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Fatigue life prediction of horizontally curved thin walled 
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Abstract. The fatigue damage accumulation rates of horizontally curved thin walled box-girder bridge
have been estimated from vehicle-induced dynamic stress history using rain flow cycle counting method
in the time domain approach. The curved box-girder bridge has been numerically modeled using
computationally efficient thin walled box-beam finite elements, which take into account the important
structural actions like torsional warping, distortion and distortional warping in addition to the conventional
displacement and rotational degrees of freedom. Vehicle model includes heave-pitch-roll degrees of
freedom with longitudinal and transverse input to the wheels. The bridge deck unevenness, which is taken
as inputs to the vehicle wheels, has been assumed to be a realization of homogeneous random process
specified by a power spectral density (PSD) function. The linear damage accumulation theory has been
applied to calculate fatigue life. The fatigue life estimated by cycle counting method in time domain has
been compared with those found by estimating the PSD of response in frequency domain. The frequency
domain method uses an analytical expression involving spectral moment characteristics of stress process.
The effects of some of the important parameters on fatigue life of the curved box bridge have been
studied.

Keywords: fatigue life; horizontally curved; thin walled box-girder; finite elements; cycle counting;
linear damage accumulation; power spectral density.

1. Introduction

The use of horizontally curved thin-walled box girder bridges has substantially increased in the

recent past due to various reasons, such as the need for smooth dissemination of congested traffic,

limitation of right of way, aesthetic, economic and environmental considerations. The passage of

vehicles over the bridge induces its self weight in addition to dynamic tyre force resulted from the

vibration of vehicles due to unevenness of the deck. The horizontally curved thin walled section

bridge girders present more complicated structural action, where bending and torsion due to moving

loads are coupled resulting in transverse and lateral deformation accompanied by warping as well as

distortion of girder cross section. Unlike straight bridges, the horizontally curved bridges are

additionally loaded due to centrifugal thrust, which are liable to affect the dynamic characteristics of

the bridge. 
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Fatigue is an important consideration for the design of bridges due to repeated action of moving

loads Fatigue behaviour of structures has been studied by several authors theoretically as well as

experimentally. Bennantine et al. (1990) described the theory of fatigue damage in metallic

specimens. It is customary to study fatigue strength of the structural member based on constant

amplitude fatigue test. The constant amplitude fatigue test result is usually represented in the form

of S-N curve (S: stress range, N: number of cycles to failure). Miner (1945) used S-N curve

approach to formulate a linear damage accumulation rule enabling one to predict fatigue damage at

each incremental stress range. Fatigue design criteria based on the S-N curve approach in

conjunction with linear damage hypothesis has been incorporated in American Association of State

Highway and Transportation Official’s (AASHTO) guide specification for fatigue of steel bridges

(1989), in British Standard Institution’s code of practice for fatigue design of steel, concrete and

composite bridges (1980), in Indian Railway’s bridge rules (1964) and in Indian Road Congress

(IRC) specification for road bridges of composite construction (1986). The drawback of these

methods lies on the fact that the charts used are based on constant amplitude fatigue test data,

which does not reflect the stress developed in the members due to the dynamic interaction of

vehicles with the bridge. 

When structures or components are subjected to repeated applications of random forces, as with

traffic loadings on the bridge, the number of cycles at which failure occurs are random variables.

Dowling (1972) developed statistical cycle counting method for handling the complicated stress

cycles induced by the variable amplitude load. Wirsching and Light (1980) conducted a study to

develop an engineering model which was used for design purposes to predict metal fatigue under

wide band random process. Lutes et al. (1984) presented a stochastic fatigue damage theory to

model uncertainty about stress time history. Numerical simulations were performed based on the

existence of S-N curves for constant amplitude fatigue. Larson and Lutes (1991) conducted study on

the prediction of fatigue life of off shore structures by spectral density approach. It was applied to

unimodal and bi-modal power spectral density function with the use of only single moment integral.

Such an approach was found useful when one would need to predict fatigue life without knowing

all the details of loading and stress time history. 

An alternative way for the fatigue assessment study of the structural members has been based on

the principles of fracture mechanics, which assumes an initial crack of a certain length and

envisages its propagation until it has attained a critical length. Paris and Erdogen (1963) developed

a crack growth model which formed the basis of such study. The linear fracture mechanics approach

was found to be inadequate in predicting fatigue failure of strain hardening material in the presence

of plasticity near crack tip Woo et al. (2004) developed finite element model to predict the elastic-

plastic crack tip field and applied the theory to centre-cracked panels (CCP) with ductile fracture

under large scale yielding conditions. From practice, it is generally known that a bridge with a

fatigue crack can serve for a long time in normal conditions. Zhao et al. (1994) and Ravi and

Ranganathan (1994) conducted studies on fatigue reliability of bridge components taking account of

the phase of crack propagation. Park et al. (2005) developed analytical model to estimate fatigue

damage of steel bridge welded member using elastic fracture mechanics approach. Their study

concluded that crack opening stress is the primary factor effecting failure time.

Bridge fatigue damage can be estimated using either deterministic approach or probabilistic

model. Mohammadi et al. (1998) presented the application of field data for condition assessment

and prediction of service life of highway bridges composed of steel girders with reinforced concrete

deck slabs using probability model. The field data compiled for several bridges was used to develop
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probability density function of stress range. The probability function so developed has been used

along with Miner’s rule to determine reliability of the failure of components at fatigue critical

locations. Agerskov and Nielsen (1999) studied fatigue damage accumulation in steel highway

bridge under random loading, and comparisons among experimental results, results of fracture

mechanics analysis, and results obtained using current codes and specifications, i.e., Miner’s rule,

were presented.

Dougall et al. (2006) focused on the fatigue damage caused in steel bridge girders by the dynamic

tyre forces that occurred during the crossing of heavy transport vehicles. This work quantified the

difference in the fatigue life of a short-span and a medium-span bridge due to successive passages

of either a steel-sprung or an air-sprung vehicle. Huang et al. (1993) calculated the fatigue lives of

highway steel bridges using a reliability-based methodology. The fatigue life of both non-composite

and composite steel beam bridges for different vehicle speeds and classes of road surface roughness

were calculated from the generated stress time-histories. Wang et al. (2000) performed truck loading

and fatigue damage analysis for girder bridges based on the weight-in-motion data. Fatigue damage

analysis was performed according to the miner’s linear damage rule. The studies were conducted

based on the hypothesis of fatigue damage accumulation and was well suited for structures in the

design phase. Repetto (2005) emphasized the need to establish the bounds of fatigue life as an

essential condition in the design of structures and illustrated the approach for the case of a wind

induced fatigue. 

