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eigenvalues. A reduced set of output parameters characterizing the defect is used as a regularization
technique to drastically overcome noise problems that appear in imaging techniques. A deconvolution
scheme from an undamaged specimen overrides uncertainties about the input signal and other coherent
noises. This approach provides the advantage that it is not necessary to visually identify the portion of the
signal that contains the information about the defect. The theoretical model for Quantitative nondestructive
evaluation, the relationship between the real and ideal models, the finite element method (FEM) for the
forward problem, and inverse procedure for detecting the defects are developed. The theoretical
formulation is experimentally verified using dynamic responses of a steel plate under impact loading at
several points. The signal synthesized by FEM, the residual, and its components are analyzed for different
choices of time window. The noise effects are taken into account in the inversion strategy by designing a
filter for the cost functional to be minimized. The technique is focused toward a exible and rapid
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1. Introduction 

In the field of nondestructive evaluation (NDE), it is a common practice to characterize the

internal defects using a stress wave induced by an impact or other mechanical load and interpreting

the signature of the signal returned from the body. In usual NDE techniques, a great amount of

information contained in the signal is neglected. This rich data may be crucial to combat the noise

that hide difficult defects. This paper makes an effort to integrate all the information recorded in the

measurements in a generalized processing or inversion scheme. 

This work is aimed at the study of mechanical response, i.e., the propagation of elastic waves,

which governs the well known impact testing detection techniques. The reason for the choice is that

the importance of the defect as well as the remaining lifecycle are directly related to the mechanical

condition, which affects most directly the propagation of waves, above other physical properties and

principles that support other NDE techniques. At this point one may distinguish two ways of

tackling any problem of identification (for instance impact testing, modal analysis or ultrasonics):

one studying the exact problem solving direct ones in an iterative way as described in this paper,

and the deduction of a simplified relationship between the excitation and the response such as

transition function which substitutes the solution of a direct problem (Wooh et al. 1994, 1997, 2001,

Eriksson et al. 1995, Boström et al. 2001, Kim et al. 2006). 

The concept of numerical simulations in experimental NDE has previously been used successfully

by a variety of investigators. Lee and Wooh (2005) identified structural damage using the combined

FEM and microgenetic algorithms. Some interesting works study numerical tests for detecting

defective beams or truss structures as well (Suh et al. 2000, Friswell et al. 1997, 1998, Chou and

Ghaboussi 2001, Krawczuk 2002). Very simple numerical-experimental vibration analysis has been

used in academic examples as well as practical civil structures (Ren et al. 2002, Maeck et al. 2001).

Friswell et al. (1997, 1998) used simple measured eigenfrequencies comparisons from impact

testing to successfully identify a defect in a clamped plate. Li et al. (2002) pointed out the

difficulties and limitations of standard mode shape measurements for defect identification, and

propose some new indexes based on the bending moment. Wendel et al. (1997) used training neural

networks for detecting damages. On the other hand, Kimoto and Hirose (2000) pointed out the

difficulties in the boundary conditions of the model, and they modeled transmitters as a distributed

traction for the emitter and a weighting function on the displacements for the receiver. In this

approach, a transfer function is also inserted for the transducer-specimen system, as introduced by

Schmerr (1998). This transfer function is also referred to as a linear time-shift invariant (LTI) and is

used as a Green function to average within the transducer surface. Using these techniques they

obtain variations between the experimental and numerical signals of the order of 20% with respect

to the maximum signal. They also introduced averaging of computations to enhance the results.

Zhao et al. (1995) used the velocity instead of the displacement to model the receiver. Some efforts

were made by Rus et al. (2004) to study which boundary conditions correctly simulate the effect of

the transducer on the specimen model. The basis for this hypothesis and the linearity of the system

are reviewed in the present paper. 

The existing methods for damage localization mainly focus on finding differences between the

undamaged and the damaged structure from mode shapes, deformed shapes, etc. Backtracking

techniques like finding the load vector that gives an unchanged response are successfully examined

by Bernal (2002). Some experimental results are shown by Marty et al. (2000) regarding lamb

waves in plates to search defects modeled by thickness variations. 



Quantitative nondestructive evaluation of thin plate structures 527

On the other hand, the identifiability is an issue that has been addressed thoroughly in statistics

and mathematics, and has been used widely in chemistry and physics. However, in the field of

nondestructive testing, only observational comments have been made about the issue. Liu et al.

