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Abstract. In this study, a numerical procedure based on the finite element method for materially and
geometrically nonlinear analysis of reinforced and prestressed concrete slender columns with arbitrary
section subjected to combined biaxial bending and axial load is developed. In order to overcome the low
computer efficiency of the conventional section integration method in which the reinforced concrete
section is divided into a large number of small areas, an efficient section integration method is used to
determine the section tangent stiffness. In this method, the arbitrary shaped cross section is divided into
several concrete trapezoids according to boundary vertices, and the contribution of each trapezoid to
section stiffness is determined by integrating directly the trapezoid. The space frame flexural theory is
utilized to derive the element tangent stiffness matrix. The nonlinear full-range member response is traced
by an updated normal plane arc-length solution method. The analytical results agree well with the
experimental ones.

Keywords: slender concrete column; section integration method; finite element; arc-length algorithm;
nonlinear analysis.

1. Introduction

With the quick development of modern society and economy, slender reinforced and prestressed

columns are more and more frequently used to meet the requirement of people. Due to the complex

material constitutive laws and the effect of secondary moments of axial force, the accurate analysis

of slender concrete columns is considerably complicated. In past years, several analytical and

numerical models for such columns have been developed. Some investigators (Ahmad and

Weerakoon 1995, Rodriguez and Aristizabal 2001b) used analytical approaches based on the

moment-curvature relationship to predict the inelastic response and failure mode of reinforced and

prestressed concrete slender columns. However, the determination of the moment-curvature

relationship of a column cross-section is quite difficult because the axial force, an important factor

influencing the moment-curvature relationship, is a variable. Tsao and Hsu (1994) developed a

numerical model for strength and deformation analysis of biaxially loaded slender columns with

square and L-shaped sections, using combined finite segment and finite difference methods. Wang
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and Hsu (1998) proposed a numerical analysis employing a B-spline function to investigate the

nonlinear behavior of reinforced concrete columns. In their model, a multiplier was used for section

equilibrium equation to reduce the element number. Chuang and Kong (1998) presented a numerical

method for slender columns under uniaxial bending. The model was based on a simple

transformation concept by transforming the concrete and steel of the critical section into an

equivalent materials. Kim et al. (1995, 2000) outlined a plane frame element model and a space

frame element model for reinforced concrete columns subjected to uniaxial bending and biaxial

bending, respectively.

In conventional numerical models, the cross section of a concrete column is divided into a large

number of small areas to integrate section equilibrium equations. However, this method has some

limitations in application to large structures. In this paper, an efficient section model is introduced to

determine the section stiffness. In this method, the arbitrary shaped cross section is divided into

several concrete trapezoids according to boundary vertices, and the contribution of each trapezoid to

section stiffness is determined by integrating directly the trapezoid. As a result, the element number

of a concrete cross section is greatly reduced and the computational efficiency is substantially

improved. On this basis, a numerical model using the space frame element theory is developed for

the full-range analysis of biaxially loaded reinforced and prestressed concrete slender columns with

arbitrary section.

2. Assumptions

1) Plane section remains plane after deformation.

2) Perfect bond exists between the steel and the surrounding concrete. Based on this assumption,

the strain in the reinforcing steel εs is equal to the strain in the surrounding concrete εcs, and the

strain in the prestressing steel εp is equal to the strain in the surrounding concrete εcp plus the initial

prestrain εp0; thus

(1a)

(1b)

3) The stress-strain relationship for concrete in compression suggested by Hognestad (1951) is

adopted in this study. It is indicated by Eqs. (2a) and (2b)

For, 

(2a)

For 

(2b)

Where σc = concrete stress; εc = concrete strain; fc = concrete cylindrical compressive strength; εc0 =

concrete strain corresponding to stress fc; εu = ultimate concrete compressive strain; and γ =

parameter depending on the degree of confinement of the concrete.
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4) The stress-strain relationship for concrete in tension is used as suggested by Vecchio and

Collins (1986) by

For ,

(3a)

For ,

(3b)

Where Ec = concrete elastic modulus; ft = concrete tensile strength; and εcr = concrete cracking strain.

