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Abstract. The aim of this paper is to propose a design procedure for predicting the buckling strength
of built-up, cold-formed steel columns based on the two well known methods; the effective width method
and the Direct Strength Method. Several design approaches, based on different elastic buckling solutions,
were considered in this investigation. Traditional hand methods, without interaction effects between the
different modes, and a new numerical spline finite strip method were used to predict the buckling stresses.
All of the proposed methods were compared with experimental data on plain and lipped, built-up
columns. Results have shown that the effective width approaches are more accurate than the Direct
Strength Method. However, both methods can be investigated using more experimental data to assess a
practical design method for built-up columns. 
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1. Introduction

Structures such as cold formed, thin-walled sections usually rely upon the in-plane stiffness of the

individual thin plates from which they are made up. The ease of construction offers a large variety

of shapes and there is no significant limitations concerning the cross section geometry (Fig. 1).

However, these plate elements present a relatively high out-of-plane flexibility which makes them

susceptible to the various types of local and global buckling modes. The behaviour of such

structural elements has been the research interest of so many researchers (Hancock et al. 1985, Al-

Bermani and Kitipornchai 1990, Djafour et al. 1999, 2001). For local buckling design, the majority

of current design codes (CEN 2004, AISI 1996, 2004) use the effective width concept combined
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with a Winter’s type buckling curve. The essential idea behind this concept is that local plate

buckling leads to reductions in the effectiveness of the plates that comprise a cross-section. That is,

the effective plate under a simplified stress distribution can be used to approximate the real plate

with a nonlinear stress distribution due to buckling. The effective width method is a useful design

model, even though it ignores inter-element (between flange and web) equilibrium and compatibility

when determining the buckling behaviour.

The actual trend in the design procedure of cold formed steel structural members (NAS 2004) is

to use the Direct Strength Method (DSM) developed by Schafer and Pekoz (1998). It presents a

competitive alternative to the existing effective section methods as it avoids lengthy effective width

calculations (Hancock 2002). The DSM proposes a formal design procedure based on elastic

buckling solutions for the complete cross section, which are obtained from a rational buckling

analysis rather than the traditional solutions for each individual element. For isolated structural

members the most efficient buckling analyses are the Finite Strip Method (FSM) (Papangelis and

Hancock 1995, 2006, Schafer 2006) and the Generalized Beam Theory (GBT) (Davies and Leach

1994, Davies 2000, Silvestre and Camotim 2002). One additional design approach for cold-formed

steel members worthy of mention is the Erosion of Critical Bifurcation Load approach championed

by Dubina (Ungureanu and Dubina 2004, Szabo et al. 2004).

Sometimes, for economical purposes, cold-formed members are assembled by connecting

elements (lacing bars or batten plates) to form a built-up column, as shown in Fig. 2. The moment

of inertia of the cross section of the column, and thus its flexural stiffness in the plane of the

connecting elements, increases with the distance between the chord axes. The existence of the

connecting elements can make the whole cross section work as an entity. In addition to the two

flexural buckling modes of the whole section (in a plane perpendicular to the battens and in a plane

parallel to the battens), built-up columns with doubly symmetric cross-sections and discrete

connecting elements have three other buckling modes by which the axially loaded, cold formed

steel chords may fail:

• Long wave buckling, which can be flexural, torsional, or torsional-flexural. This is a global

instability that involves translation and/or rotation of the entire cross section of the chord.

Rational analysis hand solutions for long column buckling are available (Yu 2000). However,

Fig. 1 Various cold-formed cross sections
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having the chords partially built-in to the battens may cause some additional difficulty.

• Local buckling minima, which occur at half-wavelengths that are less than the largest dimension

of the chord. The cross section is distorted but the distortion involves only rotations at the fold-

lines. It is well known that if the chord is long enough, local buckling involves several half-

waves and the critical stress is independent of the boundary conditions in the longitudinal

direction. Thus, the presence of the connecting elements will affect the local buckling behaviour

of the chords only if their spacing is short. 

• Distortional buckling, which involves distortion of one portion of the cross section and

predominately rigid response of a second portion. It is characterized by relative movement of the

fold-lines. The half-wavelength of distortional buckling is intermediate between that of local

buckling and global buckling. It is typically several times larger than the largest dimension of

the chord. If the connecting elements spacing is less than the critical distortional half-

wavelength, their discrete restraining effect may retard distortional buckling and boost the

strength. 

All these modes can interact to produce unexpected complex buckling modes. 