(1996) discussed as identifiability the relationship between the number of measurements and the

number of degrees of freedom only to establish a necessity condition. In addition, the theoretical

issue of the modelization of the receivers has never been explicitly studied in much detail. In

particular, the mechanical interactions between the receiver and the specimen may need to be

studied in detail. Therefore, some work is carried out here on the analytical formulation associated

with mechanical coupling receiver and specimen based on the concepts described by Rus et al.

(2004). Then, the forward and inverse procedures is presented to identify damage in steel plates by

combining the FEM and a parametrization-minimization scheme, and using impact loading data. 

In this paper, a theoretical model is developed for damage detection in plate structures. Some

experimental results which support this theory are described subsequently. The experimental work is

implemented by processing the experimental signal and then synthesizing the signal using an FEM

procedure. Using the developed formulation, the residual and cost functional is minimized for the

parameters that characterize the defect and act as unknowns of the inverse problem. The

identification is carried out to efficiently, taking into account the effects of noise and other

uncertainties such as the exact mechanical properties of the plate material. 

2. The system model 

First and foremost, we define in Fig. 1 a generic impact testing system and its components for

nondestructive evaluation (NDE) of a structure, in which the time functions , and

 respectively denote the signals generated by the impact, those transmitted to the receiver,

and those recorded by an oscilloscope. The parenthesized superscripts (I), (R), and (O) denote

impactor, receiver, and output, respectively. In this system, we consider generating signals by

multiple impacts at various points and receiving the signals from multiple locations using an array

of transducers. For a testing with m impact events recorded by n transducers, we obtain a total

number of m × n signals. 

sm

I( )
t( ) smn

R( )
t( ),

smn

O( )
t( )

Fig. 1 Scheme of a typical impact testing system 



528 Sang-Youl Lee, Guillermo Rus and Taehyo Park

2.1 Assumptions 

We make the basic assumptions as follows: 

1. In our model, the signals generated by the impactor are described by prescribing the pressure

boundary conditions qi(x, t). The validity of this assumption was studied by Rus et al. (2004) by

comparing the results between the two extreme cases of Neumann and Dirichlet boundary

conditions. 

2. We assume that the pressure induced by impact, qi(x, t), is distributed uniformly over the area

of contact (i.e., does not depend on x). Thus, the impact pressure can be prescribed by

multiplying the constant pressure qi and its phase ς (t) or time delay

(1)

3. We assume that the signal output from the receiver is the time average of displacements (or

accelerations) of the points on Γn, the area of contact between the specimen and the receiving

transducer, i.e. 

(2)

4. Shear stresses cannot be sustained on the specimen-impactor or the specimen-receiver

boundaries. In other words, we only consider the normal components 

(3)

where ni is the surface normal (assumed constant on a small area of the plate) and Γn is the

contact area between the receiver and the specimen. 

5. We assume that the system is linear time invariant (LTI). In other words, for the system

described in Fig. 1, the relationships between the signals can be expressed as the convolutions

in the time domain as follows  

(4)

where  is the response function of the specimen under test and  is the

electromechanical response of the receiver and acquisition system. The convolution product (*)

is defined in the standard way as 

(5)

It is possible to assume the linearity of the response function of the specimen since the

excitation magnitude is small compared to the elastic constitutive range of the damaged

material, since the impact testing loads are negligible in comparison witho the damaging loads.

The electromechanical coupling between the transducer and specimen is assumed to be LTI as

shown in the next section. 

qi x t,( ) qiς t( )=

ui t( ) ui Γ t,( ) Γd
Γ
n

 

∫=
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2.2 The electromechanical responses 

In many practical applications, a dynamic system response can be measured using a commercial

transducer such as piezoelectric accelerometers or displacement sensors which convert mechanical

motions into electrical signals. The behavior of a transducer may be modeled by a complex

electromechanical system by considering all the design details of the system. However, a number of

assumptions allow us to simplify the model by establishing linear relationships. 

