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Abstract. Numerical solution to buckling analysis of beams and columns are obtained by the method
of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for various support conditions
considering the variation of flexural rigidity. The solution technique is applied to find the buckling load of
fully or partially embedded columns such as piles. A simple semi- inverse method of DQ or HDQ is
proposed for determining the flexural rigidities at various sections of non-prismatic column ( pile)
partially and fully embedded given the buckling load , buckled shape and sub-grade reaction of the soil.
The obtained results are compared with the existing solutions available from other numerical methods and
analytical results. In addition, this paper also uses a recently developed technique, known as the
differential transformation (DT) to determine the critical buckling load of fully or partially supported
heavy prismatic piles as well as fully supported non-prismatic piles. In solving the problem, governing
differential equation is converted to algebraic equations using differential transformation methods (DT)
which must be solved together with applied boundary conditions. The symbolic programming package,
Mathematica is ideally suitable to solve such recursive equations by considering fairly large number of
terms. 

Keywords: column; stability; embedded piles; differential quadrature; semi-inverse approach; differen-
tial transformation.

1. Introduction

Structurally, axially loaded columns (piles) are slender columns with lateral support from the

surrounding soil. If unsupported, these columns will fail by buckling instability and not due to

crushing of the material. Piles normally have ratio of length (L) to diameter (D) of 25 to 100.

Slender columns (piles) passing through water or thick deposits of very weak soil (see Fig. 1(a))

need to be checked against buckling. A slender pile extending a considerable distance above the

ground line (Fig. 1(b)), the unsupported length becomes critical and stability governs the design.

Some of the earlier methods ignore the surrounding ground and consider a pile as a free standing

column and assume that surrounding ground offers infinite resistance

Main factors affecting the column (pile) stability are

1) soil resistance
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2) length of the column

3) Stiffness of column.

According to Terzaghi (1955), the soil modulus or sub-grade reaction can be assumed to be

constant with depth for clayey soils and to increase with depth for granulated materials.

2. Differential Quadrature Method (DQ) 

These problems of stability of piles either prismatic or non-prismatic, partially or fully embedded,

could easily be solved using Differential Quadrature Method (DQ) which was introduced by

(Bellman and Casti 1971). With the application of boundary conditions as per Wilson’s method

(Wilson 2002) DQ method will also be straight forward and easy to use by the engineers. Since the

introduction of this method, applications of the differential quadrature method to various

engineering problems have been investigated and their success has shown the potential of the

method as an attractive numerical analysis tool. The basic idea of the DQ method is to quickly

compute the derivatives of a function at any grid point within its bounded domain by estimating the

weighted sum of the values of the functions at a small set of points related to the domain. In the

originally derived DQ, Lagrangian interpolation polynomial was used (Bert and Malik 1996, Bert

et al. 1993, 1994). A recent approach of the original differential quadrature approximation is called

Harmonic Differential Quadrature (HDQ) originally proposed by (Striz et al 1995). Unlike DQ,

HDQ uses harmonic or trigonometric functions as the test functions. As the name of the test

function suggested, this method is called the HDQ method. All the problems in this paper have

demonstrated that the application of the DQ and HDQ will lead to accurate results with less

computational effort and that there is a potential that the method may become alternative to

conventional methods such as Finite Difference, Finite Element and Boundary Element methods. 

3. Governing equation for stability of a column

The fourth order governing differential equation for buckling of column with varying flexural

rigidity ‘D’ (D = EI), and w (= the lateral deflection) may be written as

Fig. 1(a) Fully embedded pile, (b) Partially embedded pile
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(1)

or

(2)

for a function , DQ approximation of the mth order derivative at the ith sampling point is given

by 

(3)

where ‘n’ is the number of sampling points. Assuming Lagrangian interpolation polynomial

(4)

where

(5)

Substituting Eq. (5) in Eq. (3) leads to 

(6)

The second and third and higher derivative can be calculated as

(7)

and the number of sampling points n > m.