Very few studies have been carried to study built-up, cold formed columns (Niazi 1993, Stone and

LaBoube 2005). Since the behaviour and design of thin-walled members are very sensitive to small

details in the cross section, particularly those that serve to retard one or more cross-section

instabilities, it becomes important to have a rational and efficient buckling analysis for the entire

section of built-up members. This analysis must deal with all relevant buckling solutions such as:

local, distortional, chords, Euler, whole global section, and their combinations. Currently, to predict

the elastic buckling behaviour, two main groups of methods are available, the elastic buckling hand

Fig. 2 Built-up columns
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solutions and the numerical methods. In the former, closed-form predictions of the buckling stress in

the local mode (including or excluding the interaction of the connected elements), the distortional

mode (including consideration of the web/flange elastic and geometric stiffness), and the overall

mode (including flexural and flexural-torsional buckling) are available. In the numerical methods

group, a large variety of methods may be used to provide accurate elastic buckling solutions for

cold-formed steel columns. If in practice, the finite element method is the most general and

powerful numerical method, the time spent in data preparation and post-processing makes it very

costly. 

The Generalized Beam Theory (GBT) has been proven as an efficient and powerful approach to

calculate the elastic buckling load of cold-formed steel structural members. The ability to separate

the different buckling modes makes the method especially amenable for design methods. However,

the GBT is hard to understand and only a few researchers use it. In the last decade, the finite strip

methods, especially the Spline Finite Strip Method (SFSM) have been widely used to study the

stability of thin-walled sections, taking into account all possible buckling modes: local, distortional,

global, and their combinations. This method uses the uniform B3-Spline functions in the

longitudinal direction and conventional interpolation functions in the transverse direction. Recently,

Kim and Choi (2004) have improved the SFSM by introducing non-symmetrically spaced knots in

the longitudinal direction.

Since a lot of work has been carried out for determining the elastic buckling load for isolated,

thin-walled members, a tentative use of the two basic design methods, the effective width method

and the Direct Strength Method, will be made to study the buckling behaviour of built-up columns.

To the best knowledge of the authors, no study has been made in this area and a consistent

integration of all types of buckling modes into the design of built-up, thin-walled columns is

needed.

In this research, the effective width method philosophy and formulae used in EUROCODE 3

(CEN 2004) for hot rolled built-up columns are explored. In the Direct Strength Method, several

design approaches, starting from different elastic buckling solutions, are considered for

investigation. Hand solutions and numerical solutions are used. In the hand solution methods, the

classical “element” type solution and a semi-empirical type solution will be used. In the “element”

type solution, the local buckling stress of the section is obtained from critical stresses of isolated

plate elements with or without considering the interaction between the connected elements of the

chords. On the other hand, a new method known as, “the Compound Spline Finite Strip Method”

(CSFSM), (Djafour et al. 2007) was used to predict the elastic buckling behaviour incorporating all

buckling modes and all structural details by numerical methods. This method adequately combines

spline finite strips and beam finite elements to model built-up columns.

The performance of all the proposed design methods is assessed by comparison to gathered

experimental data on built-up columns formed by two equally plain or lipped channels assembled

by batten plates. The column tests, conducted in 1999 by Moldovan et al. (1999) at the Building

Research Institute, INCERC, Timisoara, Romania, on U and C shaped channels with different types

of connecting elements (battens, stitches, bolts, and welds) and those conducted by Niazi (1993) on

built-up elements composed of cold-formed C-profiles with battened plates or C stitches, were used

for comparison. 
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2. Experimental data

2.1 INCERC program

The test program conducted by Moldovan at INCERC, Timisoara (Romania) provided

experimental ultimate loads for built-up, cold-formed channels compressed between pinned ends.

The test specimens were brake-pressed from high strength zinc-coated structural steel sheets having

a nominal yield stress of 235 MPa. The test program comprised two series of built-up channels. The

first series consisted of U shaped columns with a nominal thickness of 1.8, 3.0, and 4.0 mm and a

nominal web depth of 85 and 100 mm. The nominal flange width was either 60 or 80 mm. The

second series was the C shaped columns with a nominal thickness of 1.85 and 3.0 mm and a

nominal web depth of 85, 100, and 120 mm. The nominal flange width was 55, 65, and 85 mm.

The nominal width of the lip was 18, 20, and 25 mm. The average value of measure for the cross-

sectional dimensions of the test specimens are shown in Table 1 using the nomenclature defined in

Fig. 3. 

The specimens were tested at various column lengths ranging from 1,220 to 2,000 mm. To form

the built-up column from two U or C shaped channels, different types of connecting elements

(battens, stitches, bolts, and welds) were used. They were placed at various distances ranging from

460 to 840 mm. 

2.2 Niazi program

Niazi (1993) conducted eighteen tests on columns with battened plates and C stitches. The main

dimensions of the elements are summarized in Table 1. The measured yield strength of the steel was

455 MPa for the profiles with a thickness of 2.5 mm and 428 MPa for the profiles with a thickness

of 3 mm. The dimensions of the profiles were chosen in such a way that all the stability phenomena

(local and global) could be met in the series of tests.

