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Abstract. The paper presents a study on the effects of soil-structure-interaction (SSI) on the
performance of the compliant liquid column damper (CLCD) for the seismic vibration control of short
period structures. The frequency-domain formulation for the input-output relation of a flexible-base
structure with CLCD has been derived. The superstructure has been modeled as a linear, single degree-
of-freedom (SDOF) system. The foundation has been considered to be attached to the underlying soil
medium through linear springs and viscous dashpots, the properties of which have been represented by
complex valued impedance functions. By using a standard equivalent linearization technique, the
nonlinear orifice damping of the CLCD has been replaced by equivalent linear viscous damping. A
numerical stochastic study has been carried out to study the functioning of the CLCD for varying
degrees of SSI. Comparison of the damper performance when it is tuned to the fixed-base structural
frequency and when tuned to the flexible-base structural frequency has been made. The effects of SSI on
the optimal value of the orifice damping coefficient of the damper has also been studied. A more
convenient approach for designing the damper while considering SSI, by using an established model of a
replacement oscillator for the structure-soil system has also been presented. Finally, a simulation study,
using a recorded accelerogram, has been carried out on the CLCD performance for the flexible-base
structure.

Keywords: CLCD; SSI; complex valued impedance functions; short period structures; seismic
vibration; equivalent SDOF oscillator; time history analysis.

1. Introduction

The emergence of passive/active control devices in the last two decades has been a remarkable

development in the field of structural protection from environmental loads. The non-requirement of

an external supply of power in the case of the passive control devices has made them very popular

and different types of passive dampers like the friction dampers, viscoelastic dampers, tuned mass

dampers (TMDs) and tuned liquid dampers (TLDs) have been successfully implemented worldwide

(Soong and Dargush (1997)). The liquid dampers, in particular, provide some unique benefits, such

as low cost, simple implementation, especially in existing structures, effectiveness even for low

† Former Post-graduate Student, E-mail: ratan_ju@rediffmail.com 
‡ Assistant Professor, Ph.D., Corresponding author, E-mail: aparna@civil.becs.ac.in

DOI: http://dx.doi.org/10.12989/sem.2008.28.1.089



90 Ratan Kumar Ghosh and Aparna (Dey) Ghosh

vibrational amplitudes, etc. The liquid column damper (LCD) is a type of liquid damper in which

the liquid oscillates in a tube-like container containing orifice(s). It offers some further advantages

as it has a high volumetric efficiency for a given volume of liquid, consistent behaviour across a

wide range of excitation levels and a very definite damping mechanism. 

The LCD, as in the case of some other passive dampers like the TMD, operates on the principle

of transference of the vibrational energy of the structure to the mass of the damper when the natural

frequency of the structure and damper are near equal (i.e., tuned). The conventional LCD is rigidly

attached to the structure and is a long period system as the liquid column oscillates at a frequency

which is inversely proportional to the square root of the length of the liquid column. Thus, from the

requirement of tuning, the LCD is chiefly applicable to flexible structures such as tall buildings,

cable-stayed bridges and towers. It has been well researched by Sakai et al. (1991), Xu et al.

(1992), Balendra et al. (1995, 1999), Won et al. (1996) and Yalla and Kareem (2000), among

others, for the mitigation of wind and earthquake induced vibrations of flexible structures. Recently,

it has also been studied for the reduction of wave-induced vibrations of the floating offshore

platform by Lee et al. (2006). 

However, in case of short period structures, which are greatly susceptible to earthquake-induced

vibrations, tuning the frequency of the LCD to the natural frequency of the structure may result in a

practically infeasible length of the liquid column. In order to overcome this difficulty, a compliant

model of the LCD (CLCD) has been developed by Ghosh and Basu (2004). In the CLCD, the

frequency of the damper system consisting of the container and liquid, acting as a mass damper, is

tuned to the primary structure. It allows an additional degree of freedom which removes the

necessity of tuning the structural frequency to that of the frequency of the oscillating liquid column.

The damping, however, is provided by the motion of the liquid through the orifice(s) of the U-

shaped container.