We consider a transducer consisting of the linear components shown in Fig. 2, i.e., a transducer

constructed with a piezoelectric plate, damping material and the casing. Such a transducer can be

approximately characterized by the following properties: the constant kp is the stiffness of the

piezoelectric plate, kd the stiffness of the equivalent spring of the damper, cd the damping coefficient

of the damper, md the lumped mass attributed to the damper, and fs is the force acting on the

surfaces between the specimen and the transducer. The variables us and ud denote the displacements

of the specimen and the damper, respectively. Notice that these are the displacements of the two

surfaces of the piezoelectric plate in the transducer. The pair {us, fs} defines the mixed boundary

condition at the specimen-transducer contact area. 

The equilibrium equation for this model can be written as 

(6)

It is noted that the displacement can be decomposed into the harmonics using the Fourier

decomposition

(7)

where ω is the angular frequency, U(ω) the Fourier transform of u(t), and j is the unit imaginary

number. This model allows to rewrite the equilibrium equations in the form 

(8)

where

 (9)

mdu··d t( ) cdu· d t( ) kdud t( ) kpud t( )+ + + kpus t( )=

u t( ) U ω( )e jω t
dω

ω

 

∫=

Ud ω( ) A1 ω( )Us ω( )=

A1 ω( )
kp

mdω
2

– jcdω kd kp+ + +

-------------------------------------------------------=

Fig. 2 Diagram of the physical transducer model
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and Ai(ω), the inverse transforms of αi(t), are the complex constants in the remaining of the paper.

The deformation of the piezoelectric plate can be expressed by the difference between the

displacements of its surfaces as 

(10)

where 

(11)

Without losing the generality, the output signal  produced by the piezo-material can be

assumed to be linearly proportional to the deformation as follows (since, given a fixed frequency,

the displacement, velocity and acceleration are just proportional to each other by a constant complex

factor) 

 (12)

From Eq. (10), this can be simply written as 

(13)

This means that the relationship between the displacements can be numerically modeled without

considering transducer models for the recorded output signals always follow linear relationships. For

this condition, it is always possible to group the signals into a single transfer function of Fourier

type using a proper amplitude rescaling and phase shifts. Consequently, it is not necessary to predict

the transfer function theoretically, but it can be estimated experimentally at the stage of calibration. 

3. Forward procedure 

3.1 Measurement data 

In order to eliminate the uncertainties in the impact excitation forces or other coherent noises, a

convolution-based procedure is designed by comparing the responses of a structure in its

undamaged and damaged states. Recall that Eq. (4) represents the linear relationships between the

output signal  recorded by the n-th receiver and the corresponding impact signal 

generated by the m-th impact event. Looking at Fig. 3, these equations can be rewritten as 

(14)

where 

(15)
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This allows us to describe the response of the complete testing system by a single equation.

Taking the inverse of Eq. (15), we obtain the response of the specimen as 

 (16)

which is a property independent of the input signal or intrinsic coherent noises coming from the

system. The transfer function gmn(t) can now be used as the input excitation function in our

numerical model to obtain the output signal  by convolving it with the specimen response

. Recall that this is true as long as the model is linear, i.e., it admits the principle of

superposition. 

3.2 Real and theoretical models 

It becomes necessary to study the difference between the real and theoretical models in order to

assert later some hypothesis of the model. For the signals shown in Fig. 3, the real model is

described by Eq. (14), whereas the theoretical model can be represented by the relationship

(17)

where the hats are used to denote the theoretical values.

In our study, we assume that the real function f (t) is linearly proportional to the sum of the

theoretical function  and the bandpass-filtered noise

hmn

IR( )
t( ) gmn

1–
t( ) * smn

O( )
t( )=

smn

O( )
t( )

hmn

IR( )
t( )

ŝ
mn

O( )
t( ) ĥn

RO( )
t( ) * ĥmn

IR( )
t( ) * ŝ

m

I( )
t( )=

f̂ t( )

Fig. 3 Chart of real and theoretical model of the NDE system 
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(18)

where n(t) is the noise function, and z is the “scaling parameter” or “gain”. The output or input

signals depend on the variation of applied pressure which can be compensated by an arbitrary

choice of the constant z. We assume that the bandpass-filter ζ(t) has Gaussian probability

distribution with zero average and unity variance. In other words, this represents a random white

noise of unit magnitude. Note that this function allows us to neglect the phase and sign information

in our formulation. Thus, the aforementioned signals and transfer functions can be written in the

form 

(19)

Substituting Eq. (19) into Eq. (14) and after neglecting the higher order terms of the noise, we

obtain 

(20)