Fig. 3 Characteristics of U and C shaped cross-sections
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3. Column design methods

3.1 Effective width method vs. direct strength method

Current design specifications, using either the Effective Width Method or the Direct Strength

Method, employ the elastic local, distortional, or Euler buckling characteristics to calculate the

ultimate strength of columns. The effective width approach is an element-based method since it

looks at the elements forming a cross-section of each chord of the built-up columns in isolation.

The local web/flange interaction is then ignored. The main idea behind this method is to determine

the locations in a cross-section where material is really ineffective in carrying load at the full

Table 1 Average measured specimen dimensions 
           From experimental work of Moldovan et al. (1999) and Niazi (1993).

Test 
Spec.

h 
(mm)

b 
(mm)

d 
(mm)

t 
(mm)

h/t b/t d/t h/b d/b d/h
L(*) 

(mm)
a(**) 

(mm)

 U Shape. 
A. 

Moldovan 
et al. 

(1999)

P 5-1 86.50 58.00 1.80 48.06 32.22 1.49 2000 634

P 5-2 87.30 57.00 1.80 48.50 31.67 1.53 2000 634

P 5-3 88.00 61.00 1.75 50.29 34.86 1.44 2000 634

P 7-1 82.20 60.00 3.05 26.95 19.67 1.37 1220 500

P 7-2 82.30 60.50 2.95 27.90 20.51 1.36 1220 660

P 7-3 82.50 59.70 3.00 27.50 19.90 1.38 1220 660

P 10-1 102.00 81.20 3.00 34.00 27.07 1.26 2000 626

P 10-2 98.50 81.50 2.95 33.39 27.63 1.21 2000 626

P 12-1 84.40 81.00 4.00 21.10 20.25 1.04 1500 840

P 12-2 86.00 80.00 4.05 21.23 19.75 1.08 1500 840

P 12-3 85.00 81.30 3.95 21.52 20.58 1.05 1500 840

C Shape. 
A. 

Moldovan 
et al. 

(1999)

P 19-1 84.00 54.50 18.00 1.85 45.41 29.46 9.73 1.54 0.33 0.21 2000 634

P 19-2 85.50 55.00 18.00 1.85 46.22 29.73 9.73 1.55 0.33 0.21 2000 634

P 19-3 86.00 56.00 15.50 1.85 46.49 30.27 8.38 1.54 0.28 0.18 2000 634

P 21-1 98.70 65.80 18.80 1.60 61.69 41.13 11.75 1.50 0.29 0.19 1480 810

P 21-2 98.00 65.60 20.50 1.80 54.44 36.44 11.39 1.49 0.31 0.21 1480 810

P 21-3 97.70 64.70 21.00 1.75 55.83 36.97 12.00 1.51 0.32 0.21 1480 460

P 27-1 121.70 84.50 25.50 3.05 39.90 27.70 8.36 1.44 0.30 0.21 1700 530

P 27-2 125.20 84.80 24.40 3.05 41.05 27.80 8.00 1.48 0.29 0.19 1700 530

P 27-3 121.30 82.30 23.30 3.00 40.43 27.43 7.77 1.47 0.28 0.19 1700 530

C Shape. 
Niazi 
(1993)

120B1 120.0 60.0 20.0 2.50 48.00 24.00 8.00 2.00 0.33 0.17 4000 1300

120B2 120.0 60.0 20.0 2.50 48.00 24.00 8.00 2.00 0.33 0.17 3000 960

180B1 180.0 70.0 25.0 3.00 60.00 23.33 8.33 2.57 0.36 0.14 4000 1280

180B2 180.0 70.0 25.0 3.00 60.00 23.33 8.33 2.57 0.36 0.14 4000 1920

180B3 180.0 70.0 25.0 3.00 60.00 23.33 8.33 2.57 0.36 0.14 3000 950

180B4 180.0 70.0 25.0 3.00 60.00 23.33 8.33 2.57 0.36 0.14 3000 1420

Note.  (*) L: Length of the built-up columns
        (**) a: Longitudinal spacing of connectors between elements.
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applied stress. The basic formulae commonly used in design specifications following this approach

is

(1)

where

beff is the effective width of an element (flange, web, lip); f = fy when interaction with other modes

is ignored and fcr is the critical elastic local buckling stress. 

Because sections are more complex and the interaction between elements of the same section

(e.g., web/flange) becomes more important, and the computation of the effective widths becomes

complicated. The Direct Strength Method, proposed by Schafer and Pekoz (1998), avoids the

calculation of the effective widths and employs the elastic buckling solutions for the entire member

using real dimensions of the cross-section to determine the reduced strength of a column in a given

mode due to buckling and/or yielding. This method was incorporated recently in the North

American Specifications (AISI 2004). 

For long columns, the nominal axial strength, Pne, for flexural, torsional, or flexural-torsional

buckling is given by AISI (2004)

(2)

Otherwise 

where  and . Pcre is the minimum of the critical elastic buckling load in

flexural, torsional, or flexural-torsional buckling. 