Since proper tuning of the frequency of any damper system to the natural frequency of the

structure is a very important aspect for the effective performance of a damper, the design of the

control device requires reasonably accurate information of the properties of the structure to which it

is to be attached. Generally, the damper is designed for the fixed-base structure. However, if the

structure is founded on compliant soil, the soil structure interaction (SSI) effects may cause a

reduction of the fundamental frequency, an increase in the overall damping of the system and result

in a modification of the actual foundation motion from the free-field ground motion (Dey and Gupta

(1999) and Dutta et al. (2004)). A significant change in the structural properties will cause a

considerable effect on the performance of the damper which needs careful attention. In the work by

Ghosh and Basu (2004) the study of the CLCD was carried out for fixed-base structures only. In

this paper, the issue of the effects of SSI on the performance of the CLCD as a seismic vibration

control device has been taken up. 

Previous work on the functioning of passive dampers while considering SSI is very limited. Xu

and Kwok (1992) examined the response of soil-structure-tuned mass damper (TMD) system in the

frequency domain for the case of wind excitations. They reported that the tuning of the TMD

should be done to the fundamental frequency of the soil-structure system. This was found to be

effective for moderate to stiff soils but for soft soil the performance of the properly tuned mass

damper remained poor. Takewaki (2000) has developed a method for the response reduction of

structures by a combination of viscous damper and TMD considering SSI effects. Wang and Lin

(2005) studied the vibration control of irregular buildings modeled as torsionally coupled structures

due to base motions considering the SSI effect by multiple tuned mass dampers (MTMD). They
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observed that the decrease in relative stiffness of soil to structure generally amplifies both SSI and

MTMD detuning effect, especially for a building with highly torsionally coupled effect. By

appropriately enlarging the frequency spacing of the optimal MTMD, the detuning effect can be

reduced. Their investigations also showed that the MTMD is more effective than the single TMD

when the SSI effect is significant. Ghosh and Basu (2005) studied the performance of the

conventional LCD model for seismic applications considering SSI effects. The study indicated that

for medium to soft soil, the effect of SSI on the damper performance is not significant. However,

for very soft soils, the effectiveness of the conventionally tuned LCD is greatly diminished. For

such cases, it is essential to tune the damper to the natural frequency of the structure-foundation

system. 

In this work, a transfer function formulation for the flexible-base structure, with CLCD has been

developed. A linear structure-soil model has been adopted. The rocking component of the free-field

ground motion has been neglected. However, both translational as well as rocking motions of the

foundation have been considered. The effect of the foundation motions has been considered through

suitable modification of the actual input to the superstructure via the sub-structure approach (e.g.,

Dey and Gupta 1999). The foundation stiffness and damping, which are frequency-dependent, have

been expressed by complex-valued impedance functions evaluated by researchers such as Veletsos

and Wei (1971), Wong and Luco (1978) etc. Varying degrees of SSI have been studied by

considering different values of the shear wave velocity of the soil. The outcome of designing the

CLCD using the properties of the flexible-base structure and the effect of SSI on the optimal orifice

damping coefficient of the damper have also been examined.

A simplified and useful design of the CLCD considering SSI effects using the equivalent single

degree-of-freedom (SDOF) oscillator model for structure-foundation system developed by Wolf

(1985) has also been presented. The results obtained from Wolf’s model which uses the

approximate frequency independent parameters of soil have been compared with those obtained

from the proposed transfer function formulation of the flexible-base structure. The Wolf’s model has

also been used for a simulation study, using a recorded earthquake excitation, on the behaviour of

the CLCD for a flexible-base structure. 

2. Modeling of the CLCD-structure-foundation system

The CLCD-structure-foundation model investigated is shown in Fig. 1. The tube-like container

of the LCD has cross-sectional area, A, and horizontal dimension, B. It contains liquid of mass

density, ρ and column length, L. The head loss coefficient, controlled by the opening ratio of the

orifice(s) installed in the damper tube, is denoted by ξ. The mass, stiffness and damping of the

superstructure, modeled as a SDOF system, are denoted by M1, K1 and C1 respectively. The

stiffness and damping of the member connecting the LCD to the structure are given by K2 and C2

respectively. The mass of the container of the LCD, exclusive of the liquid mass, is denoted by

MC. Thus the total mass of the damper system is expressed as . The foundation of the

structure is considered to be a rigid slab of mass, M0, anchored to the surface of a homogeneous,

viscoelastic half-space through linear springs and viscous damping elements. It is assumed that

both the mass of the structure, M1, and the mass of the damper are concentrated at a height, h,

from the foundation.