The fatigue provisions in the current codes of practice for the design of steel bridges do not utilize

the stresses induced in the bridge components due to dynamic interaction with the moving vehicles.

This is particularly significant in the case of curved thin walled box girder configurations because of

coupling of flexural and torsional stresses accompanied by warping and distortion of the cross

section. It has been found from the literature survey that studies on fatigue life particularly

pertaining to a horizontally curved thin walled box girder bridges have not been addressed. With

this in view, an elaborate study has been undertaken to estimate the fatigue life of a curved thin

walled box girder bridge from the vehicle induced stress history. The use of both time domain and

frequency domain method for the fatigue life evaluation has been illustrated for the problem under

investigation. A finite element analysis has been performed for the bridge-vehicle coupled dynamic

problem using an element, which is computationally efficient as well as reasonably representative of

thin-walled box girder behaviour. In the time domain approach, Rainflow Counting Method

(RFCM) as proposed by Amzallag et al. (1994) has been applied to dynamic stress history of

horizontally curved girder of thin walled box section to find the number of cycles and the

corresponding stress range. For each stress range, the fraction of total damage has been calculated

using Miner’s rule and the cumulative damage index is evaluated. Fatigue life of the bridge deck

has been found from the cumulative damages in the critical location. In frequency domain approach,

the power spectral density of stress at critical location of the bridge has been found to determine

spectral moments. These spectral moments are subsequently used in an analytical expression

developed by Kihl et al. (1995) for fatigue damage accumulation rates based on the assumption of

Raleigh’s distribution for the probability density function of peaks. The results of fatigue damage

obtained by two methods have been compared. Finally, a parametric study has been conducted to

examine the influence of some of the important bridge-vehicle parameters on the fatigue life of the

curved bridge. 

The fatigue testing of structural specimen being time consuming and expensive affairs, the present

method of rapid estimate of the fatigue life of a bridge is very attractive in design phase as well as
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in service to monitor the structural health for various conditions of truck weight and traffic volume.

The approach uses the vehicle induced stress and traffic data to arrive at the estimate of fatigue life.

The estimation of fatigue life can be achieved in practice by proper traffic study and compiling

resultant stress/strain histories of an instrumented bridge at few critical locations. 

2. Bridge-vehicle interaction model

In order to apply the concept of fatigue damage accumulation in a curved box girder bridge, the

vehicle-induced stresses at the critical sections have to be found by solving a bridge-vehicle

dynamic interaction problem. In the first step, appropriate models for the bridge and vehicle have to

be selected for numerical simulation of the coupled dynamics. In the present paper, finite element

model has been adopted to simulate the structural actions of a horizontally curved thin walled box

girder bridge. The models of bridge and vehicle have been described in the following sections.

2.1 Finite element model of thin walled curved bridge

A three-dimensional finite element analysis offers the most comprehensive treatment, where a

variety of structural geometries, supports and loading conditions can be accommodated for the

accurate assessment of structural effects. However, such an analysis is highly computational

intensive and in some cases leads to voluminous data output. At the preliminary analysis and design

stage, it is likely that a three-dimensional analysis may not be very reasonable since the bridge

geometries and loading conditions, etc. may have to be modified for diverse reasons. It is, therefore,

desirable at this stage to use a realistic, computationally efficient and less expensive model in the

analysis. 

A three noded one dimensional box beam element has been introduced following the strategy

given by Zhang and Lyons (1984) for the coupled bridge-vehicle dynamic analysis. The adopted

element is simple, computationally efficient; but very well representative of complex behaviour of

thin walled box-girder bridge. Since the element has not been used for dynamic analysis as per the

available literature, experimental studies have been conducted by the authors to evaluate the modal

parameters (Nallasivam et al. 2007), which have matched very well with the numerically evaluated

values. The adopted thin-walled box beam element can be regarded as a general beam element. In

addition to the usual six degrees of freedom at each node, represented by the three displacements

and the three rotations, three more degrees of freedom have been incorporated in the formulation to

account for the warping and distortion effects, which occur in box beams. The element is curved in

space but the cross-sections are generated by straight lines. The element axis is defined as the locus

of the centroids, which may be eccentric from but parallel to the flexural axis. The element has two

end nodes and a midpoint node situated on the axis. The three noded thin-walled box beam element

is as shown in Fig. 1. A local rectangular coordinates system (x, y, z) along the curve axis is used in

the element formulation. The global Cartesian coordinates are in terms of a natural coordinatex,

which varies between −1 and +1 on the respective faces of the element. The generalized

displacements in the local co-ordinate system incorporating all the complexities of a thin-walled box

girder are given by

(1)δ u v w θx θy θz θx′ γd γd′, , , , , , , ,[ ]T=



Fatigue life prediction of horizontally curved thin walled box girder steel bridges 391

where  are the translations along the local x, y, z axes respectively, θx is the angle of twist, θx'

is the rate of twist, θy and θz are bending rotations about y and z axes respectively, γd is the

distortion angle, γd'  is the rate of distortion.

The generalized stress vector is

 (2)

in which Nx is the axial force, Qy, Qz are the shear forces, MT is the pure torsional moment, My, Mz

are the primary bending moments, B1 is the torsional warping bimoment, Md is the distortional

moment, B11 is the distortional warping bimoment and μt is the warping shear parameter.

The generalized strain vector is

 (3)

where, εx represents axial strain in x direction, εyx and εzx represent shear strain in y and z direction

respectively; ψθx, ψyx, ψzx, ψwtx, ψdx, ψwdx denote torsional strain, flexural strain in y direction,

flexural strain z direction, torsional warping strain, distortional strain and distortional warping strain

respectively. 