A natural and often convenient choice for sampling point is that of equally spaced points or CGL

mesh distribution as given by Eq. (8). For the sampling points, we adopt well accepted Chebyshev-

Gauss-Lobatto mesh distribution and its normalized form is given by Shu (2000) as

(8)
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where

(9)

‘L’ is the length of the column and the column is divided into ten divisions or eleven sampling

points in case of DQ method and xi is the distance from the bottom end of the column.

4. Harmonic Differential Quadrature Method (HDQ)

The Harmonic test function  used in HDQ method is defined as

(10)

According to the HDQ, the weighting coefficients of the first order derivative  for  is

obtained using the form (Ulker and Civalek 2004)

(11)

(12)

where 

(13)

The weighting coefficients of the second order derivative are given by

(14)

(15)

Higher order derivatives can be obtained using Eq. (7)

4.1 To find buckling load and buckled shape given variation of D=EI

In this problem, D is known and w and P are unknown which can be found by solving as an

eigen value problem as explained below.
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where

(17a)

where [α] and [β ] are diagonal matrices given as

(17b)

and

(17c)

(17d)

(17e)

Eq. (16) may be written as

(18)

  

4.2 Boundary conditions

Since it is a fourth order differential equation, four boundary conditions should be given.

The boundary conditions will be applied as follows.

Clamped - Pinned

(19a)

(19b)

(19c)

(19d)

Clamped – Clamped

(20a)

(20b)

K[ ]

D1

D2

·

Dn

=

α[ ]

α11  0  0  0

0  α22  0  0

0  0  ·  0

0  0  0  αnn

; β[ ]

β11  0  0  0

0  β22  0  0

0  0  ·  0

0  0  0  βnn

==

αii{ } c i 1:n 1, ,( ) D{ }[ ]/L
Dd

xd
-------= =

βi i{ } c i 1:n 2, ,( ) D{ }[ ]/L
2 d

2
D

xd
2

---------= =

E c ;,;,2( )/L
2

–=

1

P
--- G[ ] w{ } E[ ] w{ }=

n n× n n×

w 0  at  x 0;  G n 1 1,+[ ] 1.0= = =

w′ 0  at  x 0;  G n 2 1:n,+[ ] c 1 1:n 1, ,( )/L= = =

w 0  at  x L;  G n 3 n,+[ ] 1= = =

w″ 0  at  x L;  G n 4 1:n,+[ ] c n 1:n 2, ,( )/L
2

= = =

w 0  at  x 0;  G n 1 1,+[ ] 1.0= = =

w′ 0  at  x 0;  G n 2 1:n,+[ ] c 1 1:n 1, ,( )/L= = =



226 S. Rajasekaran

(20c)

(20d)

Pinned – Pinned

(21a)

 (21b)

(21c)

(21d)

Clamped – Free

(22a)

(22b)

(22c)

(22d)

4.3 Wilson’s method of applying boundary conditions (Wilson 2002)

In general, the boundary conditions are given by 

(23)

               

Combining governing equations and boundary conditions we get 

(24)

Using Lagrange multiplier approach as recommended by Wilson (2002), Eq. (24) can be modified

to square matrix as

(25)
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4.4 Buckling of fully and partially embedded uniform piles

Bowles (1996) used the method of Wang (1970) developed a procedure that can be used to obtain

the buckling load for pile either fully or partially embedded.

Example 1 

To illustrate pile buckling and the effect of soil on buckling of piles, the example of Bowles

(1996) is presented. A 254 mm dia × 6.35 mm wall pipe pile is 12 m length. It is embedded 5 m in

an extremely soft soil. Assume sub-grade reaction Sr = 3100 kN/m3 and hence spring constant ks =

Sr (dia) = 787.4 kN/m2 may be assumed. E = 200e6 kN/m2 and I = 0.000038 m4. The governing

differential equation for beam on elastic foundation s given by

(26)

Comparing with Eq. (1), there is one additional term due to sub grade reaction and this can be

considered by adding the contribution of sub grade reaction matrix with [G] in Eq. (18) as

(27)

  

where 

(28)

 is a diagonal matrix containing spring constants and the boundary conditions remain same

as discussed before. Eleven sampling points are assumed as per (CGL) mesh distribution. The

buckling load in DQ method is obtained as 196.15 kN as compared to 198 kN by Bowles (1996).