MC ρAL+( )
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3. Formulation of transfer function

By neglecting the rocking component of the free-field ground excitation and the effects of

kinematic interaction, the foundation input motion is assumed to be same as the free field ground

translation, represented by z(t). Let the foundation undergo translation, z0(t) and the rotation, θ0(t),

relative to the soil medium. Let x(t) denote the horizontal displacement of the structure relative to

the foundation and u(t) be the change in elevation of the liquid column in the damper. 
represents the horizontal motion of the container relative to the SDOF system. Assuming small

displacements, the total horizontal displacement of the structure is given by 

. The interaction forces between the foundation and the underlying soil interface are

represented by Vs(t), the base shear and M0(t), the base moment. 

The equation of motion of the liquid column from equilibrium may be written as (Saoka et al.

1988) 

(1)

The following equivalent linear equation may be written to represent the nonlinear system in

Eq. (1)

(2)

where, CP represents the equivalent linear damping co-efficient, and is expressed by Xu et al.

(1992)

y t( )

x{ t( ) z t( ) z0 t( )+ +

hθ0 t( ) }

ρALu·· t( ) 1

2
---ρAξ u· t( ) u· t( ) 2ρAgu t( )+ + ρAB

··
y t( ) x·· t( ) z·· t( ) z··0 t( ) hθ

··
0 t( )+ + + +{ }–=

ρALu·· t( ) 2ρACPu· t( ) 2ρAgu t( )+ + ρAB
··
y t( ) x·· t( ) z·· t( ) z··0 t( ) hθ

··
0 t( )+ + + +{ }–=

Fig. 1 CLCD-structure-foundation model
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(3)

CP may be obtained by minimizing the mean square value of the error between Eqs. (1) and (2). In

Eq. (3),  is the standard deviation of the liquid velocity, (t). As is evident from Eq. (3), the

dependence of CP on the response, , of the liquid column calls for an iterative solution procedure

for CP. 

Normalizing Eq. (2) with respect to the mass of liquid in the container, ρAL, leads to 

(4)

where,  is defined as the frequency of the liquid oscillating in the LCD and

 is the ratio of the horizontal portion of the liquid column to its total length.

The equation of motion for the mass, M1, of the SDOF system, is given by

(5) 

where,  denotes the interaction between the structure and the damper. 

The dynamic equilibrium of the whole damper system, comprising of the liquid column mass and

the container mass, leads to the following equation 

(6)

On normalizing Eq. (6) with respect to , the following is obtained,

(7)

In Eq. (7),  and  denote the natural

frequency and the damping ratio of the whole damper system, considering the liquid in the

container to be relatively still. Also in Eq. (7), the term, , represents the ratio of

container mass to the liquid mass.

On normalizing Eq. (5) with respect to the mass, M1, of the structure, leads to 

(8)

where,  represent the damping ratio and natural frequency of the SDOF system respectively.

The ratio of the total mass of the damper (including the mass of the liquid as well as of the

container) to that of the structure is denoted by .

The equation of equilibrium for the complete structure-foundation system in translation can be

written as

 (9)

where, MT denotes the total mass of the structure-foundation system and is equal to .

The equation of equilibrium for the complete structure-foundation system in rotation, ignoring the

contributions of the gravitational forces, can be written as 

CP

σu·

2π
----------ξ=

σu· u·

σu·

u·· t( ) 2
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L
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2
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··
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0 t( )+ + +{ } C1x

· t( ) K1x t( )+ + C2

·
y t( ) K2 y t( )+=

C2

·
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··
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(10)

where, IT denotes the mass moment of inertia of the structure-foundation system about a horizontal

axis at the foundation level and is equal to . Here, I0 is the mass moment of inertia

of the foundation and I represents the mass moment of inertia of the mass, M1, about a horizontal

axis through its center.