The equality condition in this equation should be independently carried out for the group of terms

with and without noise. Equating the terms without noise and using Eq. (17), we obtain 

(21)

This unifies the pressure-dependent scaling factor. Equating the terms with the first order noise,

we obtain the following relationship  

(22)

3.3 Finite element method 

The forward problem is formulated using the finite element analysis. In a finite element

formulation, the stiffness matrix of a structural system is expressed in terms of its material

properties, geometry, and boundary conditions. In numerical approach for detecting damage, there

are two different methods to define the extent of damage. The first is the reduction of material

properties (Young’s modulus or Poisson’s ratio) of a specific element. For example, 20% damage at

an element implies that there will be 20% reduction of Young’s modulus or Poission’s ratio

(Gudmudson 1982, Christides and Barr 1984). The other method is to define the stiffness reduction

factor quantifying the severity of the damage. For example, when a damage occurs in a structure,

the stiffness matrix in its damaged state can be represented as the sum of the element stiffness
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ĥmn

IR( )
t( ) n

IR( )
t( ) * ζ t( )+( )=

sm

I( )
t( ) z

I( )
ŝm
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ĥmn

IR( )
z

I( )
ŝm
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matrices multiplied by a reduction factor representing the damage (Mares and Surace 1996, Au et al.

2003). Although it is not the limitation of the approach in general, we have a restricted study scope

in this paper, in that the damage is defined as the stiffness reduction factor at local areas as shown

in Fig. 4. In particular, the structure is discretized into a set of finite elements categorized into

undamaged and damaged states of different degradation levels. For such a model, the global

stiffness matrix of the m-th damaged element can be expressed as 

(23)

where β (m) is the stiffness reduction factor and D(m) is the stiffness in its original (undamaged) state.

Note that the tilde symbol is used to denote the variables in their damaged state. The stiffness

matrix of the damaged element in the local coordinates can now be written as the volume integral

of the form 

(24)

where B
(e) is the strain-displacement matrix of the element e, and the superscript T denotes the

transpose operator. Note that B(e) is a property that is independent of damage, thus it is applicable to

all the elements e, whether damaged or undamaged. 

The governing equation of motion of the system is written in the form 

, (25)

where u and  are the displacement and acceleration vectors, M and K are the mass and stiffness

matrices and Pi is the time history of the n iterative applied impact load, respectively. To advance

the solution of this equation in time, we use Newmark’s direct integration method (Bathe 1996,

Xiang et al. 2007), in which the time dimension is represented by a set of discrete points with equal

time increment of Δt. The following naming convention is adopted: the value of a function ξ(t) at

time t = nΔt is denoted by the index n as 

D̃
m( )

β
m( )

D
m( )

=

K̃
m( )

β
m( )

B
e( )T

D̃
m( )

B
e( ) Ωd

V
∫=

Ku·· Ku+ Pi= i 1 … n, ,=

u··

Fig. 4 Finite element model of plates subject to impact load with one damaged element. The locations of
loads and measurements are assumed arbitrary in the figure 
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, (26)

where N + 1 is the total number of temporal discretization points for the entire duration of time Td. 

Three parameters have to be combined in order to find the best compromise with the

computational cost and attain the needed precision and convergence in the results. These

magnitudes are the sampling rate or time step S, which are tested from 200 ns to 5000 ns, the

number of elements in the discretization of the problem, which vary from 16 × 16 to 32 × 32 and

the frequency contents of the pulse applied as mechanical input (with Gaussian distribution and a

central frequency from 15 kHz to 30 kHz), which set an upper limit to the time resolution of any

output computation after the convolution. To analyze the computations shown in Fig. 5 it is

necessary to find the conditions for which the computations reach the convergence, in the sense that

the signal becomes independent of the sampling rate and mesh refinement. In the case of 15 kHz,

the following set of figures are below 5% difference, which allows to assume achieved convergence

(apart from oscillatory problems that will be later eliminated after the convolution): S = 200 ns

(16 × 16), S = 200 ns (32 × 32), S = 500 ns (32 × 32), and S = 500 ns (32 × 32), respectively. In the

case of 30 kHz, the following set of figures are assumed to converge: S = 500 ns (32 × 32) and S =

200 ns (32 × 32). Since we should guarantee a precision within 5% for central input frequency of

30 kHz, we choose a time step of 500 ns and a mesh of 32 × 32 elements. 