5) The stress-strain relationship for prestressing steel is expressed by a trilinear curve, as shown in

Fig. 1, in which σp and εp = stress and strain of the prestressing steel, respectively; Ep = elastic

modulus of the prestressing steel; and fpu = ultimate tensile strength of the prestressing steel.

6) The stress-strain relation for reinforcing steel in both tension and compression is assumed to be

elastic-perfectly plastic, as indicated by

For ,

(4a)

For ,

(4b)

Where σs and εs = stress and strain of the reinforcing steel, respectively; Es, fy, εy = elastic modulus,

yield strength and yield strain of the reinforcing steel, respectively.

7) The effects of shear and torsion deformations are neglected.

εc εcr≤

σc Ecεc=

εc εcr>

σc
1

1 500εc+

--------------------------ft=

εs εy≤

σs Esεs=

εs εy>

σs fy=

Fig. 1 Stress-strain curve of prestressing steel
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3. Finite element formulations

3.1 Section tangent stiffness equation

The section model suggested by Rodriguez et al. (1999, 2000, 2001a), as shown in Fig. 2, is

utilized in this study. The geometrical centroid o of the cross section is chosen as the origin of the

section global yz-system. The section local coordinate system  is also defined to determine

the contribution of concrete to section stiffness. The ξ-axis represents the neutral axis that makes an

angle α with the y-axis and produces cross points m and n with the y- and z-axes, respectively,

while the η-axis is defined by the line that connects the farthest vertex e in compression with the

perpendicular to the neutral axis. Two consecutive vertices i and i + 1 define the straight line i:

. The two lines drawn perpendicular from vertices i and i + 1 to the neutral axis and the

line segment i define the trapezoid i. Thus, the cross section is divided into several trapezoids

according to section boundary vertices.

According to plane section hypothesis, the concrete strain εc at any fiber of section is given by

(5)

where εo = strain at the geometrical centroid; φy, φz = curvatures corresponding to My, Mz, the

bending moments about the y- and z-axes, respectively.

At the place of neutral axis, εc = 0, that is

(6)

o′ ξ η,( )

η aiξ bi+=

εc εo yφz zφy+ +=

εo yφz zφy+ + 0=

Fig. 2 Model for arbitrary prestressed concrete section
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With Eq. (6), ym, zn are obtained as

 

and hence

(7)

from Fig. 2,

where c is the distance between the farthest vertex e in compression and the origin o' of section

local coordinate system.

In section local coordinate system, the concrete strain εc can be expressed as

(8)

The contribution of concrete trapezoid i to the axial force Nci, the bending moment Nciξ about the

ξ-axis and the bending moment Nciη about the η-axis can be respectively obtained by integrating the

trapezoid i as

(9a)

(9b)

(9c)

Explicit forms of the integrals in Eq. (9) can be found in Rodriguez et al. (1999, 2001).

The equilibrium equations in the cross section for axial force N, bending moments My, Mz can be

expressed as

(10a)

 (10b)

(10c)

where nc, ns, np = total numbers of the concrete trapezoids, reinforcing steel and prestressing steel,

respectively; σcs, σcp = stresses in the concrete surrounding the reinforcing steel and prestressing