The interaction forces between the foundation and underlying soil are related to the foundation

displacements in the frequency domain by the complex valued impedance functions ,

 (=  by reciprocity theorems) and  (Veletsos and Wei 1971, Wong and

Luco 1978). The relationship between the base shear and overturning moment acting at the

foundation soil interface and the corresponding foundation translation and rotation are expressed as

(Chopra and Gutierrez 1974, Dey and Gupta 1999)

(11)

Here,  and  denote the Fourier transforms of  and  respectively.

 and  represent the translational and rocking impedance functions respectively,

while  (= ) is the coupling impedance function of the foundation. 

Due to the frequency dependence of the foundation impedance functions, it is necessary to

transform the time domain equations into the frequency domain. The Fourier transformation of Eqs.

(4), (7), (8), (9) and (10), leads respectively to the following equations

 

(12)

(13)

(14)

(15)

(16)

In Eqs. (12) to (16),  and  are the Fourier

Transforms of the corresponding time-dependent variables. Further in Eq. (12),  is the

transfer function relating the displacement of the LCD modeled as a spring-dashpot SDOF oscillator

to the free field ground acceleration and is given by

(17)

In Eq. (13), the expression for  is the transfer function relating the horizontal motion of the

container relative to the SDOF system and is given by, 
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(18)

In Eq. (14) the expression for  represents the transfer function relating the horizontal

displacement of the structure relative to the foundation and is given by  

(19)

Solving Eqs. (12), (13) and (14) leads to the following input-output relation in frequency domain 

(20)

where, 

 (21)

In Eq. (21) the expression for β(ω) is given by, 

(22)

In Eq. (21)  denotes the transfer function relating the displacement, relative to the

foundation, of a SDOF system CLCD, to the total input acceleration to the SDOF system. 

Now, on substituting Eq. (20) in Eq. (14) the following equation is obtained. 

 (23)

For the flexible-base structure, the transfer function relating the structural displacement to the

free-field ground acceleration will have to account for the accelerations of the foundation. The

treatment for the same is given as follows.

On substituting Eqs. (11), (20) and (23) in Eqs. (15) and (16) and using  and

, the following simultaneous equations in  and  may be obtained
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(27)

(28)

(29)

(30)

Now, by solving Eq. (24) and using  and , the following

expressions are obtained.

(31)

(32)

Here, it is observed that  and  respectively denote the transfer functions relating

the translational and rocking accelerations of the foundation to the free-field ground acceleration.

These are given by,

 

 (33)

 (34)

By substituting Eqs. (31) and (32) in Eq. (20), the transfer function relating the displacement of

the structure with CLCD, relative to the foundation, to the free field ground acceleration is obtained.

The resulting equation is given as 

(35)

where,

 (36)

When the soil stiffness is very high, the movement of the foundation, relative to the surrounding

soil medium is of insignificant value. This would imply that the effects of SSI are negligible and the

structure may be assumed to have a “fixed” base. As observed earlier, in the context of Eqs. (20),

(21) and (22), the transfer function relating the displacement relative to ground acceleration is given

by . This also follows directly from Eq. (36), when the transfer function relating the

foundation accelerations to the free-field ground acceleration, i.e.,  and  are

negligibly small.

The evaluation of the equivalent damping parameter, CP, requires the transfer function, ,
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following expression 

(37)

where,

(38)

If the ground acceleration is characterized by a white noise power spectral density function

(PSDF) of intensity S0, then the PSDF of the displacement response of the structure, denoted by

, is expressed by Newland (1993) 

(39)

Also, the PSDF of the liquid velocity, , represented by , is evaluated from the

following expression

(40)

The root mean square (r.m.s.) value of the displacement response of the structure, relative to the

ground, and the r.m.s. value of the velocity response of the liquid column, equal to the standard

deviation, , may be numerically evaluated by computing the square root of the area under the

corresponding PSDF curve as given by Eqs. (39) and (40) respectively.

