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Dynamical behavior of generalized thermoelastic diffusion 
with two relaxation times in frequency domain
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Abstract. A general solution to the field equations of homogeneous isotropic generalized thermoelastic
diffusion with two relaxation times (Green and Lindsay theory) has been obtained using the Fourier
transform. Assuming the disturbances to be harmonically time–dependent, the transformed solution is
obtained in the frequency domain. The application of a time harmonic concentrated and distributed loads
have been considered to show the utility of the solution obtained. The transformed components of
displacement, stress, temperature distribution and chemical potential distribution are inverted numerically,
using a numerical inversion technique. Effect of diffusion on the resulting expressions have been depicted
graphically for Green and Lindsay (G-L) and coupled (C-T) theories of thermoelasticity.
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1. Introduction

The classical uncoupled theory of thermoelasticity predicts two phenomena not compatible with

physical observation. First, the equation of heat conduction of this theory doesn’t contain any elastic

terms; second, the heat equation is of a parabolic type, predicting infinite speeds of propagation of

heat waves. Biot (1956) introduced the theory of coupled thermoelasticity to overcome the first

short coming. The governing equations for this theory are coupled, eliminating the first paradox of

the classical theory. However, both theories share the second shortcoming. Since the heat equation

for the coupled theory is also parabolic.

Two generalizations to the coupled theory were introduced. This first is due to Lord and Shulman
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(1967), who obtained a wave-type heat equation by postulating a new law of heat conduction to

replace the classical Fourier’s law. Since the heat equation of this theory is of the wave type if

automatically ensures finite speeds of propagation of heat of elastic waves. The remaining

governing for this theory namely, the equation of motion and constitutive relations remain the same

as those for the coupled and uncoupled theories. 

The second generalization to the coupled theory of elasticity is what is known as the theory of

thermoelasticity with two relaxation times or the theory of temperature- rate -dependent

themoelasticity. Muller (1971), in a review of the thermodynamics of thermoelastic solids proposed

an entropy production inequality with the help of which he considered restrictions on a class of

constitutive equations. A generalization of this inequality was proposed by Green and Laws (1972).

Green and Lindsay (1972) obtained independently by Suhubi (1975). This theory contains two

constants that act as two relation times and modify all the equations of the coupled theory not only

the heat equation. The classical Fourier’s law of heat conduction is not violated if the medium

under consideration has a center of symmetry.

Diffusion can be defined as the random walk, of an ensemble of particles from regions of high

concentration to regions of lower concentration. There is now a great deal of interest in the study of

this phenomenon, due to its many applications in geophysics and industrial applications. In

integrated circuit fabrication, diffusion is used to introduce “dopants” in controlled amounts into the

semiconductor substrate. In particular, diffusion is used to form the base and emitter in bipolar

transistors, form integrated resistors, form the source/drain regions in Metal Oxide Semiconductor

(MOS) transistors and dope poly-silicon gates in MOS transistors. Study of the phenomenon of

diffusion is used to improve the conditions of oil extractions (seeking ways of more efficiently

recovering oil from oil deposits). These days, oil companies are interested in the process of

thermoelastic diffusion for more efficient extraction of oil from oil deposits. 

Nowacki (1974a,b,c,d, 1976)  developed the theory of thermoelastic diffusion. In this theory, the

coupled thermoelastic model is used. Recently Sherief et al. (2004) developed the generalized

theory of thermoelastic diffusion with one relaxation time, which allows the finite speeds of

propagation of waves. Olesiak and Pyryev (1995) discussed a coupled quasi-stationary problem of

thermodiffusion for an elastic cylinder. Sherief and Saleh (2005) investigated the problem of a

thermoelastic half-space in the context of the theory of generalized thermoelastic diffusion with one

relaxation time. Singh (2005, 2006) discussed the reflection phenomena of waves from free surface

of an elastic solid with generalized thermodiffusion. Recently, Aouadi (2006) studied the

thermoelastic-diffusion interactions in an infinitely long solid cylinder subjected to thermal shock on

its surface with a permeating substance. Aouadi (2006) investigated the problem of thermoelastic

half-space with a permeating substance in contact with the bounding plane in context of the theory

of generalized thermoelastic diffusion with one relaxation time and with variable electrical and

thermal conductivity. The formulation and solution of the problems in frequency domain are simpler

than in the time-domain. This is, off course, due to the absence of the time variable in the frequency

domain formulation and hence, the transformation of the dynamic problem into the static like

problem. Many researchers have dealt with the dynamic problems in the frequency domain. Sato

(1969) gave theoretical expressions both in time and frequency domains for seismic waves due to a

double couple in an infinite elastic medium in Cartesian, cylindrical and spherical-polar coordinates.