Same value is obtained by HDQ method as well with 31 sampling points. The buckling load is

larger than the buckling of cantilever pile of 12 m length (BL = 130 kN) and less than the for the

pile of 7 m length (BL = 382 kN).

4.5 Buckling load of non-prismatic column

Recently Elishakoff (Elishakoff et al. 2006) obtained the buckling load from the closed form

solution of second order differential equation for a non-prismatic column 

Example 2. Buckling of Clamped – Pinned non-prismatic column

For the case of clamped and pinned column and where the flexural rigidity varies as

(29)

the buckling load using Eq. (16) with boundary conditions for both DQ and HDQ is obtained as

0.12 which agrees with Elishakoff et al. (2006) (P = 12b2/L
2 = 0.12) (where b2 = 1 and L = 10).
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Example 3. Buckling of Clamped – Clamped non-prismatic column

For the same variation of D, for clamped and clamped condition, the buckling load is obtained as

0.2262

When D varies as

(30)

as given by Elishakoff et al. (2006), for clamped condition the buckling load is 0.12 for both DQ

and HDQ which agrees with that of Elishakoff et al. (2006). Hence in practice, we get problems of

varying flexural rigidity for which the DQ and HDQ can easily be applied incorporating the

boundary conditions to obtain the buckling load and buckled shape.

Example 4. Buckling of non-prismatic partially embedded pile.

For Example 1 if we assume the diameter of the pile varies as 0.254 m at the base and 0.127 m at

the top, DQ method is applied to obtain buckling load as 97.08 kN with 11 sampling points. For the

same problem if 21 sampling points are used in HDQ to obtain the buckling load as 94.3 kN. The

buckled shape is shown in Fig. 2. 

4.6 To find the variation of D = EI given buckling load and buckled shape (Semi-Inverse

Method)

Eq. (2) is rewritten as

(31)

In Eq. (31), P and w are given and it is required to find the flexural rigidity D along the length of

the column. Applying DQM, Eq. (31) is written as
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Fig. 2 Buckled shape for partially embedded Pile (Example. 4)
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(32)

where  are diagonal matrices and are explicitly given by

(33a)

(33b)

Simplifying Eq. (32), we get

(34)

Solving the above equation, one will be able to get D = EI along the column.

Example 5. To find D for Clamped – Pinned column if P and buckled shape are known

For the case of Clamped - Pinned column (P = 12b2/L
2 = 0.12) (b2 = 1; P = 0.12, L = 10) the

buckled shape {w} is given from the following equation

(35)

D value obtained from the closed form solution of Elishakoff et al. (2006) is 

(36)

D values are obtained using DQ at the sampling points and plotted in Fig. 3 and compared with

those of Elishakoff et al. (2006) and the comparison is quite good. 
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Fig. 3 Variation of D(xi) by DQM compared with the authors (clamped-pinned) (Example.5)
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Example 6. To find D for Pinned – Pinned column if P and buckled shape are known

For the case of Pinned – Pinned column (P = 0.0986, L = 10) if the buckled shape {w} is given

as  we get D = 1 throughout the length by applying DQ method.

Example 7. To find D for Clamped Clamped column if P and buckled shape are known

For the case of Clamped – Clamped column (P = 0.12, b2 = 1, L = 10) the buckled shape is

given from the following equation 

(37)

D value obtained from the closed form solution of Elishakoff et al. (2006) is

(38)

D values are obtained at the sampling points and plotted in Fig. 4 and compared with those of the

Elishakoff et al. (2006) and the comparison is quite good.