4. Inverse procedure 

4.1 Parameterization 

In an inverse problem, we seek information such as the size and orientation of defects based on

ξ t( ) ξ n tΔ( ) ξ n[ ]= = n 0 … N, ,=

Fig. 5 Simulated signal at a single accelerometer/impact point by FEM procedure for a variety of choices of
the time step and element size in the FEM procedure. Central frequency of the input pulse: 15 kHz on
the left hand side and 30 kHz on the right hand side 
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the known forward problem. The actual parameterization procedure can be complicated due to the

entangled relationships in many hypothetical arguments. Many inverse problems are ill-posed:

solutions may not exist, they could be unstable and non-converging, or there may exist multiple

solutions. This is true especially when we are dealing with a large number of parameters. Inverse

problems could be solved by narrowing the scope down to a manageable scale and properly

parameterizing the problem using a set of parameters (pg) with a reduced number of variables (g).

Choosing the proper parameters is a critical step that determines the robustness, convergence,

sensitivity and the dependence on the measurement errors. In this work we adopt a simple two

parameter-system: the horizontal (p1) and vertical (p2) coordinates of the center of the defect. 

4.2 Residual 

We introduce the residual vector R in order to quantify the misfit or discrepancy between the

ideal measurements and theoretical predictions. While the prediction is based on a set pg consisting

of g parameters, the ideal measurement data are represented by the corresponding set  where the

superscript r denotes the real defects. In general, residuals are defined by comparing the two (real

and ideal) output signals s(O)(t). But, in our definition, we use the system response h(IR)(t) or its

frequency domain representation H(IR)(ω) in the definition of the residual. Recall that the theoretical

response function is expressed in the frequency domain as 

(27)

where Λ = Λ(ω) is the frequency response of the band-pass filter ζ(t) that affects the random noise

process  and Z is that of the amplitude compensation variable z = z(IR)(t). 

The predicted data, which will be denoted by , are resulted from the computation using a

set of trial values for the parameters pg. The discrepancy Dmn(pg, Z) is defined as the difference

between the trial and measured values, that is 

(28)

Then the prediction can be expressed as 

 (29)

In this equation, the difference between the ideal  and computed  models, due to

numerical and model errors, is taken into account as part of the noise (N (IR)) by substituting Eq.

(27) intp Eq. (28). Note that the sign of the noise is neglected since N is a symmetric stochastic

process of zero mean. Now we define the residual vector R in terms of the discrepancy as 

(30)

where W = W(ω) is a user selectable filter. The filter can be defined for giving more weight on

certain important frequencies while reducing or eliminating the others. An optimimum design of

this filter falls beyond the scope of the present experimental work, and has been previously
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developed in more detailed by the authors (Rus et al. 2006), with the goal of maximizing the

Probability of Detection (POD). 

4.3 Undamaged specimen for compensation 

A measurement  and a numerical prediction  are made for a undamaged specimen in

order to calibrate G for some coherent noise, amplitudes, transfer functions of the NDE system and

the input signal (the undamaged specimen is referenced by ). The latter is defined in Eq. (31) as

the average of Gmn (see Eq. (16)) for every impactor and receiver (Nm and N n respectively)

computed from the undamaged specimen. The motivation of the average is to reduce the coherent

noise coming from the excitation signal by a factor  in assuming Gaussian distribution of

the noise. 

(31)

Recalling Eq. (29) for the undamaged specimen (where Dmn vanishes by definition), it is possible

to include the amplitude factor Z inside G. Provided that Z is the same for the undamaged and

defective tests, the factor is effectively eliminated for the whole formulation

, (32)

It has been explained that the measured quantity that defines the discrepancy and the residual R is

the transfer function  instead of the directly measurable signal  (which would define the

analogous residual R'). Both residuals are nevertheless related by a multiplicative factor ,

where G = G(ω) is the frequency domain form of g(t)

(33)

4.4 Cost functional 

We finally define a cost functional J in terms of the former residual R in a quadratic sense, which

is also a least squares sense. This definition is meaningful from the statistical point of view, as well

as from a space theory, since is minimizes distances in an Euclidean sense. The cost functional is

hence defined as in Eq. (34) for the case of the discrete frequency domain. 

