ and ηp are the modal mass and the loss factor of the elastic panel, respectively; and

(xi, yi) and (xk, yk) are the location coordinates of the ith and the kth elastic panel-resilient mount

junction in the local coordinate system X-Y-Z, respectively. Λ, ωm,n, ϕm,n, , and  can

further be written as follows 

(24a)

(24b)

v·pi
h

2
---

∂ w· pi
∂ y

-----------–=

mpik

u·Fx jωh
2

4
-----------
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x( )
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2
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2
–[ ]

-------------------------------------------------------
n 1=
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2
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(24c)

(24d)

where a and b are the dimensions of the elastic panel in the X- and Y-directions, respectively;

 is the flexural rigidity of the elastic panel; and ρ, E, and μ are the mass

density, Young’s modulus, and Poisson’s ratio of the elastic panel, respectively. 

For the ith resilient mount, the rigid body-resilient mount junction force fri is related to the

velocity at the rigid body-resilient mount junction vri and that at the elastic panel-resilient mount

junction vpi by

(25)

(26)

where the subscript m represents the resilient mount; Kmi is the complex stiffness coefficient matrix

of the ith resilient mount; kmxi, kmyi, and kmzi are the stiffness coefficients of the ith resilient mount in

the X-, Y-, and Z-directions, respectively; and ηmi is the loss factor of the ith resilient mount.

Utilizing Eqs. (6) and (7), Eq. (25) can be rewritten as

(27)

(28)

According to the force equilibrium principle, the following relationship between the rigid body-

resilient mount junction force fr and the elastic panel-resilient mount junction force fp holds true

(29)

Combining Eqs. (8), (18), (27), and (29), the elastic panel-resilient mount junction velocity vector

can be formulated as

(30)

(31)

From Eqs. (18) and (30), the elastic panel-resilient mount junction force vector fp can be solved.

Then, the total time-averaged power flow from N resilient mounts to the elastic panel can be

expressed as (Goyder and White 1980)

(32)

where the superscript H denotes the transpose and conjugate of a matrix or vector.
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fr 1/jω( )Km vr vp–[ ]–=
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…
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vp Zm Mp
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ZmMr1Mp
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ZmMr2fe=

Zm 1/jω( )Km=

Pt
1
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---Re fp
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3. Statement of vibration power minimization design problem

A design optimization problem, which comprises an objective function and a set of constraints

and/or bounds, can be expressed mathematically as

(33a)

subject to

(33b)

(33c)

where J(k) is the objective function to be minimized, k is the vector including nv design variables,

ci(k) represents the ith equality/inequality constraint, nc is the total number of constraints, and ku

and kl are the upper and lower bounds of the design variables, respectively.

In the design optimization of the vibration isolation system shown in Fig. 1, the total power flow

from the rigid body to the elastic panel is considered as the objective function to be minimized,

whereas the three-directional stiffness coefficients of the resilient mounts are chosen as the design

variables. The upper and lower bounds of the three-directional stiffness coefficients of the resilient

mounts are imposed to the design optimization problem of the isolation system for obtaining a

reasonable solution. The lower bound of the stiffness coefficients is determined by the maximum

static loading capability of the resilient mounts. The upper bound of the stiffness coefficients is also

set to avoid the probable wave effects induced by the exorbitant “stiff” mount (Swanson et al.

1993). To ensure a certain level of motion accuracy during operations of the isolation system, the

movement of the rigid body (i.e., the vibrating machine) is also limited and can be expressed as the

constraints on the dynamic displacement amplitudes of its CG, giving

(34)

(35)

where dmax is the maximum allowable dynamic displacement amplitude and dc is the dynamic

displacement vector of the CG of the rigid body.