The idea was extended to other modes such as local and distortional buckling (Schafer and Pekoz

1998, Schafer 2002), the following forms are suggested:

For local buckling:

(3)

Otherwise 

where . Pcrl is the critical elastic local column buckling load. When interactions

between local and other modes are ignored, Pne in Eq. (3) is replaced by Py

For distortional buckling:

(4)

Otherwise 

where . Pcrd is the critical elastic distortional column buckling load. 

beff

b
------- ρ

1

λ P

------ 1
0.22

λ P

----------–⎝ ⎠
⎛ ⎞

= 1 for λ P 0.673> otherwise ρ≤ 1= =

λ P
f

fcr
-----

1.052

K
-------------

b

t
---

f

E
---⋅= =

Pne 0.658
λ

c

2

( )Py for λc 1.5≤=

Pne
0.877

λc

2
-------------⎝ ⎠

⎛ ⎞Py=

Py Agfy= λc Py/Pcre=

Pnl 1 0.15
Pcrl

Pne

--------⎝ ⎠
⎛ ⎞

0.4

–
Pcrl

Pne

--------⎝ ⎠
⎛ ⎞

0.4

Pne for λl 0.776>=

Pnl Pne=

λl Pne/Pcrl=

Pnd 1 0.25
Pcrd

Py

--------⎝ ⎠
⎛ ⎞

0.6

–
Pcrd

Py

--------⎝ ⎠
⎛ ⎞

0.6

Py for λd 0.561>=

λd Py/Pcrd=
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3.2 Elastic buckling analysis

Since the effective width method or the Direct Strength Method (DSM) are based on the

determination of elastic buckling loads, two methods are used for predicting the nominal axial

strength of built-up columns: the so-called conventional hand solutions, already applicable for single

channels and a new proposed numerical method based on the spline finite strip method. The former

method uses the classical element approach or the semi-empirical approach proposed by Schafer.

For the latter method a Compound Spline Finite Strip Model (CSFSM) was recently developed

(Djafour et al. 2007) to predict the elastic buckling loads and corresponding mode shapes for thin-

walled built-up columns.

3.2.1 Elastic buckling hand solutions

Closed-form predictions of local, distorsional, or Euler buckling of built-up columns are examined

using the element or semi-empirical approaches employed to study the behaviour of single channel,

(not battened) thin-walled, cold-formed steel columns (Schafer 2002). For un-stiffened and stiffened

elements with web depth h, flange width b, and lip length d, the critical local buckling stress, using

the classical method and ignoring the interaction between modes, is 

(5)

k = 4 for C shapes and k = 0.43 for U shapes (6)

k = 0.43 for C shapes (7)

Taking the minimum of Eq. (5) through Eq. (7), we can calculate the approximate local buckling

of the member. If interaction between modes is considered, (e.g., for C shaped, built-up columns),

the semi-empirical approach is used, where the critical distorsional buckling stress is calculated

using Eq. (6) with a buckling coefficient (k) taken as the minimum of the flange/lip local buckling

or the flange/web local buckling given by the following empirical expressions given by Eqs. (8) and

(9 or 10) (Schafer 2002)

(8)

(9)

Otherwise 

 (10)

The distorsional buckling load by hand solution, as proposed by Schafer is given by

 (11)

σcr web,
k

π
2
E

12 1 ν
2

–( )
------------------------

t

h
---⎝ ⎠

⎛ ⎞
2

k 4 for U and C shapes= =

σcr flange,
k

π
2
E

12 1 ν
2

–( )
------------------------

t

b
---⎝ ⎠

⎛ ⎞
2

=

σcr lip,
k

π
2
E

12 1 ν
2

–( )
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t

d
---⎝ ⎠

⎛ ⎞
2

=

kflange/lip 11.07
d

b
---⎝ ⎠

⎛ ⎞
2

– 3.95
d

b
---⎝ ⎠

⎛ ⎞ 4+ += For d/b 0.6<( )

kflange/web 4
b

h
---⎝ ⎠

⎛ ⎞
2

2
b

h
---⎝ ⎠

⎛ ⎞
0.4

–= if
h

b
--- 1≥

kflange/web 4 2
b

h
---⎝ ⎠

⎛ ⎞
0.2

–=

Pcrd Ag fcrd=
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where Ag is the gross area of the member and, fcrd is the distorsional buckling stress given by

 (12)

The k coefficients represent the elastic and geometric rotational stiffness of the flange and web.

Details of these terms are given in (Schafer 2002). For Euler buckling columns, extensive hand

expressions are available and may be used for hand calculation of the critical Euler buckling load.

3.2.2 Elastic buckling numerical solution - The proposed CSFS model

In the Spline Finite Strip Method, the elements of the thin-walled structures are longitudinal strips

of a plate which are joined to one another along nodal lines running the total length of the structure.