, (34)

where T stands for the transpose in vectorial notation and  means the conjugate of the complex

magnitude R. In the appendix, the proof of equivalence between time and frequency domain

definitions of the cost functional J is made, which for the case of a synthetic array of impactors m

or receivers n which can be weigthed by vmn, and applied to the previously defined residual R

yields 
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(35)

The theory described above is implemented for the evaluation of a defect in a specimen using

the recorded output signal in the order described in the ow chart on Fig. 6. The process of the

experimental defect identification can be divided into four steps: preprocessing of the experimental

signal, synthesis of the signal , deconvolution, and inversion. At the first step, the recorded

experimental signals are displaced to zero mean over the first 25 μs. This is done to avoid

inconsistences during Fourier decompositions. Then, they are triggered from the undamaged
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Fig. 6 Flow chart of the damage identification procedure 
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specimen at a level of 1% of the RMS of the signal to define a coherent time origin. Next, the

experimental signals of the undamaged and defective specimen are matched by adjusting the time

shifting, the amplitude and the translation. Here, the time window is only considered between 0

and 100 μs. We will deal with the details of those in paragraph 5.2. Finally the timescale is

weighted linearly by a declining ramp along the time window. A period of 1000 μs of zero-signal

is padded after the time window. This is done in order to condition the time to frequency domain

conversions. 

In the synthesis of the signal , we first compute  and  by the explicit FEM

procedure. The sampling rate is 500 ns, the time period is 100 μs and the mesh is defined by

32 × 32 elements as discussed in section 3.3. The load is defined as an unit magnitude full load

during the first time sample (duration 500 ns), and the output is convolved with a function with

Gaussian distribution of frequency components of average and bandwidth 50 kHz to filter and

precondition the signal. Then, we resample the computed signal  by a factor α = p/q. A

polyphase implementation has been used with a sampling up between p = ×190 and ×210 (200 by

default), and a sampling down of q = ×200, with an oversampling of N = ×10, and including an

anti-aliasing (lowpass) FIR filter, a compensation for signal delay after the filter and a Kaiser

window with β = 5 from following equation

(36)

where I0 is a zero order modified Bessel function. 

For the experimental signal, we weight linearly the timescale, trig the signal from the undamaged

specimen at 10% of the RMS of the signal, and match signals from the defective specimen by time

shifting to minimize the RMS difference between undamaged and defective signals over the first

50 μs. In the deconvolution, we implement four substeps: (1) to compute Gj as defined in Eq. (33)

according to the standard definition of the convolution product in Eq. (5); (2) to define a weight Wj =

Gj * Wj' , where Wj'  has a constant default value, (3) to compute the residual R (4) to compute the

cost functional J. In the inversion, an iterative minimization algorithm of the cost functional J

performs the steps Synthesis to Deconvolution at each iteration, in which pg is varied according to

the chosen maximization algorithm. In this case, since the purpose is not to test the maximization

algorithm, but to use a slow and safe method, a full search maximization algorithm is used, which

evaluates at a grid of points spaced by the finite element spatial size. 

5. Experimental results 

5.1 Experimental model 

The specimen consists of a 177 × 177 mm steel plate of 3 mm thickness clamped on one side.

The defect is a 100% thickness square perforation of size 22.1 × 22.1 mm placed at the coordinates

depicted in Fig. 7. It should be pointed out that this type of defect of thickness reduction is the most

simple one, and it does not limit the generality of the theoretical formulation in this paper. The

experimental data generation and retrieval is implemented as follows. The wave is excited by a

specifically manufactured hammer with a hardened steel sphere that provokes an impact on the

surface of the specimen with a fixed speed every time. The impact speed is generated by gravity in

h̃
IR( )

h̃mn

IR( )
t( ) h̃

°

mn
IR( ) t( )

h̃mn

IR( )
t( )

wn I0 β 1 n
2
/m

2
–( )/I0 β( )=



Quantitative nondestructive evaluation of thin plate structures 539

a free fall from a controlled height. The impact point is moved ten times to generate ten

measurements (m = 1 − 10) with identical impact schemes, at the ten points depicted in Fig. 7. The

data retrieval is made with just one accelerometer (n = 1), placed as depicted in Fig. 7, in order to

alter as little as possible the mass distribution of the specimen and its mechanical behavior. The