Therefore, the design optimization problem can be written as

(36a) 

subject to 

(36b)

(36c)

The above equations give a nonlinear constrained design optimization problem. It is known that

sequential quadratic programming (SQP) algorithm may be the most preferable solver for nonlinear

constrained optimization problem compared to other solvers in terms of efficiency, accuracy, and

minJ k( ), k R
nv∈

ci k( ) 0 i≤ 1 … nc, ,=

kl k ku≤ ≤

dc dmax≤

dc uc vc wc θcx θcy θcz, , , , ,[ ]T=

Pt
k
mi

i 1 … N, ,=( ),
limmin

dc dmax≤

kli kmi kui≤ ≤
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percentage of successful solutions (Schittkowski 1985). The solution of the Kuhn-Tucker (KT)

equations forms the basis of SQP algorithm. In SQP, a quadratic programming (QP) sub-problem

generated through approximating the Hessian matrix of the Lagrangian function with a quasi-

Newton updating method is solved in each major iteration (Fletcher 1987). In this study, SQP

algorithm is used to solve the nonlinear constrained optimization problem given by Eq. (36).

4. Design case study

4.1 Application background

In this section, the vibration power minimization model developed in Sections 2 and 3 is applied

to the design optimization of an X-Y motion stage-based vibration isolation system used in ASM

wire-bonding equipment. The wire-bonding equipment is one of the most important types of

automation equipment for semiconductor manufacturing. To facilitate a standard operational cycle

for bonding a metallic wire between a first bonding site typically on an integrated circuit (IC) and a

second bonding site typically on a substrate, it is necessary for the moving part of the X-Y motion

stage to perform a 2 mm translation from the first bonding site to the second bonding site within 30

ms (Choy and Wong 2004). This requires acceleration as high as 20 m/s2 that, in turn, results in

large dynamic forces transmitted from the X-Y motion stage to the equipment table due to the effect

of inertia. This highly accelerated X-Y motion stage needs to be installed on a relatively flexible

equipment table via multiple resilient mounts so as to mitigate vibration transmission during high-

speed operations. Therefore, design optimization of this type of vibration isolation system is

technologically important. The proposed vibration power minimization model may be more

appropriate in comparison with the conventional vibration force minimization models.

4.2 Optimization solution method

Referring to Fig. 1, the X-Y motion stage (modeled as the rigid body) is installed in the middle of

the equipment table (modeled as the elastic panel) through multiple resilient mounts (modeled using

four identical resilient mounts). Table 1 shows the geometric and material parameters of such a

specific vibration isolation system. The X-Y motion stage is assumed to be a rectangular block made

of stainless steel. The equipment table is treated as a rectangular plate made of aluminum alloy

Table 1 Geometric and material parameters of the X-Y motion stage-based vibration isolation system

System components Geometric parameters Material parameters

Rigid body
(X-Y motion stage)

Length ar 500 mm Density ρr 7800 kg/m3

Width br 200 mm

Height hr 100 mm

Elastic panel
(Equipment table)

Length a 1200 mm Young’s modulus E 71 GPa

Width b 1000 mm Density ρp 2700 kg/m3

Thickness h 5 mm Poisson’s ratio μ 0.3

Loss factor ηp 0.005

Resilient mounts Loss factor ηm 0.05
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7075. Table 2 gives the position coordinates of each resilient mount junction. Based on the

application background described in the previous paragraph, and according to the experimental

modal analysis results performed by Choy and Wong (2004) in ASM, a representative motion status

of the moving part, i.e., a translational motion of the moving part in the x-y direction, is selected as

a specific case in this study. This case leads to F = [280 N, 160 N, 500 N, −16 Nm, 14 Nm,

0 Nm]T, which denotes force excitations in the x-, y-, and z-directions and moment excitations about

the x- and y-axes. Besides, the frequency range of interest for the design optimization is [1, 200] Hz

as the elastic dynamics of the equipment table is commonly pronounced in this frequency range

(Choy and Wong 2004).