ym

εo
φz

----, zn–
εo
φy

----–= =

tanα
zn

ym

-----
φz

φy

----= =

c yetanα ze zn–+ cosα yo′
ye csinα–= zo′

ze ccosα–=, ,=

ξi yi yo′
–( )cosα zi zo′

–( )sinα, ηi– zi zo′
–( )cosα yi yo′

–( )sinα+= =

ai ηi 1+
ηi–( )/ ξi 1+

ξi–( ), bi ηi aiξi–= =

εc
φy

cosα
------------η=

Nci σcdξdη
0

aiξ bi+

∫ξi

ξi 1+

∫=

Mciξ σcηdξdη
0

aiξ bi+

∫ξi

ξi 1+

∫=

Mciη σcξdξdη
0

aiξ bi+

∫ξi

ξi 1+

∫=

N Nci

i 1=

nc

∑ σsi σcsi–( )Asi

i 1=

ns

∑ σpi σcpi–( )Api

i 1=

np

∑+ +=

My sinα Mciη

i 1=

nc

∑ cosα Mciξ

i 1=

nc

∑ zo′
Nci

i 1=

nc

∑ σsi σcsi–( )Asizsi
i 1=

ns

∑ σpi σcpi–( )Apizpi
i 1=

np

∑+ + + +=

Mz cosα Mciη

i 1=

nc

∑ sinα Mciξ

i 1=

nc

∑ yo′
Nci

i 1=

nc

∑ σsi σcsi–( )Asiysi

i 1=

ns

∑ σpi σcpi–( )Apiypi

i 1=

np

∑+ + + +=



592 T.J. Lou and Y.Q. Xiang

steel, respectively; σs, σp = stresses in the reinforcing steel and prestressing steel, respectively; and

As, Ap = areas of the reinforcing steel and prestressing steel, respectively.

The right sides in Eqs. (10a-c) can be expressed as the functions of axial strain εo and curvatures

φy, φz. Assuming the functions are represented by f, g and h, respectively, one has

(11a)

(11b)

(11c)

Differentiating Eq. (11) yields section tangent stiffness equation using a matrix notation as

(12)

where

(13)

(14)

3.2 Element tangent stiffness equation

A space frame element with two end nodes i and j defined in element coordinate system (x, y, z),

as shown in Fig. 3, is used. Let l be the element length before deformation, and u, v and w be the x,

y and z displacements of any point in the element, respectively. Assuming u is a linear function of

x, and v, w are cubic functions of x, there are a total of ten coefficients that can be determined by

N f εo φy φz, ,( )=

My g εo φy φz, ,( )=

Mz h εo φy φz, ,( )=

dF DdC=

F N  My  Mz[ ]T= , C εo  φy  φz[ ]T=

D

∂ f/∂εo  ∂ f/∂φy  ∂f/∂φz

∂g/∂εo ∂g/∂φy  ∂g/∂φz

∂h/∂εo ∂h/∂φy  ∂h/∂φz

=

Fig. 3 Space frame element before and after deformations
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element boundary condition. Then displacements u, v and w can be expressed in terms of element

nodal displacements as

(15)

where

(16)

(17)

Section strains can be expressed as derivatives of displacements while the high-order derivatives

is ignored

(18)

Combining Eqs. (15) and (18), the following strain-nodal displacement transition equation can be

obtained

(19)

where

(20)

, (21)

(22)

Variational form of Eq. (19) is

(23)

Based on the virtual work principle, the following element equilibrium equation can be

established
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(24)

where Pe = element nodal load vector

Substituting Eq. (23) into Eq. (24) yields

(25)

Differentiating Eq. (25) gives

(26)

Substituting Eqs. (12) and (23) into Eq. (26) yields element tangent stiffness equation as

(27)

where

(28a)

(28b)

(28c)

4. Solution algorithm

4.1 Basic formulations

An updated normal plane arc-length method is adopted in this study (Lam and Morley 1992,

Memon and Su 2004). As in displacement control, the arc-length solution procedure treats the load

factor λ as an additional variable. Let u be the nodal displacement vector, and P, Q be the specified

nodal load and internal resisting load vectors, respectively. The out-of-balance loads R is given by

(29)

The predicted vector for the ith iteration is defined as

(30)

in which  and  are the incremental load factor and incremental displacements, respectively,

after the ith iteration.

The iterative vector between ith and (i+1)th iterations is defined as
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where

(32a)

(32b)

Let the iterative vector be normal to the predicted vector 

(33)

Substituting Eqs. (30) and (31) into Eq. (33) yields the arc-length constraint equation as

(34)

To keep the symmetric banded nature of the system stiffness matrix,  is dismembered into two

parts as

(35)

where

(36)

in which Ki is the member tangent stiffness matrix for the (i+1)th iteration; and Ri is the out-of-

balance loads immediately after the ith iteration.