4. Numerical study

An example short period structure with ω1 = 20.94 rad/s (0.3s) and ζ1 = 1% is considered. It is

subjected to a white noise PSDF input with S0 = 100 cm2/s3. The values of M1 and h are considered

to be 3 × 105 kg and 5.0 m respectively while M0 and I0 are assumed to be negligible. The values of

the impedance functions are taken from the results by Wong and Luco (1978) for the following soil

parameters: mass density, ; Poisson’s ratio ; hysteretic damping ratio

(ς) = 0.02; characteristic length of the rigid square foundation = 3.0 m. As in the work of Ghosh

and Basu (2004),  and  are considered. A commonly used value of 0.9 is assumed

for α and a feasible value of  is considered. The tuning ratio of the CLCD is evaluated

from the expression given by Den Hartog (1956) and is equal to 0.9709. The CLCD offers the

advantage of choosing practically feasible values of ξ and L without compromising on damper

efficiency by choosing an optimal value of the ratio . In the present case,  is

considered. The optimal value of  corresponding to the minimum r.m.s. value of the

displacement response of the fixed-base structure is evaluated numerically and is obtained as 426 m−1. 

The effect of different soil conditions is demonstrated by choosing different shear wave velocities,

 where, G is the shear modulus of soil. Fig. 2 shows the varying effects of SSI on the

displacement transfer function of the structure without damper. As the soil becomes softer, as
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represented by decreasing values of υs, there is a significant shift in the natural frequency of the

system from that of the fixed-base case, a quantitative estimate of which is presented in Table 1.

Also, there is a considerable reduction in the amplitude of the transfer function peak indicating the

increased damping in the system due to SSI.

To compare the performance of the CLCD between the fixed-base and flexible-base cases, the

transfer function curves for the fixed base case with and without CLCD are plotted in Fig. 3. The

curve with CLCD exhibits two peaks of greatly reduced magnitude, indicating the effect of tuning.

The peaks are nearly equal as the optimum value of ξ is being used. The reduction in the r.m.s

value of the displacement response of the structure is about 55%. Next, in Figs. 4 to 6, the transfer

function curves for the structure (a) without damper, (b) with CLCD tuned to the natural frequency

of structure alone and (c) with CLCD tuned to fundamental frequency of the structure-foundation

system are compared for different soil conditions. The corresponding reductions in the r.m.s. values

of the displacement response of the structure are shown in Table 1. The results demonstrate that

even for moderately stiff soil it would be advantageous to tune the CLCD to the fundamental

frequency of the structure-foundation system rather than to the fixed-base frequency. In the case of

very soft soil ( ), ignoring the effects of SSI in tuning the CLCD can render the

damper to be practically ineffective. Here, it is possible to realize some amount of response

reduction by tuning the CLCD to the flexible-base frequency of the system. However, the control

achieved is considerably less than that in the fixed-base case. This is because, in case of significant

υs 100 m/s=

Fig. 2 Displacement transfer function (|Hx(ω)|) of the example SDOF system alone for different soil
conditions

Table 1 Comparison of response reduction for different soil and tuning conditions

Condition of soil Fixed base υs = 600 m/s υs = 400 m/s υs = 100m/s

Natural freq. of structure-foundation system (rad/s) 20.94 20.20 19.35 10.80

Response 
reduction (%)

Tuned to natural frequency of fixed-base 
structure

54.96 50.87 42.99 2.00

Tuned to natural frequency of structure- 
foundation system

54.96 52.89 49.67 23.82
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SSI, the response of the structure without damper itself is far less as compared to the fixed-base

case and there is a limit to the maximum energy dissipation by a passive control device. In all the

above analysis, for different soil conditions, the optimum  is assumed to be the same as that

for the fixed-base case. Fig. 7 compares the variation in the response reduction with  for the

fixed-base case with that for two typical flexible-base cases representing medium stiff and very soft

soils (υs = 400 m/s and υs = 100 m/s respectively). It is observed that the effects of SSI on the

optimal value of  are negligible. Hence in the design of the CLCD for the flexible-base case,

the values of the optimum  as evaluated for the fixed-base case may be used. 