4.7 To find D = EI given buckling load and buckled shape of partially embedded pile.

Eq. (31) is modified for beam on partial elastic foundation as
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Applying DQ method Eq. (39a) is written as

(39b)

w sin πx/L( )=

w ξ
2

2ξ
3

– ξ
4

+=

D ξ( ) b2

1

6
--- ξ ξ

2
–+⎝ ⎠

⎛ ⎞
=

d
4
w

dx
4

----------D⎝ ⎠
⎛ ⎞ 2

d
3
w

dx
3

---------
Dd

xd
-------⎝ ⎠

⎛ ⎞ d
2
w

dx
2

---------⎝ ⎠
⎛ ⎞ d

2
D

x
2

d
----------⎝ ⎠

⎛ ⎞
+ + P

d
2
w

dx
2

----------– Ksw–=

c :,:,4( )/L
4[ ] 2 α[ ] c :,:,1( )/L[ ] β[ ] c :,:,2( )/L

2[ ]+ +{ } D[ ]

P c :,:,2( )/L
2[ ] w{ } Ks[ ] w{ }– F{ }=–=

Fig. 4 Variation of D(xi) by DQM compared with the authors (clamped-clamped) (Example.7)



Buckling of fully and partially embedded non-prismatic columns 231

As Ks = Sr (dia), also depends on diameter of the pile at any sampling point (dia = )
Eq. (38) is a non-linear equation which can be solved by iteration. Initially diameter of embedded

pile at sampling points are assumed and Ks is obtained and solving the Eq. (39b) will give D and

hence diameter at any sampling point. Two or three iterations will yield fairly accurate results.

Example 8. To find D = EI for a non-prismatic pile for Example 4 

Here buckled shape in Fig. 2 as well as buckling load and Ks are input to the program and D = EI

is calculated at the sampling points. Fig. 5 shows the comparison of D obtained by DQ method with

the actual values. Except nearer to the base the comparison is quite good. Since it is very sensitive

to buckled shape hence this numerical error.

5. Differential transformation method (DT)

The concept of DT was first introduced some thirty years ago by Pukhov (Chai and Wang 2006).

Since then, DT has been used with success in structural mechanics (Bert and Zeng 2000, Chen and

Ho 1999, Li 2000, Malik and Allali 2000). The concept of DT is readily available in (Chai and

Wang 2006). For a function w(x), differential transformation exists as

(40a)

where w(x) can be regarded as buckled shape of the piles. By inverse transformation, one can also

obtain w(x) as

(40b)
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Fig. 5 Variation of D(xi) by DQM compared with actual values (partially embedded pile- Example. 8)
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or 

(41)

Eq. (41) is obviously a Taylor series expansion of the function w(x) about x = 0. The differential

technique essentially converts a differential equation into an algebraic equation, similar to integral

transform methods such as Laplace and Fourier Transform methods. Final resulting algebraic

equations are solved together with boundary conditions. 

Example 1. Application to Stability of Fully supported Heavy Pile 

The governing differential equation for a fully supported heavy uniform pile shown in Fig. 6 is

given by

(42)

where EI- flexural rigidigy, P- axial compressive load, s = sub grade reaction of the soil, ρ- self

weight of the pile/unit length and w- buckled shape of the pile.

Substituting  Eq. (42) may be written as
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Using the following definitions of DT

(46a)

(46b)

(46c)

(46d)

(46e)

Substituting Eq. (46) in Eq. (45) yields
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Boundary conditions are
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------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

y 0( ) y″ 0( ) y 1( ) y″ 1( ) 0= = = =

Y 0[ ] 0= ; Y 2[ ] 0; Y 1[ ] c; Y 3[ ] d===

y 1( ) 0 i.e Y k[ ] 0=

k 0=

∞

∑=

y″ 1( ) 0 i.e k k 1–( )Y k[ ] 0=

k 0=

∞

∑=

aa  bb

cc  dd

c

d⎩ ⎭
⎨ ⎬
⎧ ⎫

0{ } i.e A[ ]
c

d⎩ ⎭
⎨ ⎬
⎧ ⎫

0{ }= =

A
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(51)

assuming c = 1 find d = −aa/bb.

Similarly buckling load can be calculated for a fully supported uniform pile with different

boundary conditions.