The generalized elasticity matrix [D] required for the calculation of element stiffness and mass

matrix is given by

 (4)

u v w, ,

σ Nx Qy Qz MT My Mz
1

μt

----B1 Md B11, , , , , , , ,
T

=

ε εx εyx εzx ψθx ψyx ψzx ψwtx ψdx ψwdx, , , , , , , ,[ ]T=

D[ ]

EA

GAsy 0

GAsz

GJT

EIy

EIz

1

μt

----E1JI

0 E1Jd

E1JII

=

Fig. 1 Curved thin-walled box beam element with three nodes
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where A is the cross-sectional area; Asy, Asz are effective shear areas in the y and the z directions

respectively; JT is torsional moment of inertia; Iy, Iz are bending moments of inertia about the y and

z axes respectively; JI is torsional warping moment of inertia; Jd is distortional second moment of

area; and JII is distortional warping moment of inertia. E1 is the conversion modulus of elasticity and

is given by 

 (5)

where E and ν are the Young’s modulus of elasticity and Poisson’s ratio. Further, the bending

moments of inertia have been calculated on the basis of an effective flange breath replacing the

actual width to account for the effect of shear lag. Only C0 continuity is required for the extensional

and flexural effects and quadratic shape functions have been used 

       for i = 1 and 3

   for i = 2 (6)

However, since the governing equations for torsion and distortion are of fourth order and the

beam being three-noded, fifth order C1 continuity is required for torsion and distortion. 

for i = 1 and 3

(7)

for i = 2

where  and Ji is the Jacobian factor with respect to nodal coordinates.

The element stiffness matrix may be written as

(8)

where [B] is the strain displacement matrix.

The element mass matrix may be written as

 (9)

2.2 Equations of motion for coupled bridge-vehicle system 

A rigid vehicle model with heave, pitch and roll degrees of freedom has been considered. The

model of vehicle is shown in Fig. 2. Though the vehicle model is a simple two axles one, it is fully
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capable of idealizing all the important motion components of the vehicle like vertical displacement

of the chassis centre (bounce), pitching and rolling rotations about the two axes of the chassis and

four vertical displacement of wheel tyres at each of its axle locations and their interaction. 

The equation of heave motion of the sprung mass can be written as 

 (10)

As the random input of deck profile is not same for the front and rear wheels, the vehicle is

subjected to pitching. The pitching motion of sprung mass is given by 

 

(11)

The rolling motion of sprung mass is given by

(12)

The front and rear wheel vertical motion (bounce) can be represented as

msz
·· csip z· biθ

·
– lpψ

·
– z· ip–( ) ksip z biθ– lpψ– zip–( )+{ }

p 1=

2

∑
i 1=

2

∑+ 0=
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Fig. 2 3-D Vehicle model with seven degrees of freedom (a) Side view (b) End view
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(13)

The governing differential equation of motion of the box-girder bridge can be expressed as 

(14)

The weight of the vehicle and centrifugal forces will also act at appropriate location in addition to

the damping and spring forces from vehicle as incorporated in Eq. (14).

Here,  and b2, l2 are negative quantities. vip are the bridge

displacements under front / rear wheels at any arbitrary time t. hip represents the random input of

deck profile under the front / rear wheels and  are the time derivatives of the random input of

deck profile. The suspension stiffness and damping of the vehicle are denoted by ksip and csip.

Similarly, the tyre stiffness and damping are denoted by ksip and cuip. The unsprung mass is denoted

by mip, which corresponds to tyre mass and ms represents the sprung mass. The moment of inertia

for pitch and roll of the vehicle are designated by J and I, while  represents the

bridge mass, damping and stiffness matrices respectively and g is the acceleration due to gravity. R

is the radius of curvature with respect to the center of gravity of vehicle and Ri'  is the corresponding

radius of curvature with respect to the right and left wheel.

The set of Eqs. (10) to (14) can be expressed in matrix form amenable to its solution by a suitable

numerical scheme as

(15)

where [M], [C] and [K] are the global mass, damping and stiffness matrix respectively obtained

after assembly and applying boundary conditions. The damping matrix has been taken as Rayleigh’s

damping matrix (Meirovitch 1986). The response vector {χ} includes the vehicles sprung mass

heave, pitch and roll degrees of freedom, unsprung mass vertical bounce and also displacement

coordinates defined at the nodal points of the curved bridge. The vector {P} represents the

generalized force vector which is dependent on pavement roughness, its derivative, moving vehicle

mass and centrifugal force due to curvature effect. Newmark-β scheme (average acceleration) with

predictor-corrector algorithm (Owen and Hinton 1980) has been used for the evaluation of dynamic

response of the bridge due to vehicle-induced vibration. While solving the coupled bridge vehicle

system, it is important to examine that any of the tyres does not lose contact with the bridge deck.

The tyres of the vehicle always remain in contact with the bridge deck for the range of velocities to

be considered such that the interaction force is never less than zero. 

2.3 Simulation of deck roughness as input to vehicles

In general, the bridge pavement elevation measured with respect to flat datum at a distance x from
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the reference station can be represented by

(16)

where hm(x) is a deterministic function describing the mean bridge surface profile and hr(x) is a zero

mean random process taken as Gaussian. Discrete form of roughness that includes joint between

approach slab and bridge abutment, bump, potholes, construction joint etc can be modeled as a

deterministic function bounded in a small interval (Pesterev et al. 2002) and be incorporated in the

mean roughness profile whenever necessary. The effect of discrete roughness on the dynamic

response of bridge is to momentarily increase the contact force between tyre and road surface,

thereby increasing dynamic amplification factor (Pesterev et al. 2005). In well maintained, bridge

such defects will not cause any appreciable increase in the response. In general, the response of

such discrete roughness will be transient in nature and its effect on the calculation of fatigue life has

been ignored in the present investigation. 

The mean surface profile in the present analysis has been taken as flat surface so that hm(x) = 0.

The zero mean random process has been modeled by power spectral density function. In time

domain analysis, the random road surface roughness hr(x) of the bridge can be simulated from

power spectral density function in the form of a series proposed by Shinozuka (1971) as

  (17)

where αk is the amplitude of the cosine wave, Ωk, is the spatial frequency within the interval [Ωl,

Ωu] in which power spectral density function is defined, ϕk, the random phase angle with uniform

probability distribution in the interval [0, 2π]. x is the global coordinate measured left end of the

bridge and N is the total number of terms used to built up the road surface roughness. The value of

N depends on the velocity of the vehicle (hence the total time taken to cross the bridge) and size of

the time increment chosen for the analysis of the dynamic response (N = Total time/Δt). The

parameters αk and Ωk are computed as

(18)

(19)

(20)

where Sr(Ωk) is the PSD function (m3/cycle), Ωl and Ωu are the lower and upper cut-off spatial

frequencies (cycle/m), respectively.

The PSD function Sr(Ωk) is expressed in terms of the spatial frequency of the road surface

roughness Ωk (in cycle/m). The following form of PSD of deck roughness suggested by Hwang and

Nowak (1991) has been used as the dynamic input to the moving vehicles.