The use of B3-spline fits perfectly with the displacement function in the longitudinal direction,

which has a C2 continuity. In the transverse direction a polynomial displacement function is used.

For each nodal line (q), four displacement functions having C2 continuity can be evaluated for any

coordinate point (Z):  and  (Fig. 4). 

Using energy methods, the linear stability eigen-problem can be obtained (Hancock and Lau

1985)

 (13)

where [K] and [G] are the stiffness and stability matrices for the overall system, respectively. and

 is the vector for all degrees of freedom defined in the global coordinate system

The batten plates connecting the columns are considered to behave as a beam element with shear

deformation neglected. A classical 3D Beam Finite Element is used to model these batten plates

(Fig. 5). Fig. 6 shows a beam element connected to two nodal lines (q) and (r) at coordinates

 and . The displacement compatibility at node i require that

 (14)

fcrd
kφfe kφwe+

kφfg kφwg+

----------------------=

Uq Z( ) Vq Z( ) Wq Z( ), , θzq Z( )

K[ ] λ G[ ]–( ) Δ{ } 0{ }=

Δ{ }

Z Zi= Z Zj=

Ui Uq Zi( )= Vi Vq Zi( )= Wi Wq Zi( ) and θzi θzq Zi( )==, ,

Fig. 4 A B3-spline strip
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The rotational degrees of freedom can be related to the nodal line displacements by

  (15)

A transformation matrix is obtained when applying these equations to both ends of the beam. This

matrix is used to transform the beam stiffness matrix which can be easily assembled to the system

stiffness matrix.

A computer program (SHell Elastic Buckling Analysis, SHEBA) based on this “Compound Spline

Finite Strip Model (CSFSM)” technique was developed to calculate the lowest elastic buckling

loads and draw the corresponding failure modes. This program can take into account complex

boundary conditions and local effects such as intermediate supports. More details about the

proposed numerical model are given in References (Djafour et al. 1999, 2001, 2007)

θxi

dVq Z( )
Zd

-----------------
Z Z

i
=

–= and θyi

dUq Z( )
Zd

-----------------
Z Z

i
=

=

Fig. 5 A classical beam element 

Fig. 6 Two strips connected by a beam
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4. Proposed design approaches

Based on existing work for the buckling analysis of single channels, some design approaches are

proposed for predicting the strength design of built-up columns. The effective width method and the

Direct Strength Method are investigated and the performance of the proposed design methods is

assessed by comparison with experimental data obtained from the studies by Modovan et al. (1999)

and Niazi (1993). 

4.1 Effective width based design approaches

The effective width approach introduced in Eurocode 3 (CEN 2004) for evaluating the resistance

of battened built-up members subjected to local buckling is used to verify its applicability to thin-

walled, built-up columns. Two design approaches, starting from different elastic buckling solutions,

are considered for this investigation, namely the classical “element” approach and the Compound

Spline Finite Strip Model (CSFSM) numerical. 

4.2.1 First approach (EC3-1)

i) Step1: The Euler buckling load is computed using the effective moment of inertia and the real

dimensions of the chord.

where  (16)

ii) Step 2: The effective widths of the web, flanges, and lips of each chord forming the built-up

column are determined by the formula

where  (17)

where K
σ
 = 4.0 for stiffened elements and 0.43 for un-stiffened elements.

iii) Step 3: Calculation of the shear stiffness coefficient (Sv) given by

 (18)

iv) Step 4: The critical buckling strengths about the minor and major axes are computed by the

Eurocode approach using the effective width of the channels found in step 2.

 (19)

v) Step 5: The critical buckling load of the built-up column is calculated by solving the second

order equation

 (20)

where:  

Ncr

π
2
EIeff

l
2

---------------= Ieff 0.5h
2
Abr 2μIyy+=

beff ρ b⋅ 1

λ P

------ 1
0.22

λ P

----------–⎝ ⎠
⎛ ⎞ b⋅= = λ P

1.052

Kσ

-------------
b

t
---

fy

E
----⋅=

1

Sv

----
a
2

24EIc
--------------

ah

12EIb
--------------+=

Nby RD,

χyAeff fy

γM1

----------------- and Nbz RD,

χzAeff fy

γM1

-----------------= =

0.5ψNSD

2
0.5 0.5ξ ψNR SD,

+ +( )NSD– NR SD,
+ 0=

ψ
1

Ncr

-------
1

Sv

---- and ξ+
e0h0Aeff

Ieff
------------------= =
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and

vi) Comparison of calculated values with the experimental ones. 

4.2.2 Second approach (EC3-2)

The same steps are followed as for the first approach except that in step 2 instead of using Kσ =

4.0 for stiffened elements and 0.43 for un-stiffened elements in the calculation of , the buckling

factors are determined from the equation

 (21)

where σcr is the elastic critical stress calculated by the proposed “Compound Spline Finite Strip

Method (CSFSM)” program using the real dimensions (measured) of the channels. Following all

these steps for the selected built-up columns, the obtained results are summarised in Tables 2 and 3

for the plain and lipped, built-up columns respectively.