Fig. 7 Scheme of the specimen with defect, and impact testing experimental setup 

Table 1 Characterization of the experimental setup apparatus

Accelerometer Oscilloscope 

Model PCB 353B33 Model Agilent 54624A

Voltage sensitivity 103.1 mV/g Amplitude division 5 V/div

Frequency range (±3 dB) 0.35-12000 Hz Time division 100 μs/div

Measure range 50 g Time trigger delay −400 μs

Transverse sensitivity 0.1% Trigger level 160 mV

Resonant frequency 26 kHz Averaging 1×

Output impedance ≤100Ω
Weight 27 g Signal conditioner

Sealing Titanium Model PCB 482A20

Sensitivity (Hz) Dev. (%) Gain ×1 

10 0.4 

15 0.2 Impact hammer

30 −0.4 Material Stainless steel

50 −0.3 Heigth 4 mm

100 0.0 Geometry Spherical r = 1/4’’

300 0.2 

500 0.2

1000 0.2 

3000 2.5 

4000 3.5 
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signal from the accelerometer is preconditioned and recorded in a digital oscilloscope. The hardware

is characterized in Table 1. 

5.2 Matching experimental signals 

Since the recordings from the undamaged and damaged states come from different specimens and

tests, and since no triggering system has been coupled to the actuator, there is an unknown time

shifting between them, an abscissas shifting, as well as an amplitude scale variation originated both

at the emitter and the receiver. To reduce these unknowns as far as possible, a procedure to adjust

them has been designed by trial-error, and is detailed later. It consists of two phases, and only the

matched signals are treated in the remaining of the paper. First of all, the first positive extremum is

sought in both signals (damaged and undamaged states) that exceeds 20% of the peak to peak

amplitude, and the delay is determined between the extrema. Then the last negative extremum is

sought before the latter point, and a new delay is determined. The defect signal  is shifted by

the average of the last two time delays. Secondly, the values of the signals are evaluated at the

extrema, and the defect signal is rescaled and displaced to match both extrema. Next, starting from

the previous preconditioned signals, a penalty functional P is defined as the time-integral of the

squared difference between signals. The functional is weighted by a declining linear ramp in order

to give more importance to t = 0. The physical reason for doing it is that the deviation of the signal

due to the defect appears after a certain time lag and therefore increases gradually, so we should

induce matching with more weight before that deviation. Three parameters are defined to modify

the defect signal, a time shifting p1, an amplitude rescale p2 and an abscissas displacement p3. An

optimization is performed by a BFGS (Dennis and Robert 1983, 1996) algorithm to find the value

sn

O( )
t( )

Fig. 8 Example of the stages in the procedure for matching a recorded single signal (case of measurement
number m = 10) 
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of the latter parameters that minimize P 

(37)

An example of the performance of the stages of this procedure is shown in Fig. 8 for one of the

measurement signals. 

5.3 Synthetic signal and inversion 

Fig. 9 shows the synthetic signal as well as the residual and its components for different choices

of time window, tested between 0 − 50 μs and 0 − 500 μs. The case of 0 − 100 μs is chosen as the

similarities between synthetic and real signal seem to be best. This decision is based on the features

shown in the residual  (center), which is smallest and smoothest, and the

corresponding transfer function, which is most coherent (the transfer function shows the least

P p1 p2 p3, ,( )
p
1

p
2

p
3

, ,( )
lim W t( ) s° n

O( )
t( ) sn

O( )
t;p1 p2 p3, ,( )–( )

2

td
0

100μs

∫=min

S
°

* H * g/gm H
°

–( )/H°

Fig. 9 Variation of the fitness function for different parameters. The 1-10 numbering in the vertical axis
represents the impact point label. The amplitude is adimensional 
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outlyers). Moreover, 0 − 100 μs allows sufficient time for the effect of the defect to be present in

the signals, but not too much time to allow for numerical and noise-based deviations. The variation

of the fitness function with the position of the defects is shown in Fig. 10. The position of the real

defect, which is marked at coordinates (6,6), and the minimum value (white) of the cost functional

should correlate. 