It must be noted that the study in this paper is based on the linear behaviour of the structure and

soil underlying the foundation. Trifunac et al. (2001) have shown that nonlinearity in the response

ξ/L( )
ξ/L( )

ξ/L( )
ξ/L( )

Fig. 3 Displacement Transfer Function of example
SDOF system for fixed-base case

Fig. 4 Displacement Transfer Function of example
SDOF system (υs = 600 m/s) for different
tuning conditions

Fig. 5 Displacement Transfer function of structure
(υs = 400 m/s) for different tuning conditions

Fig. 6 Displacement Transfer Function of the
structure (υs = 100 m/s) for different tuning
conditions
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of the foundation soil may cause the structure-foundation system frequency to change substantially

from one earthquake to another as well as during a particular earthquake. Under such conditions,

the effectiveness of the CLCD will have to be studied by proper modelling of the soil, which caters

for its nonlinear behaviour.

5. Design of CLCD for SSI using Wolf’s Equivalent SDOF Oscillator

From the foregoing discussion it is evident that for the effective performance of the CLCD, tuning

the damper to the flexible-base frequency of the structure is advantageous in case of moderate SSI

effects and essential in case of significant SSI effects. Hence, estimation of the natural frequency of

the flexible-base structure is one of the major inputs for the design of the CLCD for SSI. A simple

approach for this would be to use the model of the equivalent SDOF oscillator as proposed by Wolf

(1985) which represents the soil-structure system considered in Fig. 1. The closed form expressions

for the natural frequency and damping ratio of the equivalent SDOF system given by Wolf (1985)

have been developed by considering approximate frequency independent soil coefficients. Thus, by

tuning the CLCD frequency to the natural frequency of the equivalent oscillator, it is possible to

determine the control achieved by the damper by using the displacement transfer function of the

fixed-base structure given in Eq. (21). In the approach using Wolf’s model, while calculating the

r.m.s. value of the displacement response to white noise input, the spectral intensity has to be scaled

by the ratio of the square of the natural frequency of the replacement oscillator to the square of the

natural frequency of the original fixed-base structure.

An illustrative study on the approach using Wolf’s model is carried out by considering four

example cases with the following combinations of natural period and damping ratio: 0.3s, 0.01;

0.3s, 0.03; 0.7s, 0.01 and 0.7s, 0.03. The unmodified spectral intensity of the base white noise input

is assumed to be the same as before, i.e., S0 = 100 cm2/s3. Three different shear wave velocities,

namely 100 m/s, 200 m/s and 400 m/s, representing very soft, soft and moderately stiff soil

conditions are considered. As before, the values of the orifice damping coefficient (ξ) are those

Fig. 7 Variation in response reduction with ξ/L for fixed-base and flexible-base conditions (υs = 400 m/s and
υs = 100 m/s)
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obtained from the optimization of  for the fixed-base case and are indicated in Table 2. The

other structural and damper parameters, along with the soil parameters, are assumed to be same as

those considered in the previous numerical study. 

For each structure-foundation system the equivalent parameters are evaluated using Wolf’s

expression and presented in Table 2. It is observed that in all cases the equivalent natural frequency

of the SDOF system as per Wolf’s model matches very closely with the natural frequency of the

structure-foundation system obtained from the peak of the transfer function evaluated from the

formulation given in previous section. The reductions in the r.m.s. value of the displacement

response of the structure using the equivalent SDOF oscillator with tuned CLCD are presented in

Table 2. The results indicate that the control predicted using Wolf’s model is very close to that

obtained from the transfer function formulations. The maximum error in using the replacement

oscillator is about 10% and is on the conservative side. Table 2 also shows the damping ratio of

Wolf’s equivalent SDOF system model which indicates the increased value of damping due to SSI

effects from that of the fixed-base structure. As expected, softer soil associated with greater SSI

effects results in greater damping in the structure. It is also observed that the increase in damping is

greater for the stiffer structure and for the case of lower initial damping in the structure.

6. Simulation study on CLCD performance in case of SSI effects

A time history analysis is carried out to examine the functioning of the CLCD by subjecting the

example structure as in Figs. 2-7 to the recorded S00E component of the 1940 Imperial Valley

earthquake at the El Centro site, which is a fairly broad-banded excitation in its frequency content.

ξ/L( )

Table 2 Comparison of results from proposed formulation and from using Wolf’s model

Natural 
freq. of 

fixed base 
structure
(rad/s)

Damping 
ratio of 

fixed base 
structure

Optimum 
ξ

Shear 
wave 
vel.

(m/s)

Natural freq. of str.-fdn. 
system
(rad/s)

Percent of response redn. 
by CLCD tuned to 
flexible base freq.