Substituting Eq. (35) into Eq. (34) gives

(37)

The desired incremental displacements and incremental load factor after the (i+1)th iteration can

be respectively acquired by

(38a)

(38b)

4.2 First iteration from converged point

In each arc-length increment step, the iterative procedure based on the Newton-Raphson method

starting from the last converged point ( ) is proceeding to eliminate the out-of-balance loads.

According to geometrical relation in load-displacement space, the following equation can be

obtained for the first iteration
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where ΔL = specified arc-length for the current increment, which is applied at the first iteration and

varies at the subsequent iterations. Notice that

(40)

where K0= member tangent stiffness matrix for the first iteration, which is formed from the last

converged point; and .

Substituting Eq. (40) into Eq. (39) gives

(41)

and hence

(42)

The sign of  is chosen to enable the solution forward, and it is selected if

(43)

where  and  are the incremental load factor and incremental displacements, respectively,

of the previous increment.

5. Comparison with test results

In an experimental program by Lin and Lakhwara (1966), two slender partially prestressed

concrete columns, designated as columns I and II, were tested to failure by uniaxially eccentric

loading. Both columns were 3073.4 mm long, and had the same section with the same prestressing

and reinforcing steel, as shown in Fig. 4. The end eccentricities of columns I and II were 76.2 mm

and 50.8 mm, respectively. The material properties were as follows: Ec = 39.8 GPa, ft = 4.0 MPa,

fc = 42.1 MPa, εc0 = 0.002, εu = 0.0033, γ = 0.8; Es = 200 GPa, fy = 352 MPa; Ep = 180 GPa, fpu =

u1Δ λ1Δ K0

1–
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2
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P 0>+
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Fig. 4 Dimensions and steel details of column specimens (Lin and Lakhwara 1966)
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1227 MPa, and effective prestress σpe = 786.6 MPa. Each column is subdivided into sixteen frame

elements. The experimental and theoretical load-deflection curves for columns I and II are shown

in Figs. 5 and 6, respectively. The comparisons show satisfactory agreement between the

experimental and theoretical curves. The theoretical results of moment-curvature curves of the two

columns are given in Fig. 7. Some numerical results (moment M, load P, midheight deflection v

and curvature φ) on different response stages including cracking of the concrete in tension,

yielding of the reinforcing steel and crushing of the concrete in compression of the column

specimens are listed in Table 1.

Tsao and Hsu (1994) tested six square (C series) and eight L-shaped (B series) slender columns

under combined biaxial bending and axial compression to examine the behavior of the columns. All

test specimens are 1219.2 mm long and the cross sections are shown in Fig. 8. The end conditions

are pin-ended. The material properties and the initial eccentricities ey, ez at the ends of the test

columns are listed in Table 2. Assume εc0 = 0.002, εu = 0.0045, γ = 0.45, and Es = 200 GPa. Each

test specimen is divided into sixteen space frame elements and the numerical analysis is conducted

Fig. 5 Comparison of the experimental and
computational load-deflection response for
specimen I

Fig. 6 Comparison of the experimental and
computational load-deflection response for
specimen II

Fig. 7 Theoretical moment-curvature curves of columns I and II
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using the proposed numerical model. The comparisons of the experimental and computational

maximum loads Pmax and corresponding midheight deflections v and w for seven L-shaped and six

Table 1 Numerical results on different response stages of column specimens (Lin and Lakhwara 1966)

Specimen
number

Stages
M

(kN-m)
P

(kN)
v

(mm)
φ

(10-6/mm)

Cracking 6.02 75.45 3.67 3.13

I Yielding 26.28 242.97 32.5 31.30

Crushing 25.00 220.65 38.0 48.56

Cracking 6.59 120.50 3.94 3.38

II Yielding 26.04 334.05 27.6 27.21

Crushing 27.50 325.60 34.2 38.35

Fig. 8 Square and L-shaped specimen sections (Tsao and Hsu 1994)

Table 2 Design parameters for column specimens (Tsao and Hsu 1994)

Specimen 
number

fy
(MPa)

fc
(MPa)

ft
(MPa)

Ec

(GPa)
ey

(mm)
ez

(mm)