Schiavone and Tait (1995) examined the bending of a Mindlin type thermoelastic plate due to time

harmonic source. Allam, Elasibai and Abou Elregal (2002) obtained the thermal stress distribution

in a harmonic field for a homogeneous isotropic infinite body with a cylindrical bob.
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Sharma et al. (2000) discussed time harmonic sources in a generalized thermoelastic continuum.

Kumar and Rani (2005) investigated the dynamic response of a homogeneous, isotropic

thermoelastic half-space with voids subjected to time harmonic mechanical and thermal sources.

The present investigation is to determine the components of displacement, stress, temperature

distribution and chemical potential distribution in an isotropic homogeneous elastic solid with

generalized thermoelastic diffusion subjected to concentrated and distributed loads.

2. Basic equations 

Following, Green and Lindsay (1972) and Sherief et al. (2004), the governing equations for

isotropic homogeneous elastic solid with generalized thermoelastic diffusion in the absence of body

forces and heat sources are

The constitutive relations 

(1)

(2)

The equation of motion

(3)

The equation of heat conduction 

(4)

The equation of mass diffusion

 (5)

where  

 

and λ, µ - Lame’s constants, αt - coefficient of linear thermal expansion, αc - coefficient of linear

diffusion expansion, , T - absolute temperature, T0 - temperature of the medium in its

natural state assumed to be such that , tij - components of stress tensor, ui -displacement

vector, eij - components of strain tensor, e = ekk, cubic dilatation, ρ - density, C - concentration , P -

chemical potential per unit mass, CE - specific heat at constant strain, K - coefficient of thermal

conductivity, D - thermoelastic diffusion constant, τ0, τ1- thermal relaxation times, τ0, τ1- diffusion

relaxation times, a -coefficients describing the measure of thermoelastic diffusion effects, b -

coefficients describing the measure of diffusive effects, δij - Kronecker’s delta. 
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The thermal relaxation times τ0 and τ1 satisfy the inequality . The diffusion relaxation

times τ0 and τ1 also satisfy the inequality .

 

3. Formulation and solution of the problem

We consider an isotropic homogeneous elastic solid with generalized thermoelastic diffusion in the

undeformed state at temperature T0. We introduce the rectangular Cartesian coordinate system

 which has its origin on the surface z = 0 with the z-axis pointing normally into the

medium. 

For two dimensional problem, we assume 

 (6)

The initial and regularity conditions are given by

 (7)

(8)

Assuming time harmonic behavior as 

 (9)

where ω is the angular frequency.

To facilitate the solution, the following dimensionless quantities are introduced 

 (10)
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where

 

The displacement components  and  may be written in terms of potential

functions  and  as

 (11)

Using Eq. (6) and Eqs. (9)-(11), the Eqs. (3)-(5) recast into the following form (after suppressing

the primes)

 (12)

 (13)

 (14)

 (15)

where

 

Applying Fourier transformation defined by 

 (16)

on Eqs. (12)-(15), then eliminating  and  from the resulting expression we obtain 

(17)

(18)
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and

The roots of the Eq. (17) are ±λi  and the roots of Eq. (18) are ±λ4. Making use of

radiation condition  and  as , the solutions of Eqs. (17) and (18) may be

written as

(19)

(20)

(21)
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where

 

 

,

,

,

,

with Al,  being arbitrary constants.
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4. Applications

On the half-space surface (z = 0) normal point force, thermal point source and chemical potential

source, which are assumed to be time harmonic, are applied. We consider three types of boundary

conditions, as follows:

CASE 1. The normal force on the surface of half-space

The boundary conditions in this case are

(23)

where  specify source distribution function along x-axis and P1 is the magnitude of force

applied.

CASE 2. The thermal source on the surface of half-space 

When the plane boundary is stress free and subjected to thermal point source the boundary

conditions are 

(24)

where  is the source distribution function along x-axis and P2 is the constant temperature

applied on the boundary.

CASE 3. The chemical potential source on the surface of half-space

Here the boundary is stress free and subjected to chemical potential source, therefore the

boundary conditions are 

(25)

where  is the source distribution function along x-axis and P3 is the constant potential applied

on the boundary.