 (21)
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where the parameter αs is a spectral roughness coefficient in m2/(m/cycle) and the spectral exponent

βr is taken to be 1.94. The temporal frequency ω (rad/sec) can be related to spatial frequency of the

surface Ω (rad/m) roughness by the following equation 

(22)

in which the V is the vehicle forward velocity. The road surface condition may be classified in to

five classes according to ISO specification in terms of coefficient αs as shown in the Table 1.

3. Damage accumulation and fatigue life

The fatigue behavior is determined experimentally from tests in which a load or deflection is

controlled and varied in simple periodic manner until failure. A typical experimental investigation of

constant amplitude fatigue for a specimen of given configuration and material involves a large

number of tests. The test results are usually presented in the form of S-N curve which is expressed

by the relation (Lutes and Sarkani 1997)

 (23)

in which K and m are the positive material constants whose values depend on both materials and

geometry of the specimen; Sr is the stress range and Nf is the number of cycles to failure denoted.

The fatigue life of a component is affected by the mean stress and stress range. In conducting the

fatigue damage evaluation using mean stress, the failure behaviour in terms of S-N curve needs to

be determined using Goodman correction formula (Lutes and Sarkani 1997). In the present study,

however, the stress range will be considered in the evaluation fatigue life. 

In real situation, a vehicle passing over a bridge induces dynamic load as a result of the vehicle

oscillation. These load time histories are much more complicated compared to periodic loadings

used in laboratory fatigue testing because of the random nature of the vehicle excitation caused by

pavement roughness. The load-time history is generally dominated by one large cycle equal to the

peak live load produced by the vehicle. Dynamic effects generate additional small cycles

superimposed on the large cycle. In order to assess the fatigue damage caused by the passage of

vehicle, it is necessary to account for both the large dominant cycle and the small-superimposed

cycles. The basic problem of fatigue analysis is to use appropriately the S-N curve data from the

periodic tests to predict fatigue life of an element or assembly, which is subjected to a service load

having a complicated time history. In case of random load history, the above equation cannot be

ω ΩV=

Nf KSr

m–
=

 
Table 1 Road surface classification

Road surface condition αs (m
3/(m/cycle))

Very good αs ≤ 0.24 × 10−6

Good 0.24 × 10−6 
≤ αs ≤ 1.0 × 10−6

Average 1.0 × 10−6 
≤ αs ≤ 4.0 × 10−6

Poor 4.0 × 10−6 
≤ αs ≤ 16.0 × 10−6

Very Poor αs >16.0 × 10−6
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used without additional information. The effect of variable-amplitude loading (i.e., random load or

irregular) on fatigue performance is normally accounted for with cumulative damage rules.

Typically, these rules attempt to relate fatigue behavior under a complex loading history to the

known behavior under constant amplitude loading. The linear damage accumulation hypothesis,

called “Palmgren-Miner” hypothesis (Lutes and Sarkani 1997) has been used in the present study.

The cumulative damage accumulation under variable-amplitude loading is given by

 (24)

in which ΔDj is the incremental damage, nj is the number of stress cycles at stress range level Srj

and Nj is the number of cycles at constant stress range level Srj from (S-N curve) to cause failure, nb

is the number of stress range blocks in the histogram. The fatigue life T is then calculated as T = 1/

D(t). The contribution of small stress cycles below endurance limit in damage summation has been

ignored.

Fatigue predictions can follow several approaches, differing in the level of stress and strain

analysis used. Moving vehicle induced vibrations of curved box-girder bridge structures produce

fluctuating stresses that lead to damage accumulation. Fatigue analysis from vehicle induced stress

in a bridge has been carried out in two ways. In the first approach, traditional cycle counting

procedures in the time domain has been adopted. The second approach is based on frequency

domain criteria in a probabilistic environment, where the spectral density function of the stress is

used to determine fatigue life. Time domain analysis of random stress history by cycle counting is

computationally expensive. It is necessary to simulate long stress histories and to process each stress

range individually to estimate the fatigue damage accumulation. In frequency domain analysis, a

power spectral density function of the stresses is used to calculate the probability distribution of the

stress peaks. The method used in the frequency domain for the estimation of the fatigue life is

Rayleigh’s approximate method, which is applicable for a narrow band Gaussian random process. It

provides a rapid estimate of fatigue life that can be compared with the cycle counting method

applied on the stress time history.

3.1 Cycle counting method

The cycle counting method has been regarded as a procedure to transform a loading time history

into a set of cycles. Fryba (1996) discussed different counting methods for the classification of

random time history. In the present paper, Rainflow Counting method (RFCM) has been used in the

time domain cycle counting method to identify cycle range. This method establishes one to one

correspondence between local maximum and minima of the stress time history. It is observed that in

RFCM, small cycles are interruptions of the larger cycles. In this way, the method identifies both

slowly varying large amplitude cycles and more rapid small reversals on the top or bottom of these

cycles. The sequence of operations followed in RFCM method has been illustrated in Fig. 3.

3.2 Spectral method

In frequency domain method, knowledge of frequency response function and power spectral

density of the excitation must be known to obtain the power spectral density of response. For a
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linear time invariant system like the one being presented here, the finite Fourier transform of the

force  and response  are related by

 (25)

F ω( ){ } X ω( ){ }

X ω( ){ } H ω( )[ ] F ω( ){ }=

Fig. 3 Flow diagram for the Rain flow counting method [A(i) is the stress at ith time step]
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where  is the complex frequency response function of the system, which is given by  

(26)

The PSD of stress as a function of temporal frequency ω can be defined as 

(27)

in which  is the cross spectral density matrix of the response and  is the cross

spectral density matrix of excitation which depends on power spectral density of road roughness

selected in the study. It may be noted that no statistical correlation exists between the static vehicle

weight and pavement roughness.

In frequency domain, fatigue of structures is estimated based on the statistical properties. The

stress PSD functions are usually obtained after solving the equations of motions in frequency

domain. To analyse the structural behavior with respect to fatigue, the response must be expressed

in terms of stresses.

(28)

where  is the mean stress, s is the zero mean fluctuating stress at location x. The mean static

stress  can be easily derived from the application of the mean static force. Furthermore, assuming

that the ratio between the fluctuating and the mean value of stress is equal to the ratio between the

fluctuating and the mean value of displacement (Repetto and Solari 2001), the power spectral

density of the stress at location x1 can be derived as 

(29)

where

(30)

 is nodal load vector for mean force and  is power spectral density of stress at

location x1 as function of circular frequency.