B2 434.39 25.07 2.13 32.0 21.46 46.05

B3 434.39 26.79 2.28 32.5 26.95 26.95

B4 434.39 26.79 2.28 32.5 35.92 35.92

B5 441.28 29.35 2.49 33.5 8.99 8.99

B6 441.28 29.35 2.49 33.5 17.96 17.96

B7 441.28 29.21 2.48 33.5 15.47 20.14

B8 441.28 29.21 2.48 33.5 30.94 40.31

C1 503.33 19.11 1.62 29.5 9.73 23.47

C2 503.33 18.58 1.58 29.0 17.96 17.96

C3 503.33 29.04 2.47 33.5 35.92 35.92

C4 420.6 25.51 2.17 32.2 17.96 17.96

C5 420.6 25.51 2.17 32.2 19.43 46.94

C6 420.6 25.51 2.17 32.2 9.73 23.47
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square specimens are given in Table 3. The maximum loads and corresponding midheight

deflections predicted by the proposed method show a good agreement with the experimental data.

Figs. 9-11 show the comparisons of the experimental load-deflection curves and the computational

predictions for specimens B2, C4 and C5, respectively. It can be seen in Figs. 9-11 that the

proposed numerical procedure well reproduces the response of the test specimens throughout their

elastic, inelastic and failure load ranges.

Table 3 Comparisons of the experimental and computational results for column specimens (Tsao and Hsu
1994)

Specimen 
number

Pmax (kN) v (mm) w (mm)

Test Analysis
Error
(%)

Test Analysis
Error
(%)

Test Analysis
Error
(%)

B2 44.68 44.21 −1.05 17.5 14.5 −17.14 10.2 9.8 −3.92

B3 55.89 54.68 −2.17 18.3 16.3 −10.93 7.1 7.8 9.86

B4 44.10 45.06 2.18 20.8 18.1 −12.98 9.7 8.3 −14.43

B5 124.35 114.75 −7.72 9.4 10.1 7.44 5.1 5.5 7.84

B6 70.06 72.23 3.10 15.5 13.9 −10.32 7.1 6.4 −9.86

B7 70.02 73.47 4.93 12.2 11.2 −8.20 6.9 7.1 2.90

B8 45.86 45.07 −1.72 16.5 15.2 −7.88 11.7 9.6 −17.95

C1 67.66 66.59 −1.58 6.1 7.1 16.39 17.3 16.2 −6.36

C2 55.89 58.73 5.08 11.9 12.8 7.56 12.4 12.8 3.22

C3 39.19 42.73 9.03 13.2 14.0 6.06 14.2 14.0 −1.41

C4 82.92 80.22 −3.26 9.7 9.0 −7.22 10.2 9.0 −11.77

C5 46.68 46.22 −0.99 9.7 9.0 −7.22 16.3 13.2 −19.02

C6 81.40 77.45 −4.85 7.6 7.1 −6.58 14.0 12.6 −10.00

Fig. 9 Comparison of the experimental and computational load-deflection response for specimen B2. (a) y
direction, (b) z direction
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6. Conclusions

A finite element model for nonlinear full-range analysis of reinforced and prestressed concrete

slender columns with arbitrary section subjected to combined biaxial bending and axial compression

is developed. Both material and geometrical nonlinearities are taken into consideration. With

nonlinear stress-strain relationship for concrete, prestressing and reinforcing steel, an excellent

section model was introduced to determine the section tangent stiffness matrix by directly

integrating the trapezoids divided from the concrete section according to boundary vertices. The

nonlinear space frame element is used to derive the element tangent stiffness matrix that can be

partitioned into three sub-matrices reflecting three different nonlinear effects. An updated normal

plane arc-length method is incorporated into the finite element procedure to trace the full-range

Fig. 10 Comparison of the experimental and computational load-deflection response for specimen C4. (a) y
direction, (b) z direction

Fig. 11 Comparison of the experimental and computational load-deflection response for specimen C5. (a) y
direction, (b) z direction
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response of the columns. Some test columns are analyzed and the accuracy and effectiveness of the

proposed procedure is verified.
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