It should be noted that these two approaches gave very close values of buckling load compared to

the experimental ones. The mean value of the ratio Nu, expe/Nu, num is about 0.99, 0.84, and 0.94 for

the first approach and 0.83, 0.81, and 1.05 for the second approach, for U, C (Moldovan et al.

1999) and C (Niazi 1993) sections, respectively.

Figs. 7 and 8 show the variation of the web effective width ratio ρ = heff /h with the slenderness

factor . Herein, σy = 235 MPa, and σcr is the critical stress of the built-up columns

obtained by multiplying the critical load (calculated by the two effective width approaches or the

experimental critical load), by the effective area. For reference, the prediction from the (CEN 2004)

method for plate local buckling calculated at σy, is included. In general, the results obtained by the

two effective width approaches correlate very well with the experimental results.

NR SD,
min Nby RD,

;Nbz RD,
( )=

λ P

Kσ

σcr

σE

------- σcr
12 1 ν

2
–( ) b/t( )2

π
2
E

-------------------------------------⋅= =
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Table 2 Experimental-to-predicted ratios for effective width solutions for plain built-up columns

Col
Nu, expe

(KN)
Nu, Ec1

(KN)
Nu, Ec2

(KN)
Nu, expe/
Nu, Ec1

Nu, expe/
Nu, Ec2

Nu, Ec1/
Nu, Ec2

U Shape. 
A. Moldovan 
et al. (1999)

P 5-1 80.00 94.168 118.22 0.85 0.68 0.96

P 5-2 95.00 93.873 118.17 1.01 0.80 0.95

P 5-3 70.00 91.141 114.81 0.77 0.61 0.96

P 7-1 240.00 209.9 240.79 1.14 1.00 0.90

P 7-2 225.00 200.25 233.63 1.12 0.96 0.90

P 7-3 232.00 204.39 235.55 1.14 0.98 0.90

P 10-1 175.00 236.99 297.81 0.74 0.59 0.95

P 10-2 218.00 227.73 287.48 0.96 0.76 0.95

P 12-1 323.00 324.31 382.62 1.00 0.84 0.89

P 12-2 323.00 331.43 386.21 0.97 0.84 0.87

P 12-3 392.00 319.96 380.01 1.23 1.03 0.89

Mean value 0.99 0.83 0.83

Standard deviation 0.15 0.15 0.03
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Table 3 Experimental-to-predicted ratios for effective width solutions for lipped built-up columns

Col
Nu, expe

(KN)
Nu, Ec1

(KN)
Nu, Ec2

(KN)
Nu, expe/
Nu, Ec1

Nu, expe/
Nu, Ec2

Nu, Ec1/
Nu, Ec2

C Shape. 
A. Moldovan 
et al. (1999)

P 19-1 117.00 146.3 149.68 0.80 0.78 0.96

P 19-2 125.00 147.77 151.66 0.85 0.82 0.95

P 19-3 116.00 145.48 149.52 0.80 0.78 0.96

P 21-1 140.00 150.23 167.59 0.93 0.84 0.90

P 21-2 153.00 177.16 189.59 0.86 0.81 0.90

P 21-3 140.00 171.66 184.8 0.82 0.76 0.90

P 27-1 312.00 405.71 406.93 0.77 0.77 0.89

P 27-2 334.00 405.66 409.15 0.82 0.82 0.87

P 27-3 360.00 386.71 388.89 0.93 0.93 0.89

Mean value 0.84 0.81 0.96

Standard deviation 0.06 0.05 0.03

Col
Nu, expe

(KN)
Nu, Ec1

(KN)
Nu, Ec2

(KN)
Nu, expe/
Nu, Ec1

Nu, expe/
Nu, Ec2

Nu, Ec1/
Nu, Ec2

C Shape. Niazi 
(1993)

120B1 245.670 248.82 235.69 0.99 1.04 1.06

120B2 346.34 342.26 340.48 1.01 1.02 1.01

180B1 460.67 548.06 485.36 0.84 0.95 1.13

180B2 447.34 462.37 396.67 0.97 1.13 1.17

180B3 570.34 623.35 522.93 0.91 1.09 1.19

180B4 549 597.16 508.27 0.92 1.08 1.17

Mean value 0.94 1.05 1.12

Standard deviation 0.06 0.06 0.07

Note:
Nu, Ec1=Local buckling load of the built-up columns from the first approach (EC3-1) of the effective width method.
Nu, Ec2=Local buckling load of the built-up columns from second approach (EC3-2) of the effective width method.
Nu, expe=Experimental buckling load of the built-up columns.