Damping ratio 
of equivalent 
SDOF system 

(by Wolf’s 
Model)

Results from 
proposed 

Formulation

Results 
from 

Wolf’s 
Model

Results from 
proposed 

Formulation

Results 
from 

Wolf’s 
Model

20.944

0.01 852

100 10.80 10.81 23.82 22.65 0.047

200 16.10 16.12 37.24 34.78 0.027

400 19.35 19.35 49.67 48.13 0.014

0.03 1052

100 10.80 10.81 21.78 20.39 0.052

200 16.10 16.12 29.77 26.71 0.038

400 19.35 19.35 32.62 31.00 0.031

8.976

0.01 232

100 7.30 7.32 40.86 38.44 0.022

200 8.45 8.46 51.38 50.13 0.013

400 8.85 8.84 54.38 54.05 0.011

0.03 282

100 7.30 7.32 31.25 28.33 0.036

200 8.45 8.46 32.84 31.55 0.031

400 8.85 8.84 32.34 32.03 0.030
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The effects of SSI on the CLCD performance are studied by using the Wolf’s equivalent SDOF

oscillator to model the soil-structure system. As outlined in the previous section, the CLCD

frequency is tuned to the natural frequency of the equivalent oscillator. The fourth-order Runge-

Kutta method is employed for the time integration of the response of the structure-damper system.

As required by the approach using Wolf’s model, while evaluating the response, the input

acceleration has been scaled by the ratio of the square of the natural frequency of the replacement

oscillator to the square of the natural frequency of the original fixed-base structure. 

Different soil effects are demonstrated by varying the shear wave velocity of the soil. The

Fig. 8 Displacement Time History of fixed-base structure (0-20s), without and with CLCD, for the El Centro
excitation

Fig. 9 Displacement Time History of flexible-base structure (0-20s), without and with CLCD, (υs = 400 m/s),
for the El Centro excitation
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optimum value of  for different soil conditions are obtained by minimizing the r.m.s. value of

displacement of the soil-structure-foundation system. For the sake of comparision, the results for the

fixed-base case are presented in Fig. 8 while Figs. 9-11 indicate the displacement response of the

structure, without damper and with CLCD, when subjected to the El Centro excitation for varying

soil conditions. The maximum reductions in the r.m.s displacement obtained for the four cases in

Figs. 8-11 are 50.96%, 49.72%, 27.45% and 22.63% respectively. These results are in good

agreement with those in Table 1, thereby reinforcing the observations made from Table 1.

ξ/L( )

Fig. 10 Displacement Time History of flexible-base structure (0-20s), without and with CLCD, (υs = 200 m/s),
for the El Centro excitation

Fig. 11 Displacement Time History of flexible-base structure (0-20s), without and with CLCD, (υs = 100 m/s),
for the El Centro excitation
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7. Conclusions

The displacement transfer function of a structure, modeled as a SDOF system and founded on

compliant soil, with an attached CLCD has been formulated. Using this formulation, a numerical

study on a typical short period structure-CLCD system considering different soil stiffness has

revealed that even in case of medium soft soil tuning the CLCD to the fundamental frequency of

the structure-foundation system would considerably improve the damper performance. This is

significant as past studies have shown that the SSI effects are trivial for the performance of the

conventional LCD attached to structures founded on similar soil conditions. In case of soft soils the

CLCD tuned to the fixed-base frequency of the structure would be useless and it would be essential

to consider the fundamental frequency of the structure-foundation system while designing the

damper. Even with proper tuning, the performance of the CLCD in case of soft soils is considerably

less as compared to the fixed-base case. The equivalent SDOF oscillator for the structure-soil

system as proposed by Wolf has also been considered for the assessment of the CLCD performance

in case of SSI effects. Results obtained from this approach have compared very well with those

from the transfer function formulation, thereby indicating that it may be conveniently used in the

design of the damper for structures with compliant base. This has allowed the application of the

Wolf’s model to a simulation study using recorded accelerogram to observe the performance of the

CLCD when tuned to the fundamental frequency of the structure-foundation system under different

soil conditions. The observations corroborate those obtained from the earlier frequency domain

study. 
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