3.2.1 Rayleighs approximation

In Rayleigh approximation method, the stress ranges are assumed to have Rayleigh distribution. In

particular, each stress range is taken to be twice the random amplitude of the process and for a

Gaussian process, this amplitude has a Rayleigh’s probability distribution.

Let the kth moment of the spectral density is defined as (Lutes and Sarkani 1997)

(31)

where  is the spectral density of stress at location x1 as function of circular frequency ω.

Assuming that S-N curve for the materials are defined, the expected fatigue damage accumulation
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rate can be expressed as (Lutes and Sarkani 1997)

(32)

where λ0 and λ2 can be obtained on substitution of k = 0 and k = 2 respectively in Eq. (31). Γ(.)

denotes Gamma function.

4. Results and discussion

A simply supported single cell curved box girder bridge (Fig. 4) as considered by Kermani (1993)

has been chosen in the present study to obtain the dynamic response due to moving vehicles from

which the fatigue life has been estimated. The span of the simply supported bridge is 30 m with a

radius of curvature of 150 m and the bridge has diaphragms at supports. The mass density, modulus

of elasticity and Poisson’s ratio of the material are 7840 kg/m3, 2 × 1011 N/m2 and 0.3 respectively.

The first five natural frequencies of the bridge have been found as 38.534 rad/sec, 105.080 rad/

sec, 139.907 rad/sec, 208.774 rad/sec and 235.465 rad/sec respectively. In numerical solutions of the

coupled bridge vehicle equations of motion, a time step equal to 1/50th of first fundamental time

period has been adopted from the accuracy point of view. Further, more refined time increments

values have also been considered, which did not show any significant changes in the dynamic

response of the bridge under study. Thus, considering numerical error due to inappropriate space

and time discretizations, the bridge has been discretized using thirty numbers of thin-walled box

beam elements and a time step of 3.6 × 10−3 sec is chosen for the analysis. Damping of the bridge

has been taken as one percent of the critical for the first and second modes to obtain the

proportionality constants in the expression of Rayleigh’s damping. It is assumed that the bridge

surfaces have the same roughness in the transverse direction. 

All the parameters relevant to the heave-pitch-roll 3D model (Fig. 2) of the vehicle have been

taken from the work of Henchi et al. (1998) and are presented in Table 2. 

E D t( )[ ]t T=

K
1–
2
3m/2

λ0

m 1–( )/2
λ2

1/2Γ 1
m

2
----+⎝ ⎠

⎛ ⎞

2π
---------------------------------------------------------------------=

Fig. 4 Geometry (mm) and properties of box girder bridge
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4.1 Road roughness profile 

The details of the procedure for generation of random road surface roughness from PSD function

have been given in the section 2.3. In this study, the values of spectral roughness coefficient, αs

have been taken as 0.24 × 10−6, 0.5 × 10−6, 3.0 × 10−6, 10.0 × 10−6 and 25.0 × 10−6 m3/(m/cycle)

according to International Organization for Standardization (ISO) specifications for the classes of

very good, good, average, poor and very poor roads respectively. Twenty profiles of road roughness

have been generated for each type of road using the following parameters:

The lower and upper limits of the spatial frequencies of the road profile are taken as Ωl = 0.01

cycle/m and Ωu = 3.0 cycle/m. The cut-off spatial frequencies are chosen in view of the practical

Table 2 Physical parameters of vehicle referred in Fig. 2 

Parameter Unit Value

Sprung mass (ms) kg 15000

Unsprung mass in front axle (m11, m21) kg 800

Unsprung mass in rear axle (m12, m22) kg 710

Vehicle suspension stiffness (ksip) N/m 0.399 × 106

Vehicle tyre stiffness N/m 0.351 × 106

vehicle suspension damping in front axle (cs11, cs21) Ns/m 23210

vehicle suspension damping in rear axle (cs12, cs22) Ns/m 5180

Vehicle tyre damping (cuip) Ns/m 800

Pitch moment of inertia (J) kgm2 154.536

Roll moment of inertia (I) kgm2 449

Position parameter (length wise) a1, a2 - 0.35,0.65

Position parameter (breath wise) a3, a4 - 0.5,0.5

Vehicle axle spacing (length wise) s1 m 2.66

Vehicle axle spacing (breath wise) s2 m 1.5

Height of C.G. of vehicle from deck surface (hv) m 1.2

Fig. 5 A typical good road surface profile for a box girder bridge
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size of a tyre. A typical vertical surface profile of the bridge deck in ‘good road surface category’ is

shown in Fig. 5. Dynamic responses are evaluated for each of the simulated deck profile

corresponding to a particular vehicle velocity. 

4.2 Time history of stress

The moving vehicle induces flexural, torsional, warping and distortional warping stresses in thin-

walled curved box girder bridge. In the present analysis, for the chosen parameters of the bridge,

the magnitudes of flexural stresses dominate over other stresses. Hence for evaluating fatigue life,

flexural stresses at mid span have been considered only. Some typical time histories of stress for the

bridge are shown in Figs. 6-8. The abscissa in those stress histories is the distance measured from

the left end of the bridge to the front axle of the vehicle. The time histories have been obtained for

various road surface conditions, varying vehicle speeds and vehicle weight to examine their

influence on the fatigue life of the curved bridge.

Slow and fast moving vehicles are covered in the study adopting operating speed range of 5 m/sec

(17.8 km/h) to 20 m/sec (71.4 km/h). Fig. 6 shows the flexural stress at mid span in good road

surface (Roughness constant αs = 0.5 × 10−6 m3/(m/cycle)) condition for different vehicle forward

Fig. 6 Flexural stress histories at mid span for
different vehicle forward velocities (pavement
roughness αs = 0.5 × 10−6 m3/(m/cycle), sprung
mass (ms) = 15000 kg) 

Fig. 7 Flexural stress histories at mid span for
different surface category (vehicle velocity =
20 m/sec, sprung mass (ms) = 15000 kg)

Fig. 8 Flexural stress histories at mid span for different vehicle sprung mass (vehicle velocity = 20 m/sec;
Pavement roughness αs = 0.5 × 10−6 m3/(m/cycle), sprung mass (ms) = 15000 kg)
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velocities. Fig. 7 and Fig. 8 show the flexural stress at the same location for different road

conditions and for different vehicle mass corresponding to constant vehicular velocity of 20 m/sec.