The upper and lower bounds of the three-directional stiffness coefficients of each resilient mount

are known to be

(37)

and the constraints on the dynamic displacement amplitudes of the CG of the X-Y motion stage are

(38)

In order to reduce the errors induced by the truncated modes of the equipment table, the first 68

modes of the equipment table, as tabulated in Table 3, were used in the analysis with the highest

modal frequency near 1000 Hz.

The design optimization problem (Eq. (36)) was then solved by assuming one excitation

frequency at a time starting from 1 to 200 Hz. This led to a total of 200 optimization problems to

be solved. It is known from Eq. (32) that the objective function is not continuously differentiable.

Hence, the solution of each optimization problem obtained using SQP algorithm depends on the

starting point of design variables and may not be globally minimized. To obtain the global

minimum of each optimization problem at the maximum probability, multiple equidistant starting

points of design variables (39 in total) in the stiffness range of 50-1000 kN/m were used in each

optimization problem. The solution corresponding to the minimum of the objective function values

obtained from these different starting points was then regarded as the “global” optimal solution of

an optimization problem.

In the present study, a conventional vibration force minimization model was also examined with

the same constraints and optimization solution method so as to provide a fair comparison with the

proposed vibration power minimization model. In the conventional vibration force minimization

model, the support structure (the equipment table in the current design case study) is treated as a

rigid panel rather than an elastic panel, and the total force transmitted to such a rigid panel is

50 kN/m( ) kmx kmy kmz, ,( ) 1000 kN/m( )≤ ≤

uc 2 mm≤ , vc 2 mm≤

Table 2 Position coordinates of the resilient mount junctions

Resilient mount number
Position coordinates (mm)

x0i y0i z0i xi yi zi

i = 1 −250 −100 −50 350 400 25

i = 2 250 −100 −50 850 400 25

i = 3 250 100 −50 850 600 25

i = 4 −250 100 −50 350 600 25
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minimized. The corresponding design problem is as follows 

(38a)

subject to 

(38b)

(38c)

where  is the total transmitted force and  is the ith rigid panel-resilient mount

junction force vector.

5. Results and discussion

Fig. 3 shows the frequency dependence of the total power flow to the equipment table obtained

from the proposed vibration power minimization model (Eq. (36)) and the conventional vibration

force minimization model (Eq. (38)). It is clear that the total power flow can be significantly

Ft
k
mi

i 1 … N, ,=( ),
limmin

dc dmax≤

kli kmi kui≤ ≤

Ft fpi
T
fpi( )

1/2

i 1=

N

∑= fpi

Table 3 Modal frequencies of the equipment table

Order
m     n       ωm,n/2π
                    (Hz)

Order
m     n       ωm,n/2π
                    (Hz)

Order
m     n        ωm,n/2π
                    (Hz)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1      1         20.65  
2      1         46.04  
1      2         57.22  
2      2         82.61  
3      1         88.36  
1      3        118.15  
3      2        124.93  
2      3        143.55  
4      1        147.61  
4      2        184.17  
3      3        185.86  
1      4        203.47  
5      1        223.78  
2      4        228.86  
4      3        245.11  
5      2        260.35  
3      4        271.18  
1      5        313.16  
6      1        316.88  
5      3        321.28  
4      4        330.43  
2      5        338.55  
6      2        353.45  
3      5        380.87  

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

5      4        406.60  
6      3        414.39  
7      1        426.91  
4      5        440.12  
1      6        447.23  
7      2        463.48  
2      6        472.62  
6      4        499.70  
3      6        514.94  
5      5        516.29  
7      3        524.41  
8      1        553.87  
4      6        574.18  
8      2        590.43  
1      7        605.67  
6      5        609.39  
7      4        609.73  
2      7        631.06  
5      6        650.36  
8      3        651.37  
3      7        673.38  
9      1        697.75  
7      5        719.42  
4      7        732.62  