4.1 Green’s functions

To synthesize the Green’s functions, i.e., the solutions due to concentrated normal force/thermal

source/chemical potential source on the half-space is obtained by setting 

 (26)

in Eqs. (23), (24) and (25). Applying the Fourier transforms defined by Eq. (16) on the Eq. (26) gives 
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SUBCASE 1(a). Normal force

Making use of Eqs. (1), (2) and (9)-(11), along with  (suppressing the primes for

convenience) in the boundary conditions (23) and applying the transforms defined by Eq. (16) and

substitute the values of   from Eqs. (19)-(22) in the resulting equations, we obtain the

expressions for components of displacement, stress, temperature distribution and chemical potential

distribution as 

(28)

 (29)

 (30)

 (31)

(32)

(33)

where

 

,

(34)

SUBCASE 2(a). Thermal source on the surface of half-space

With the help of the Eqs. (1), (2) and (9)-(11), along with  (suppressing the primes for

convenience) and the boundary conditions (24), the corresponding expressions for components of

displacement, stress, temperature distribution and chemical potential distribution are as given by
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Eq. (34), where
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(35)

SUBCASE 3(a). Chemical potential source on the surface of half-space

Adopting the same procedure as in case of mechanical force and thermal source, along with

 (suppressing the primes for convenience)and using the boundary condition (25) the

expressions for components of displacement, stress, temperature distribution and chemical potential

distribution are as given by Eqs. (28)-(33) by replacing ∆l with  and P1 with P3,

respectively, in Eqs. (34), where

(36)

The expressions for displacements, stresses, temperature distribution and chemical potential

distribution can obtained for concentrated normal force/thermal source/chemical potential source, by

replacing  from Eq. (27), respectively, in Eqs. (28)-(33) along with Eqs. (35) and (36).

4.2 Influence functions

The method to obtain the half-space Influence function i.e., the solutions due to distributed load

applied on the half-space is obtained by setting 

 

 (37)

in Eqs. (23), (24) and (25). The Fourier transforms with respect to the pair  for the case of a

uniform strip load of unit amplitude and width 2a applied at origin of the coordinate system

(x = z = 0) in dimensionless form after suppressing the primes becomes

  (38)
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Eqs. (35) and (36).
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5. Particular cases

5.1: Neglecting the diffusion effects (i.e., β2 = b = a = 0), we obtain the corresponding expressions

due to normal force for displacements, stresses, and temperature distribution and given by Eqs. (28)-

(33) in generalized thermoelastic half-space as 

(39)

 (40)

 (41)

 (42)

(43)

where

 (44)

The above expressions yield the corresponding expressions for concentrated and uniformly

distributed normal force by replacing  from Eqs. (27) and (38) respectively in Eqs. (39)-(43).

5.2: Making use the values of  from Eqs. (27) and (38) and by replacing  with 

(l = 1, 2, 3) as given below, we obtain the expressions for displacements, stresses and temperature

distribution in thermoelastic medium due to concentrated and uniformly distributed thermal source,

where
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6. Special case

In case of coupled thermoelasticity, the relaxation times vanish i.e.,  and

consequently, we obtain the corresponding expressions in thermoelastic with diffusion and

thermoelasticity due normal force, thermal source and chemical potential source, respectively, with

changed values in Eqs. (28)-(33) and Eqs. (39)-(43).
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(46)

,

,

7. Inversion of the transforms

To obtain the solution of the problem in the physical domain, we invert the transforms in

Eqs. (28)-(33) and (39)-(43), for the two theories, i.e., G-L and C-T theories of thermoelasticity.

These expressions are functions of z and the parameter of Fourier transform ξ, and hence are of the

form . To obtain the function  in the physical domain, we invert the Fourier

transform using,

 

(47)

where fe and f0 are, respectively, the even and odd parts of the function . The method for

evaluating this integral is described by Press et al. (1986), which involves the use of the Romberg’s

integration with adaptive step size. This also uses the results from successive refinements of the

extended trapezoidal rule followed by extrapolation of the results to the limit when the step size

tends to zero.

8. Numerical results and discussion 

Following Sherief and Saleh (2005) copper material is chosen for the purpose of numerical

calculation. 
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The values of the relaxation times  have been taken from Sherief and Saleh (2005) and the

values of  are taken proportionally of comparable magnitude as , .