The stress time histories exhibit fluctuating components composing of small cycles caused by the

dynamic tyre forces generated due to random road roughness, which seems to be superimposed over

large cycles caused due to static weight. The peak magnitude is seen to occur when the centre of

gravity of vehicle is close to the center of the span, the magnitude of peak being greater for higher

velocity, deteriorated road surface condition and increased vehicle weight. 

4.3 Stress range histogram

The stress range histogram is needed for the calculation of fatigue life of the bridge.

Corresponding to the flexural stress samples at mid span of the bridge obtained by numerical

simulation, the stress histogram is prepared after synthesizing the time history by Rain flow

counting method. It may be noted that the flexural stresses have been calculated considering the

passage of single vehicle over the bridge. Assuming uniform traffic for all the days in a year,

number of cycles obtained by Rainflow analysis is simply converted into the annual cycles by using

a constant multiplier (Average daily traffic × 365). The flow rates of vehicles over the bridge have

been taken as 5 × 105 vehicles annually. Fig. 9 shows a typical stress range vs. frequency (number

of cycles/year) histogram with different vehicle forward velocity ranging from 5 m/sec to 20 m/sec

in good pavement condition (αs =0.5 × 10−6 m3/(m/cycle), sprung mass (ms) = 15000 kg). It is found

that the bridge is subjected to maximum 5 × 107 cycles/year in the stress range of 10 MPa-20 MPa

(mean stress 15 MPa) in the operating vehicle speed of 5 m/sec to 20 m/sec. In the higher stress

range, the numbers of stress cycles experienced by the bridge seem to decline. Fig. 10 presents the

stress range vs. frequency histogram obtained for the stress histories corresponding to three different

categories of the pavement such as good, average and poor. The vehicle speed considered is 20 m/

sec. It reveals from the histogram that the maximum number of stress cycle generated annually

corresponds to approximately 4 × 107 cycles/year in the stress range 10 MPa-20 Mpa for the good

condition of the bridge deck. The histogram reveals that the number of stress cycles in higher stress

Fig. 9 Stress ranges versus Frequency (cycles/year) Histogram for different vehicle velocity (pavement
roughness αs = 0.5 × 10−6 m3/(m/cycle, sprung mass (ms) = 15000 kg)
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range, although very small, is associated with the poor surface condition of the pavement. The

number of stress cycles in significant stress range does not reflect much variation due to change of

vehicle sprung mass within ±30% limit. This is evident in Fig. 11 which depicts the stress cycle

change due to change in vehicle mass when speed is considered as 20 m/sec and pavement

roughness (typical of good condition) as αs = 0.5 × 10−6 m3/(m/cycle).

4.4 Power spectral density of stress 

The power spectral density of stress is necessary for the calculation of spectral moments, which is

required to be used for the evaluation fatigue life using Rayleigh’s methods. To illustrate the nature

Fig. 10 Stress ranges versus Frequency (cycles/year) Histogram for various surface condition of the deck
(vehicle velocity = 20 m/sec, sprung mass (ms) = 15000 kg)

Fig. 11 Stress ranges versus Frequency (cycles/year) Histogram for different vehicle mass (vehicle velocity =
20 m/sec; Pavement roughness αs = 0.5 × 10−6 m3/(m/cycle), sprung mass (ms) = 15000 kg)
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of the power spectral density of stress, the spectral curve of stresses for of the box-girder bridge

have been plotted. Figs. 12, 13 and 14 show the effect of vehicle forward velocity, road roughness

and vehicle mass on PSD of stress at the mid-span of box-girder bridge. Results show that all the

peaks occur at the fundamental natural frequency of the bridge and has narrow band width centered

about the fundamental frequency. 

The nature of the PSD curves shows that stresses induced by moving vehicle is the realization of

narrow band random process, which justifies the applicability of the Rayleigh’s expression for the

evaluation of fatigue life. The magnitude of peak for spectral density of stresses increases with the

increase of vehicle velocity, road roughness and vehicle mass, which indicates the increase of

variance of the flexural stresses.

4.5 Effect of different parameters on the fatigue life

This section examines the effect of some of the important factors, which are believed to influence

Fig. 12 PSD of flexural stress at mid span for
different vehicle velocity (pavement roughness
αs = 0.5 × 10−6 m3/(m/cycle), sprung mass
(ms) = 15000 kg)

Fig. 13 PSD of flexural stress at mid span for
different road surface (vehicle velocity = 20
m/sec, sprung mass (ms) = 15000 kg)

Fig. 14 PSD of flexural stress at mid span for different vehicle mass (vehicle velocity = 20 m/sec; Pavement
roughness αs = 0.5 × 10−6 m3/(m/cycle), sprung mass (ms) = 15000 kg)
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the fatigue life of the bridge. Fatigue life of the curved thin walled box girder bridge section has

been evaluated both by time domain cycle counting analysis and spectral analysis using Rayleigh’s

approximation. 

4.5.1 Effect of S-N curve constants on fatigue life

The constants m and K that are used in the computation of fatigue life of the structure play a very

significant role. In calculation of fatigue life, the evaluation of material constants from S-N curve

test data is a perquisite. It is difficult to choose the constants m and K without obtaining data of the

fatigue test conducted on the specimen. The S-N curves for steel specimen have been presented in

AASHTO-LRFD bridge specification (1998) for eight categories of weld details. These fatigue

constants K of S-N curve for the steel specimens were used by Chung (2004) for fatigue reliability

analysis of steel bridges. The same constants have been used in the present study (Table 3) to

examine the fatigue life of a horizontally curved steel bridges. Detailed categories are listed in Table 3

which range from A to E’ in order of decreasing fatigue strength. In the present example, the box

section is assumed to have continuous welded longitudinal joints and hence it falls to the category B

(Chen and Duan 1999). However, various defects in welding, improper sizes or discontinuity and

occasional strengthening of section during repairing may lead to weaker or stronger details than the

originally designed structure and therefore it is necessary to know how the bridge fatigue life is

influenced by such construction defects or strengthening. The results are presented in Table 3 along

with detailed categories. The vehicle velocity of 20 m/sec and a good road surface condition (αs =

0.5 × 10−6 m3/(m/cycle)) have been assumed. As expected, the predicted fatigue life has been

observed to decrease systematically with weaker details. The results obtained by two approaches are

sufficiently closer.