Fig. 7 Web effective width vs. CEN2004 Single
Plain Channel Prediction

Fig. 8 Web effective width vs. CEN2004 Single
Lipped Channel Prediction
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4.3 Direct strength-based design approaches

The principles of the Direct Strength Method are used to determine the strength predictions of

built-up columns. Depending on the calculation of the elastic buckling characteristics, four design

approaches are considered for this investigation. These are as follows:

4.3.1 First and second approaches (DSM-1 and DSM-2)

Separate strength curves for local and distorsional buckling loads are considered in the Direct

Strength Method (DSM). In the first approach (DSM-1), the local buckling load is simply calculated

by the classical element method (i.e., Eqs. (5) through (7)). In the second approach (DSM-2), the

closed-form hand method given by Eqs. (8) through (10) is used to predict the local buckling stress.

No interaction between the local mode and the other modes is considered.

The predicted strengths for plain and lipped, built-up columns are given in Figs. 9 and 10

respectively. For plain channel, the semi-empirical method is not applicable. From these figures, we

can see that the element method performs well for plain, built-up columns, while for lipped, built-up

columns; the hand methods are more conservative for predicting the strength of columns.

Fig. 9 Method DSM-1: Slenderness vs. Strength for
Plain Built-up Columns

Fig. 10 Methods DSM-1 and DSM-2: Slenderness
vs. Strength for Lipped Built-up Columns

Fig. 11 Method DSM-3: Slenderness vs. Strength for
Plain Built-up Columns

Fig. 12 Method DSM-3: Slenderness vs. Strength for
Lipped Built-up Columns
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4.3.2 Third approach (DSM-3)
In this approach, the elastic distorsional buckling load is given by Eqs. (11) and (12). The local

buckling mode can still be calculated by the element approach as in DSM-1 or DSM-2. Figs. 11 and

12 provide a graphical representation of the direct strength equations for local and distorsional

buckling loads along with the results for the buckling tests. The test buckling data shows more

deviation for the lipped, built-up columns than the plain, built-up columns.

Fig. 13 Method DSM-4: Slenderness vs. Strength for
Plain Built-up Columns

Fig. 14 Method DSM-4: Slenderness vs. Strength for
Lipped Built-up Columns

Table 4 Experimental-to-predicted ratios for direct strength method solutions for plain built-up columns

Col
Nu, expe

(KN)
Nu, DSM-1

(KN)
Nu, DSM-3

(KN)
Nu, DSM-4

(KN)
Nu, expe/
Nu, DSM-1

Nu, expe/
Nu, DSM-3

Nu, expe/
Nu, DSM-4

U Shape. 
A. Moldovan 
et al. (1999)

P 5-1 80.00 36.898 56.151 69.428 1.08 0.71 0.58

P 5-2 95.00 36.419 56.178 69.712 1.30 0.85 0.68

P 5-3 70.00 36.011 53.364 66.346 0.97 0.66 0.53

P 7-1 240.00 93.949 133.97 140.55 1.28 0.90 0.85

P 7-2 225.00 89.267 128.4 136.85 1.26 0.88 0.82

P 7-3 232.00 90.999 130.93 138.11 1.27 0.89 0.84

P 10-1 175.00 103.17 146.82 170.3 0.85 0.60 0.51

P 10-2 218.00 101.7 141.82 164.26 1.07 0.77 0.66

P 12-1 323.00 178.12 216.78 224.1 0.91 0.74 0.72

P 12-2 323.00 179.12 219.97 226.42 0.90 0.73 0.71

P 12-3 392.00 174.48 214.19 222.5 1.12 0.92 0.88

Mean value 1.09 0.78 0.71

Standard deviation 0.17 0.11 0.13

Note:
Nu, DSM-1=Nominal axial strength of the built-up columns from the first approach (DSM-1) of the Direct Strength Method.
Nu, DSM-2=Nominal axial strength of the built-up columns from the second approach (DSM-2) of the Direct Strength
Method.
Nu, DSM-3=Nominal axial strength of the built-up columns from the third approach (DSM-3) of the Direct Strength Method.
Nu, DSM-4=Nominal axial strength of the built-up columns from the fourth approach (DSM-4) of the Direct Strength Method.
Nu, expe=Experimental buckling load of the built-up columns.
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4.3.3 Fourth approach (DSM-4)

The “Compound Spline Finite Strip Model” is used in this approach to predict the elastic buckling

load. Variation in the predicted strength with respect to the slenderness, for the plain and lipped,

Table 5 Experimental-to-predicted ratios for direct strength method solutions for lipped built-up columns

Col
Nu, expe

(KN)
Nu, DSM-1

(KN)
Nu, DSM-2

(KN)
Nu, DSM-3

(KN)
Nu, DSM-4

(KN)
Nu, expe/
Nu, DSM-1

Nu, expe/
Nu, DSM-2

Nu, expe/
Nu, DSM-3

Nu, expe/
Nu, DSM-4

C Shape. 
A. Moldovan 

et al.
(1999)