The superaboundant calibrated signal allows to generate a map of probability of the defect by

means of the cost functional. Several local minima appear as shown in Fig. 10, and the absolute

minimum can be improved to overcome the effect of unknown parameters, the reduced number of

measurements and the noise. The abovementioned local minima can be sources of false positive

results, and need improvement. In the next section, the user defined filter W is used to bring some

improvement. However, there are other candidates to be improved, such as the boundary conditions

of the model, which are probably not perfect, the use of lighter accelerometers to reduce the

structure-sensor interaction, and refining the mechanical properties uncertainties. 

Fig. 9 Continued
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Fig. 10 Variation of the fitness function for two parameters: horizontal and vertical position of the defect,
provided a fixed size of the defect at its true value (known size). Left: variation of one position
parameter while the other one is fixed at the true value. Right: variation for both position parameters
simultaneously

Fig. 9 Continued
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5.4 Evaluated frequency window 

The cost functional can be defined with a weighting function along the frequency range that is

integrated. Fig. 11 shows the dependency of the variation of the fitness with the horizontal

parameter at a range of values for fw. Two choices of frequency window have been made: (1) A

Gaussian frequency window centered at a frequency fw and with a bandwidth (variance) of fw/2 and

(2) A frequency window W( f ) defined using a central frequency fw and a bandwidth b as, 

(38)

The variation of the fitness function with the position of the defects is shown in Fig. 11 for the

cos2 window. The use of a filter W allows to increase the contrast of the image from 2.12:2.00 =

6% to 1.38:1.26 = 10% as shown in Fig. 11. 

6. Conclusions 

A method for evaluation of defects using frequency domain information has been developed and

tested experimentally. The key principles used can be summarized as follows. 

1. The noise problem is dealt with by a strong regularization scheme such as the parametrization,

besides not leaving aside any of the information gathered during the measurement.
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Fig. 11 Variation of the fitness function J. Left: variation of J with the horizontal position of the defect, and
for a range of values of the center f

w of the frequency window and bandwidth of b = 0.91 kHz. Right:
for two parameters, and cost functional defined with a cos2 window with central frequency f

w
 = 29.8

kHz chosen from the maximum of the previous RMS(J)
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2. A filtering window is applied to the residual to be minimized in order to reduce the

components of information that may contain a higher signal to noise ratio.

3. A developed finite element code is used in this study as a convenient tool for solving the

forward problem of modeling the wave propagation in the plate excited by impact loading. 

4. A calibration in both amplitude and time domain, in addition of the presence of superabundant

measurements allows to play with unknown parameters, such as the exact wavespeed (which

usually carries some degree of variability), the actual impact applied force history, and the

response of the accelerometer. The experimental results show that the search algorithm is robust

against these uncertainties and uctuations. 

5. A synthetic array of actuators is used to generate the excitation. The excitation array allows to

add one more dimension to the set of measurement data, and hence enriching it. This array is

synthesized by repeating one by one a virtually identical excitation at a set of different locations

with a specifically built impactor device, instead of building and triggering the complete set of

actuators at the same experiment. 

The performance of the developed method for an experimental test on a clamped steel plate is not

fully satisfactory as several local minima in the cost functional may lead to a wrong damage

characterization. The origin of this lack of precision in the output is thought to be related to a

mismatch between experimental and synthesized signal by FEM. However, the inverse problem is

capable to reconstruct the defect location despite the divergence. There may be several reasons for

the mismatch in signals: a partial clamping in the experimental specimen, an interaction between the

accelerometer weight and the specimen, and a mismatch between accelerometer response frequency

and vibration spectrum excited by the impact event. 

To answer this, we have proposed several methods to overcome the difficulty of identification

from defective measurements, only one measuring accelerometer and few impact events, in addition

to the uncertainty in the exact value of the material properties and the predominance of noise.

However, more advanced studies should be carried out for individual damage cases. In addition, the

sensitivity of the range of frequencies excited by the impactor increases the need for further

developing the algorithms for better experimental efficiency. 
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Appendix 

In the following, the proof of equivalence between time and frequency domain definitions of the cost func-
tional J is made. Moreover, this proof provides a consistent definition of J in which two signals  and
g(t)(t = 0 − T) are compared. The functional is weighted by a generic function 

(39)

where, 
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For the discrete case we have a different procedure with the same conclusion 
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where

(42)

The extension to the case of a synthetic array of impactors m or receivers n which can be weigthed by v
mn

,
and applied to the previously defined residual R yields 

(43)
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