4.5.2 Effect of vehicle forward velocity on fatigue life
Table 4 shows the variation of fatigue life due to the variation of vehicle velocity. The fatigue life

of the bridge has been computed for good road surface condition with velocity of the vehicle

varying from 5 m/sec to 20 m/sec. The effect of increase of speed of the vehicle over the bridge

increases the dynamic deflection as well as the peak flexural stress. This leads to the increase of the

stress range as well. Higher magnitude of the stress range is expected to reduce the number of

cycles to failure. This would result in the increase of cumulative damage index and reduction of

Table 3 Influence of S-N curve constant ‘K’ (AASHTO-LRFD Fatigue Categories) on fatigue life

Detailed category
(Lutes and Sarkani (1997)

Fatigue constant (K)
(108)

Fatigue life(T) years

Spectral method Cycle counting method

A 250.0 180.668 173.611

B 120.0 86.720 83.333

B’ 61.0 44.083 42.361

C 44.0 31.797 30.555

C’ 44.0 31.797 30.555

D 22.0 15.898 15.277

E 11.0 7.949 7.638

E’ 3.9 2.818 2.708

Pavement roughness αs = 0.5 × 10−6 m3/(m/cycle), vehicle speed = 20 m/sec; sprung mass (ms) = 15000 kg
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fatigue life. A decrease in fatigue life of the girder has been observed corresponding to high-speed

vehicular movement along the bridge as shown in Table 4. Further, it is observed that both the

methods adopted in the estimation of fatigue life closely agree with each other with Rayleigh’s

approach being slightly conservative.

4.5.3 Effect of pavement roughness on fatigue life

The surface characteristics play an important role on the dynamic excitation transmitted to the

bridge by the moving vehicle. Five categories of surface characteristics have been considered based

on the spectral roughness coefficient and classified as very good, good, average, poor and very poor.

The effect of any discrete form of roughness such as bump at the approach, construction joints etc.

have not been taken into account. The fatigue life corresponding to different response parameters

for different categories of road surface have been presented in Table 5. The vehicle velocity has

been assumed as 20 m/sec. The fatigue life decreases with the increase in surface roughness. Higher

amplitude of tyre force imposed on the pavement due to increased pavement roughness coefficient

causes a high value of stress ranges in the bridge girder at the critical sections. The fatigue life

reduces irrespective of the vehicle speed for degraded pavement condition. When computed by two

methods, Rayleigh’s method is again found to yield higher estimate of fatigue life.

4.5.4 Effect of sprung mass on fatigue life

In case of emergency and from strategic point of view, special permits are issued to allow extra

heavy loads to pass over the bridge. Therefore, it is necessary to examine the fatigue life of the

bridge at increased vehicle weight. The numerical experiment is performed by decreasing and

increasing the weight of the vehicle (up to maximum 30%). Table 6 shows the effect of increased

Table 4 Influence of vehicle speed on fatigue life

Vehicle forward velocity
m/sec

Fatigue life(T) years

Spectral method Cycle counting method

5 307.272 300.963

10 274.287 267.379

15 210.232 204.918

20 180.668 173.611

Pavement roughness αs = 0.5 × 10−6 m3/(m/cycle), sprung mass (ms) =15000 kg

 Table 5 Influence of pavement surface condition on fatigue life 

Surface
condition

Fatigue life(T) years

Spectral method Cycle counting method

Very Good 241.402 232.558

Good 180.668 173.611

Average 51.684 47.528

Poor 9.598 7.446

Very Poor 4.479 3.656

Vehicle speed =20 m/sec; Sprung mass=15000 kg
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(or decreased) vehicle mass on the fatigue life of the bridge. The surface condition of the pavement

is assumed as ‘good’. Uniform vehicle velocity of 20 m/sec is considered for the evaluation of

effect of sprung mass variation. It is expected that the deflection and flexural stress in the bridge

would increase for the increase of vehicle load. This may result in the increase of higher magnitude

stress range causing reduction in the number of cycles to failure. It is observed from the result as

shown in Table 6 that the fatigue life decreases with the increase of sprung mass. However, it is

seen that with maximum 30% increase of vehicle weight in the present case, the decrease of fatigue

life is only about 10%, which may be considered as insignificant in practical situation. Such type of

quantitative study is also useful to take decision on the restriction of payload of the vehicle plying

over the bridge.

5. Conclusions

A systematic approach has been outlined for the calculation of the fatigue life of a horizontally

curved thin walled section box girder bridge considering its dynamic interaction with the vehicle.

The key feature of the study is the estimate of fatigue life through the solution of bridge vehicle

coupled dynamics with the application of linear damage accumulation rule. A computationally

efficient thin walled box-beam finite elements has been used to model curved box-girder bridge

which takes into account the torsional warping, distortion and distortional warping, being the

important features of thin-walled box girders. Both time domain cycle counting and frequency

domain spectral method using Rayleigh’s approximate theory have been employed. The spectral

method uses an analytical expression for the calculation of fatigue life which is simpler in

application and requires less computational time compared to cycle counting method in time

domain. The comparative study of the fatigue life of the bridge shows that results of the spectral

method, although provides conservative estimate are reasonably closer to the estimates in time

domain cycle counting method. The parametric study has been conducted to examine the influence

of some of the important parameters on fatigue life as well as to ensure proper model behaviour.

Some of the major conclusions are given below:

• The fatigue life of the bridge is dependent on the vehicle weight and the speed of the vehicle.

The damage accumulation progresses rapidly due to overload of the vehicle and leads to decrease

in the fatigue life. The increase of the vehicle speed also decreases the fatigue life. Thus it is

important to regulate the vehicle load and speed over the bridge to increase its life safety limit.

Table 6 Influence of vehicle mass on fatigue life

Vehicle mass
Fatigue life(T) years

Spectral method Cycle counting method

0.7 ms 217.914 210.084

0.9 ms 191.972 184.501

1.0 ms 180.668 173.611

1.1 ms 175.279 169.491

1.3 ms 161.256 152.439

Pavement roughness αs = 0.5 × 10−6 m3/(m/cycle), vehicle speed=20 m/sec; sprung mass (ms) =
15000 kg
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• The condition of the bridge pavement is found to be an important parameter affecting the

fatigue life of the bridge. The deteriorated bridge pavement decreases the fatigue life of the

bridge.

• The S-N curve constant to be used in fatigue life prediction plays an important role. These

constants can drastically change the value of fatigue life. 

References

AASHTO-LRFD Bridge Design Specifications (1998), American Association of State Highway and
Transportation Officials, Washington, D.C.

Agerskov, H. and Nielsen, J.A. (1999), “Fatigue in steel highway bridges under random loading”, J. Struct. Div.,
ASCE, 125(2), 152-162.