P 19-1 117.00 95.925 96.341 94.712 95.469 0.61 0.61 0.62 0.61

P 19-2 125.00 95.92 97.427 95.477 97.363 0.65 0.64 0.65 0.64

P 19-3 116.00 94.498 96.341 92.363 96.297 0.61 0.60 0.63 0.60

P 21-1 140.00 80.022 83.876 87.241 98.309 0.87 0.83 0.80 0.71

P 21-2 153.00 98.451 103.03 104.2 111.25 0.78 0.74 0.73 0.69

P 21-3 140.00 93.812 98.305 101 107.79 0.75 0.71 0.69 0.65

P 27-1 312.00 236.17 236.17 233.88 236.17 0.66 0.66 0.67 0.66

P 27-2 334.00 237.53 237.53 233.72 237.53 0.70 0.70 0.71 0.70

P 27-3 360.00 225.95 225.95 222.49 225.95 0.80 0.80 0.81 0.80

Mean value 0.71 0.70 0.70 0.67

Standard deviation 0.09 0.08 0.07 0.06

Col
Nu, expe

(KN)
Nu, DSM-1

(KN)
Nu, DSM-2

(KN)
Nu, DSM-3

(KN)
Nu, DSM-4

(KN)
Nu, expe/
Nu, DSM-1

Nu, expe/
Nu, DSM-2

Nu, expe/
Nu, DSM-3

Nu, expe/
Nu, DSM-4

C Shape. 
Niazi 
(1993)

120B1 245.670 237.71 256.06 256.69 240.99 1.06 0.52 0.48 0.48

120B2 346.34 237.71 256.06 256.69 278.18 1.01 0.73 0.68 0.67

180B1 460.67 310.81 342.22 364.67 296.11 1.13 0.74 0.67 0.63

180B2 447.34 310.81 342.22 364.67 264.36 1.17 0.72 0.65 0.61

180B3 570.34 310.81 342.22 364.67 294.7 1.19 0.92 0.83 0.78

180B4 549 310.81 342.22 364.67 294.75 1.17 0.88 0.80 0.75

Mean value 0.75 0.69 0.66 0.78

Standard deviation 0.14 0.13 0.11 0.18

Fig. 15 Experimental-to-Predicted Ratios vs. Web
Slenderness for Plain Built-up Columns

Fig. 16 Experimental-to-Predicted Ratios vs. Web
Slenderness for Lipped Built-up Columns
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built-up columns is depicted in Figs. 13 and 14, respectively. Again, the test data deviates from the

local and distorsional buckling loads determined by the Direct Strength Method.

Finally, to show the accuracy of the proposed design methods for built-up columns, all the results

are summarised in Tables 4 and 5 for plain and lipped, built-up columns respectively. The

experimental-to-predicted ratios are plotted against the web slenderness for all the methods. Figs. 15

and 16 show this variation. In general, predictions of the strength buckling of built-up columns by

the effective width approaches are better than the direct strength predictions. The best experimental-

to-predicted ratio is related to the EC3-1 and EC3-2 approaches for U and C (Niazi 1993) built-up

columns. Most of the direct strength approaches give less accurate ratios when compared to those of

the effective width method. All comparison results are given in Tables 2 through 5.

5. Conclusions

Thin-walled, built-up columns may buckle in local, distorsional, chord overall, or Euler modes.

For single channels, most of the current design specifications use either the effective width method

or the Direct Strength Method. These methods employ the elastic local, distortional, or Euler

buckling characteristics to calculate the ultimate strength of columns. Closed-form predictions of the

buckling stress in the local, distorsional, or global modes are available for single channels. A new

numerical method, developed by the authors, and based on the spline finite strip is proposed for

predicting the elastic buckling stress. 

Based on all these ideas, some design methods are proposed for the prediction of the strength of

built-up columns. When using the effective width method, two approaches are considered. In the

first method the buckling factor to evaluate the effective widths are taken as 4.0 and 0.43 while in

the second approach this factor is calculated using the critical stress found by the proposed

compound spline finite strip model. Comparisons with experimental data confirm a satisfactory

degree of accuracy in the proposed design method. The experimental-to-predicted ratios obtained by

this approach are almost equal to unity for both the plain and lipped columns. The numerical model

demonstrates that numerical elastic local buckling solutions may be used as the key input to

determining the strength of a large variety of built-up compression columns.

Whether implemented as a classical hand method or spline finite strip numerical method for

elastic buckling determination, the Direct Strength Method provides significantly different strength

predictions as compared to the experimental data. The experimental-to-predicted ratios obtained by

this method are somehow not good. However, more experimental data is needed to reach a more

convincing conclusion about the accuracy of the Direct Strength Method.
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