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

9      2        734.32
8      4        736.69
6      6        743.46
1      8        788.48
9      3        795.25
5      7        808.80
2      8        813.88
8      5        846.38
7      6        853.49
3      8        856.19
10    1        858.56
9      4        880.57
10    2        895.13
6      7        901.90
4      8        915.44
10    3        956.07
8      6        980.44
9      5        990.26
5      8        991.61
1      9        995.68
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reduced in the frequency ranges of 5-9, 13-41, 52-61, 88-90, 118-121, and 148-166 Hz by

employing the proposed vibration power minimization model. Specifically, the maximum reduction

in the total power flow is as large as 43 dB at 34 Hz. The observation indicates that the elastic

dynamic characteristics of the equipment table have a crucial effect on the design optimization of

the vibration isolation system at these frequencies. The smaller differences in the total power flow at

other frequencies suggest that the elasticity of the equipment table merely exerts a slight influence

on the design optimization. Nevertheless, the proposed vibration power minimization model

provides a comparatively better “optimized” design for the vibration isolation system equipped with

a relatively flexible equipment table. Fig. 4 illustrates the comparisons of the dynamic displacement

amplitudes uc and vc of the CG of the X-Y motion stage obtained from the proposed and

conventional vibration minimization models. It is found that the constraints on the dynamic

displacement amplitudes of the CG of the X-Y motion stage are active in the first two frequency

ranges of 5-9 and 13-41 Hz. The differences in the results predicted by the two vibration

Fig. 3 Frequency dependence of the total power flow to the equipment table obtained from the proposed
vibration power minimization model and the conventional vibration force minimization model

Fig. 4 Comparisons of the dynamic displacement amplitudes (a) uc and (b) vc of the CG of the X-Y motion
stage obtained from the proposed vibration power minimization model and the conventional vibration
force minimization model. The horizontal lines show the constraints imposed on uc and vc 
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minimization models are also noticeable in these two frequency ranges. In more details, the

proposed vibration power minimization model gives larger uc (Fig. 4(a)) and vc (Fig. 4(b)) in the

first two frequency ranges of 5-9 and 13-41 Hz compared to the conventional vibration force

minimization model except that uc of the conventional vibration force minimization model is greatly

enhanced and even overpasses the preset constraint of ≤2 mm (Eq. (38)) at 15 Hz. At elevated

frequencies of >60 Hz, both models give almost the same predictions of uc and vc as expected.

In fact, the developed vibration power minimization model is based on the assumption of an

elastic support structure, while the conventional vibration force minimization model assumes a rigid

support structure. When the equipment table is relatively flexible, there exist significant differences

in the total power flow between the two vibration minimization models, as evidenced in Fig. 3. In

order to further examine the effects of the dynamic characteristics of the equipment table on the

application potential of these two vibration minimization models, two additional case studies were

also performed by varying the stiffness of the equipment table. In the first case we increased the

stiffness of the equipment table by 10 times, and in the second case we further increased the

stiffness by 100 times. The first 46 modes of the equipment table, with the highest modal frequency

near 2000 Hz, were used in the first case. For the second case, the first 15 modes of the equipment

table with the highest modal frequency near 2500 Hz were considered. The design results are shown

in Figs. 5 and 6 and Figs. 7 and 8 for the first and second cases, respectively.

Fig. 5 shows the comparison of the total power flow to the equipment table between the proposed

vibration power minimization model and the conventional vibration force minimization model after

an increase of 10 times in the table stiffness. Compared to Fig. 3, it is seen that when a relatively

stiff equipment table is used, the total power flow that can be minimized by the proposed vibration

power minimization model becomes less significant. While the minimization effect is still obvious

in the frequency ranges of 12-15, 66-75, and 146-152 Hz, the maximum reduction in the total

power flow is only 33 dB at 71 Hz (compared to 43 dB at 34 Hz in Fig. 3). The reason may be

explained by the increase in table stiffness, which reduces the number of modes of the equipment

table allowed in the 200 Hz frequency range. Consequently, the effects of elastic dynamics of the

equipment table on the design optimization of the vibration isolation system are weakened. From

Fig. 5 Frequency dependence of the total power flow to the equipment table obtained from the proposed
vibration power minimization model and the conventional vibration force minimization model after an
increase of 10 times in the stiffness of the equipment table
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Fig. 6, it is found that the proposed vibration power minimization model leads to larger uc in the

13-60 Hz range (Fig. 6(a)) and vc in the 13-46 Hz range (Fig. 6(b)). The differences in uc and vc at

other frequencies are insignificant. No deviations of uc and vc from the preset constraints of ≤2 mm

(Eq. (38)) are observed for the conventional vibration force minimization model.