For Fixed – Roller support (bottom roller and top-fixed)

(52)

(53)

Example 2. Application of stability of non-prismatic pile

Consider non prismatic pile where moment of inertia varies as

 (54)

where r is the ratio of moment of inertia at the top of the pile I2 to the bottom of the pile I1. All the

terms in the governing equation Eq. (43) remain the same except the first term because of non-

prismatic nature of the pile. Now Eq. (43) is rewritten as (neglecting self of the pile)

(55)

Eq. (55) simplifies to 

(56)

It can be proved that if ; (57)

(58)

y x( ) x
k
Y k[ ]

k 0=

∞

∑=

Y 0[ ] 0= ;  Y 1[ ] c;  Y 2[ ] 0;  Y 3[ ] d at roller support===

y 1( ) Y k[ ]
k 0=

∞

∑ 0;  y′ 1( ) kY k[ ] 0 at fixed support=

k 0=

∞

∑== =

I I1 1 x r 1–( )+{ }; 0 x 1≤ ≤=

E

L
3

-----
d

2

dx
2

-------- I1
d

2
y

dx
2

--------⎝ ⎠
⎛ ⎞ P

L
---

d
2
y

dx
2

-------- sLy+ + 0=

EI1

L
3

--------
d

4
y

dx
4

-------- 2 r 1–( )d
3
y

dx
3

-------- r 1–( )x
d
4
y

dx
4

--------
P

L
---

d
2
y

dx
2

-------- sLy++ + +

⎩
⎨
⎧

+ 0=

w x( ) xy
iv

= W k[ ] DT w x( )[ ]=

W k[ ] k k 1+( ) k 3+( ) k 3+( )Y k 3+[ ]=

Table 1 Buckling coefficient for various values of β and Sp 
  (values in brackets obtained from Differential Quadrature method)

Sp

β
0 10 50 100

0
9.8696

(9.8696)
10.8826 14.9357 20.0017

10
14.6983
(14.698)

15.7052 19.7395 24.7723

50
30.9207
(30.908)

31.8489 35.5258 40.0248

100
46.3778
(46.379)

48.0752 50.0696 53.9468
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Simplifying Eq. (56), we get

(59)

Table 2 shows the values of α for Sp = 0; and Sp = 10 (self weight of the pile is neglected). The

values are compared with the results obtained by Differential quadrature methods and very good

comparison is obtained.

Example 3. Partially restrained pile

Consider an axially loaded pinned – pinned pile (shown in Fig. 6) which is supported partially to

half the height. The differential equation for bottom half of the pile is written as

(60)

where

(61)

and L is the length of the pile with boundary condition at the bottom as

(62)

The differential equation for the top half of the pile is written as

(63)

where  (64)

with boundary conditions at the top of the pile as

(65)

At half the height of the pile the compatibility condition requires

 (66)

Y k 4+[ ] 1 r–( ) 2 k+( )Y k 3+[ ]/ k 4+( ) αY k 2+[ ]/ k 3+( ) k 4+( ){ }–=

 SpY k[ ]/ k 1+( ) k 2+( ) k 3+( ) k 4+( )–

y
iv

αy″ Spy+ + 0 for 0 x 1≤ ≤=

α
PL

2

4EI
--------- ; Sp

SL
4

EI
--------; y

2 y

L
------ ; x

2 x

L
------= = = =

y 0( ) y″ 0( ) 0 at x 0= = =

z
iv

αz″+ 0 for 0 x 1≤ ≤=

z
2z

L
------ ; x

2 x L/2–( )
L

-------------------------= =

z 1( ) z″ 1( ) 0 at x 1= = =

z 0( ) y 1( ); z′ 0( ) y′ 1( ); z″ 0( ) y″ 1( ); z″′ 0( ) y″′ 1( )====

Table 2 Buckling coefficient for various values of r and Sp (Values in brackets obtained from Differential
Quadrature method)

r
Sp

1 1.2 1.4 1.6 1.8 2.0

0
9.8696
(9.869)

10.8409
(10.849)

11.7859
(11.816)

12.7102
(12.77)

13.6244
(13.72)

14.6
(14.66)

10 10.8826 11.8538 12.7979 13.721 14.6071 Not obtained
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In view of Eq. (62), the differential transformation of the boundary condition y(0) gives rise to 

(67)

and the boundary condition y''(0) gives rise to 

 (68)

Y[1] and Y[3] are assumed as c and d respectively.