The values of normal displacement u3, normal stress t33, temperature distribution θ and chemical

potential distribution P for thermoelastic diffusion (TED) and thermoelasticity (TE) are studied for

normal force/thermal source/chemical potential source. The variations of the components with

distance x are shown (a) solid line for TED and solid line with center symbol ‘plus’ for TE for G-L

theory (b) small dashed line for TED and small dashed line with center symbol ‘Dimond’ for TE

for C-T theory. The variations are shown in Figs. 1-24. The computations are carried out for non-

dimensional frequency ω = 0.75 and time t = 0.5 in the range . 

8.1 Normal force on the surface of half-space
 

8.1.1 Concentrated force 

Fig. 1 shows the variations of normal displacement u3 with distance x, which for TED increase

sharply in the range  and decrease in the remaining range for C-T theory

whereas for G-L theory the values of normal displacement u3 have an oscillatory behavior in the

range . The values of normal displacement u3 for TE have an oscillatory behavior in the

whole range for both G-L and C-T theories.  

Fig. 2 depicts the values of normal stress t33 with distance x, which for TED have similar behavior

in the range  for both G-L and C-T theories. The values of normal stress t33 for TE

increase sharply in the range  and then have an oscillatory behavior in the remaining range

for G-L theory whereas for C-T theory the values of normal stress t33 show small variation near the

zero value.

Fig. 3 shows the values of temperature distribution θ with distance x, which for TED have similar

a 1.2 10( )4m2
s

2–
K

1–
= ,  b 0.9 10( )6m5

kg
1–
s

2–
=

τ0 τ
0,

τ1 τ
1, τ1 0.03= τ

1
0.3=

0 x 10≤ ≤

0 x 3≤ ≤ 5 x 7≤ ≤,

0 x 10≤ ≤

0 x 10≤ ≤
0 x 3≤ ≤

Fig. 1 Variation of normal displacement u3 with
distance x (Concentrated force)

Fig. 2 Variation of normal stress t33 with distance x
(Concentrated force) 
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behavior in the range  for both G-L and C-T theories. The variation of temperature

distribution θ for TE has similar behavior in the range  for both G-L and C-T theories

with difference in their magnitude. The values of temperature distribution θ for TE are magnified by

multiplying by 10 for C-T theory. 

Fig. 4 shows the values of chemical potential distribution P with distance x, which for TED

decrease sharply in the range  and then increase with increase in horizontal distance x for

both G-L and C-T theories.

8.1.2 Uniformly distributed force 
Fig. 5 shows the variations of normal displacement u3 with distance x, which for TED show small

variation near zero value in the whole range for G-L theory whereas for C-T theory the values of

normal displacement u3 increase sharply in the range  and have an oscillatory behavior in

the remaining range. The values of normal displacement u3 for TE have an oscillatory behavior in

the range  for G-L theory whereas for C-T theory the values of normal displacement u3

show small variation near the zero value.

Fig. 6 depicts the values of normal stress t33 with distance x, which for TED have similar behavior

i.e. increase sharply in the range ,  and decrease in the remaining range for

both G-L and C-T theories. The values of normal stress t33 for TE increase sharply in the range

 and then have an oscillatory behavior in the remaining range for G-L theory whereas for

C-T theory the values of normal stress t33 show small variation near the zero value.

Fig. 7 shows the variations of temperature distribution θ with distance x, which for TED in case

of G-L theory are greater than in case of C-T theory in the range  and are

smaller in the remaining range. The values of temperature distribution θ for TE have an oscillatory

behavior in the range  for both G-L and C-T theories. 

Fig. 8 shows the values of chemical potential distribution P with distance x, which for TED

decrease sharply in the range  and increase in the remaining range for G-L and C-T

theories.

0 x 10≤ ≤
0 x 10≤ ≤

0 x 6≤ ≤

0 x 3≤ ≤

0 x 10≤ ≤

0 x 1.5≤ ≤ 7 x 10≤ ≤

0 x 3≤ ≤

0 x 10≤ ≤ 7 x 10≤ ≤,

0 x 10≤ ≤

0 x 6≤ ≤

Fig. 3 Variation of temperature distribution θ with
distance x (Concentrated force)

Fig. 4 Variation of chemical potential distribution P
with distance x (Concentrated force)
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8.2 Thermal source on the surface of half-space

8.2.1 Concentrated thermal source 

Fig. 9 shows the variations of normal displacement u3 with distance x, which for TED decrease

sharply in the range  and increase sharply in the remaining range for

both G-L and C-T theories. The values of normal displacement u3 for TE show small variation near

zero value in the whole range for G-L theory whereas for C-T theory it has an oscillatory behavior

in the range .