Amzallag, J.P., Gerey, J.P., Robertt, J.L. and Bahuaud, J. (1994), “Standardization of the rain flow counting
method for fatigue analysis”, Probabilist. Eng. Mech., 16, 287-293.

Bennantine, J.A., Commer, J.J. and Handrock, J.L. (1990), Fundamentals of Metal Fatigue Analysis, Prentice
Hall, Englewood Cliffs, New Jersey.

Bridge Rules (in SI units) (1964), Ministry of Railways, Govt. of India., Revised 
BS: 5400: Part 10 (1980), Steel, Concrete and Composite Bridges-Part10: Code of Practice for Fatigue, British

Standards Institution. 
Chen, W. and Duan, L. (1999), “Bridge Engineering Hand Book”, CRC Press, Washington D. C.
Chung, H.Y. (2004), Fatigue Reliability and Optimal Inspection Strategies for Steel Bridges, Ph.D Thesis, The

University of Texas, Austin.
Dougall, C.M., Green, M.F. and Shillinglaw, S. (2006), “Bridge fatigue life estimation from field data”, J. Bridge

Eng., 11(3), 320-328.
Dowling, N.E. (1972), “Fatigue failure predictions for complicated strain histories”, J. Mater., 7(1), 71-87.
Fryba, L. (1996), Dynamics of Railway Bridges, Thomas Telford.
Guide Specifications for Fatigue of Steel Bridges (1989), American Association of State Highway and

Transportation Officials (AASHTO), Washington, D.C.
Henchi, K., Fafard, M., Dhatta, G. and Talbot, M. (1998), “An efficient algorithm for dynamic analysis of bridge

under moving vehicle using a coupled model and physical components approach”, J. Sound Vib., 12, 663-683.
Huang, D.Z., Wang, T.L. and Shahaway, M. (1993), “Probabilistic fatigue life analysis of highway steel bridges”,

J. Comput. Struct., 48(2), 241-248.
Hwang, E.S. and Nowak, A.S. (1991), “Simulation of dynamic load for bridges”, J. Struct. Eng. ASCE, 117,

1413-1434.
IRC-22 (1986), Standard Specifications and Code of Road Bridges, Section-VI, Composite Construction.
Kermani., B. and Waldron, P. (1993), “Analysis of continuous box girder bridges including the effects of

distortion”, Comput. Struct., 47, 427-440. 
Kihl, D.P., Sarkani. S. and Beach, J.E. (1995), “Stochastic fatigue damage accumulation under broadband

loadings”, Int. J. Fatigue, 17(5), 321-329. 
Larsen, C.E. and Lutes, L.D. (1991), “Predicting the fatigue life of offshore structures by the single-moment

spectral method”, Probabilist. Eng. Mech., 6(2), 96-108.
Lutes, L.D. and Sarkani, S. (1997), Stochastic Analysis of Structural and Mechanical Vibrations, Prentice Hall,

Upper Saddle River, New Jersey.
Lutes, L.D., Corazao, M., Hu, S.J. and Zimmerman, J. (1984), “Stochastic fatigue damage accumulation”, J.

Struct. Eng., ASCE, 110(11), 2585-2601.
Meirovitch, L. (1986), Elements of Vibration Analysis, McGraw Hill International edition, Mechanical

Engineering Series.
Miner, M.A. (1945), “Cumulative damage in fatigue”, J. Appl. Mech., ASME, 67, 159-164.
Mohammadi, J., Guralnick, S.A. and Polepeddi, R. (1998), “Bridge fatigue life estimation from field data”,

Pract. Periodical Struct. Des. Constr., ASCE, 3, 128-133.



410 K. Nallasivam, Sudip Talukdar and Anjan Dutta

Nallasivam, K., Dutta, Anjan and Talukdar, Sudip. (2007), “Dynamic analysis of horizontally curved thin-walled
box-girder bridge due to moving vehicle”, Shock Vib., 14, 229-248.

Owen, D.R.J. and Hinton, E. (1980), Finite Elements in Plasticity: Theory and Practice, Pineridge Press Limited,
Swansea, U.K.

Paris, P. and Erdogen, F. (1963), “A critical analysis of crack growth propagation laws”, J. Basic Eng., ASME,
85(3), 528-534. 

Park, Y., Han, S. and Suh, B. (2005), “Fatigue reliability analysis of steel bridge welding member-fracture
mechanics method”, Struct. Eng. Mech., 19(3), 347-359.

Pesterev, A.V., Bergman, L.A. and Tan, C.A. (2002), “Pothole induced contact forces in a simple vehicle model”,
J. Sound Vib., 256, 565-572. 

Pesterev, A.V., Bergman, L.A., Tan, C.A. and Yang, B. (2005), “Assesing tire forces due to roadway unevenness
by the pothole dynamic amplification factor method”, J. Sound Vib., 279, 817-841.

Ravi, G. and Ranganathan, R. (1994), “Fatigue crack reliability of riveted bridge”, Int. J. Struct., 14(2), 103-108.
Repetto, M.P. (2005), “Cycle counting methods for bi-model stationary Gaussian processes”, Probabilist. Eng.

Mech., 20, 229-238.
Repetto, M.P. and Solari, G. (2001), “Dynamic along wind fatigue of slender vertical structures”, Eng. Struct., 23,

1622-1633.
Shinozuka, M. (1971), “Simulation of multivariate and multidimensional random processes”, J. Acoust. Soc. Am.,

49, 357-367.
Wang, T.L., Liu, M. and Huang, D. (2000), “Truck loading and fatigue damage analysis for girder bridges based

on the weight-in-motion data Bridge”, J. Bridge Eng., 10(1), 12-20.
Wirsching, P.H. and Light, M.C. (1980), “Fatigue under wide band random process”, J. Struct. Eng., ASCE,

106(ST7), 1593-1607.
Woo, K.S., Hong, C.H. and Basu, Pt.K. (2004), “J-integral and fatigue life computations in the incremental

plasticity analysis of large scale yielding by p-version of F.E.M”, Struct. Eng. Mech., 17(1), 51-68.
Zhang, S.H. and Lyons, L.P.R. (1984), “A thin-walled box beam finite element for curved bridge analysis”,

Comput. Struct., 18, 1035-1046.
Zhao, Z., Halder, A. and Breen, F.L. Jr. (1994), “Fatigue reliability evaluation of steel bridges”, J. Struct. Eng.,

ASCE, 120(5), 1608-1622.