The given differential equation Eq. (60) is converted into the following recursive equation as

(69)

for bottom half of the pile. 

Using Eq. (69) Y[k] (k = 4…….35) are calculated. At half the length of the pile

 (70)

Knowing the values of Z[0], Z[1], Z[2] and Z[3] and using the following recursive equation at the

top half of the pile as

(71)

Z[4]…..Z[N] can be obtained.

The boundary condition z(1) = 0 gives rise to 

(72)

and the boundary condition z''(0) gives rise to 

(73)

The substitution of these recursive terms into boundary conditions in Eqs. (72) and (73) give two

simultaneous equations as Eq. (50) and the α value is found out such that the determinant is zero.

Buckling load P can be found out once Sp is given and one has to include at least 35 terms. Table 3

shows the value of the buckling load coefficient for various values of Sp for the column partially

restrained to half the height.

Mathematica, a symbolic programming package is ideally suitable to solve the problems by using

Differential transform methods. The program for solving fully supported non-prismatic pile is

shown in Fig. 7.

Y 0[ ] 0=

Y 2[ ] 0=

Y k 4+[ ] αY k 2+[ ]
k 3+( ) k 4+( )

----------------------------------–
SpY k[ ]

k 1+( ) k 2+( ) k 3+( ) k 4+( )
--------------------------------------------------------------------–=

z 0[ ] y 1( ) Y k[ ]; Z 1[ ] y′ 1( ) kY k[ ]; Z 2[ ] y″ 1( ) k k 1–( )Y k[ ]
k 0=

35

∑==

k 0=

35

∑= =

k 0=

35

∑= =

Z 3[ ] y′″ 1( ) k k 1–( ) k 2–( )Y k[ ]
k 0=

35

∑==

Z k 4+[ ] αY k 2+[ ]
k 3+( ) k 4+( )

----------------------------------–=

Z k[ ]
k 0=

35

∑ 0=

k k 1–( )Z k[ ]
k 0=

35

∑ 0=
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6. Conclusions

The DQ and HDQ are applied to solve for buckling load given EI and using similar approach to

solve for EI given P and buckled shape for columns as well as piles partially or fully embedded in

soil. DQ and HDQ approaches can very easily be extended to find the variation in cross section of a

column, pile, plate or shell for a given buckling load and buckled shape or for a given frequency

and mode shape. For finding the buckling loads or natural frequencies, unlike Rayleigh-Ritz

methods DQ and HDQ do not need the construction of an admissible function that satisfies the

boundary conditions a priori Accurate results are obtained for the problems even with a small

number of discrete points used to discretize the domain. This approach is convenient for solving

problems governed by the higher order differential equations and matrix operations could be

performed using MATLAB with ease. It is also easy to write algebraic equations in the place of

differential equations and application of boundary conditions is also an easy task. It is also

explained in this paper how Lagrange multiplier method is used to convert rectangular matrix to

square matrix by incorporating boundary conditions using Wilson’s method. Results with high

accuracy are obtained in all study cases and DQ and HDQ are computationally efficient. DQ and

HDQ is straight forward that the same procedures can be easily employed for handling problems

with the other boundary conditions. 

In this paper, DT method is also highlighted and the usefulness of the method is demonstrated by

solving stability analysis of fully supported prismatic and non-prismatic piles. It is also shown in

Table 3 Buckling coefficient for partially restrained column

0 1.0 2.0 3.0 4.0 5.0

Buckling koad coefft 1 1.184 1.359 1.552 1.758 1.983

Fig. 7 Program in Mathematica for buckling of non-prismatic pile
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this paper, how DT can be used to convert differential equation to a set of algebraic equations of

recursive nature. It is also shown that together with boundary conditions these equations are solved

for buckling load. Fairly large number of terms says 35 to 40 are required for convergence. DT is

efficient and easy to implement particularly in symbolic program packages like Mathematica.

Buckled shape also could be obtained using Eq. (51). It is expected that DQ, HDQ and DT will be

more promising for further development into an efficient and flexible numerical techniques for

solving practical engineering problems in future (Rajasekaran 2007). 
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