A similar comparison is plotted in Fig. 7 after an increase of 100 times in the table stiffness. As

the first modal frequency of the equipment table is beyond 200 Hz (i.e., at 206 Hz), the equipment

table behaves essentially as a rigid support structure in the frequency range of interest. As expected

and shown in Fig. 7, the differences in the total power flow to the equipment table obtained by the

two vibration minimization models are insignificant for all the frequencies. For such a stiffer

equipment table, the design optimization based on the proposed vibration power minimization

model provides almost the same results as the conventional vibration force minimization model in

Fig. 6 Comparisons of the dynamic displacement amplitudes (a) uc and (b) vc of the CG of the X-Y motion
stage obtained from the proposed vibration power minimization model and the conventional vibration
force minimization model after an increase of 10 times in the stiffness of the equipment table. The
horizontal lines show the constraints imposed on uc and vc

Fig. 7 Frequency dependence of the total power flow to the equipment table obtained from the proposed
vibration power minimization model and the conventional vibration force minimization model after an
increase of 100 times in the stiffness of the equipment table
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term of total power flow. Similar to Fig. 6, the proposed vibration power minimization model still

results in larger uc in the 13-60 Hz range (Fig. 8(a)) and larger vc in the 13-46 Hz range (Fig. 8(b)).

Moreover, neither the proposed nor conventional vibration minimization model causes the

deviations of uc and vc from the preset constraints (Eq. (38)). 

6. Conclusions

A vibration power minimization model suitable for investigation of design optimization of a

vibration isolation system formed by a vibrating source, multiple resilient mounts, and an elastic

support structure has been developed and applied to semiconductor wire-bonding equipment system

composed of an X-Y motion stage, multiple resilient mounts, and an equipment table. The objective

of design optimization has been set to minimize the total power flow from the X-Y motion stage to

the equipment table through all resilient mounts. The stiffness coefficients of the resilient mounts

have been selected as the design variables and imposed with an upper bound and a lower bound.

The dynamic displacement amplitudes of the CG of the X-Y motion stage have been constrained as

well. The total power flow minimized by the developed vibration power minimization model has

been computed at each frequency interval in the concerned frequency range for three different

stiffnesses of equipment table. The computed results have been compared with those obtained using

a conventional vibration force minimization model. The concluding remarks are as follows:

1. When the equipment table is relatively flexible, the total power flow minimized by the

developed vibration power minimization model is much smaller than that minimized using the

conventional vibration force minimization model at some critical frequencies due to the effects

of elastic dynamic characteristics of the equipment table on the design optimization at these

frequencies. The maximum reduction in total power flow of 43 dB is achieved in the developed

model compared to the conventional model.

Fig. 8 Comparisons of the dynamic displacement amplitudes (a) uc and (b) vc of the CG of the X-Y motion
stage obtained from the proposed vibration power minimization model and the conventional vibration
force minimization model after an increase of 100 times in the stiffness of the equipment table. The
horizontal lines show the constraints imposed on uc and vc
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2. When a harder equipment table is used, the effects of elasticity of the equipment table on the

design optimization is weakened, as evidenced by a significant reduction in the number of

modes of the equipment table presented in the frequency range of interest. As a result, the

developed vibration power minimization model generates almost the same predictions on the

total power flow as the conventional vibration force minimization model in the concerned

frequency range.
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