0 x 2≤ ≤ 4 x 6 8 x 10≤ ≤,≤ ≤,

0 x 10≤ ≤

Fig. 5 Variation of normal displacement u3 with
distance x (Uniformly distributed force)

Fig. 6 Variation of normal stress t33 with distance x
(Uniformly distributed force)

Fig. 7 Variation of temperature distribution θ with
distance x (Uniformly distributed force)

Fig. 8 Variation of chemical potential distribution P
with distance x (Uniformly distributed force)
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Fig. 10 shows the variations of normal stress t33 with distance x, which for TED increase in the

range  and decrease sharply in the remaining range (i.e., it has an

opposite behavior to normal displacement of thermal source). The values of normal stress t33 for TE

shows small variation about zero value in the range  for G-L theory whereas for C-T

theory it increase sharply in the range  and then has an oscillatory behavior in the

remaining range.

Fig. 11 shows the variations of temperature distribution θ with distance x, which for TED in case

0 x 2≤ ≤ 4 x 6 8 x 10≤ ≤,≤ ≤,

0 x 10≤ ≤
0 x 2≤ ≤

Fig. 9 Variation of normal displacement u3 with
distance x (Concentrated thermal source)

Fig. 10 Variation of normal stress t33 with distance x
(Concentrated thermal source)

Fig. 11 Variation of temperature distribution θ with
distance x (Concentrated thermal source)

Fig. 12 Variation of chemical potential distribution P
with distance x (Concentrated thermal source)
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of G-L theory is smaller than C-T theory in the range  and is greater in the

remaining range. The values of temperature distribution θ for TE have an oscillatory behavior in the

range  for both G-L and C-T theories.

Fig. 12 shows the variations of chemical potential distribution P with distance x, which for TED

decrease sharply in the range similar  and increase in the remaining range for

both G-L and C-T theories.

 

8.2.2 Uniformly distributed thermal source 
Fig. 13 shows the variations of normal displacement u3 with distance x, which for both TED and

TE has an oscillatory behavior in the whole range for both G-L and C-T theories with difference in

their magnitude.

Fig. 14 shows the variations of normal stress t33 with distance x, which for TED increase sharply

in the range  and decrease sharply in the remaining range for G-L

theory whereas for C-T theory the values of normal stress t33 has an oscillatory behavior in the

range . The variations of normal stress t33 for TE increase sharply in the range 

and then has an oscillatory behavior for G-L theory whereas for C-T theory the values of normal

stress t33 shows small variation near zero value. 

Fig. 15 shows the variations of temperature distribution θ with distance x, which for TED in case

of G-L theory is greater than C-T theory in the range  and is smaller in the remaining

range whereas for TE the values of temperature distribution θ have similar behavior (i.e., oscillatory

behavior) for both G-L and C-T theories in the range .

Fig. 16 shows the variations of chemical potential distribution P with distance x, which for TED

increase sharply in the range  and decrease in the remaining range for both G-L and C-T

theories.

0 x 1.8≤ ≤ 4.5 x 10≤ ≤,

0 x 10≤ ≤

0 x 2≤ ≤ 7 x 10≤ ≤,

0 x 2≤ ≤ 4 x 6 8 x 10≤ ≤,≤ ≤,

0 x 10≤ ≤ 0 x 2≤ ≤

0 x 4≤ ≤

0 x 10≤ ≤

2 x 7≤ ≤

Fig. 13 Variation of normal displacement u3 with
distance x (Uniformly distributed thermal
source)

Fig. 14 Variation of normal stress t33 with distance x
(Uniformly distributed thermal source)
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8.3 Chemical potential source on the surface of half-space

8.3.1 Concentrated chemical potential source

Fig. 17 shows the variations of normal displacement u3 with distance x, which for both TED has

similar behavior (i.e., oscillatory behavior) for both G-L and C-T theories in the range . 

Fig. 18 shows the variations of normal stress t33 with distance x, which for TED increase in the

0 x 10≤ ≤

Fig. 15 Variation of temperature distribution θ with
distance x (Uniformly distributed thermal
source)

Fig. 16 Variation of chemical potential distribution P
with distance x (Uniformly distributed thermal
source)

Fig. 17 Variation of normal displacement u3 with
distance x (Concentrated chemical potential
source)

Fig. 18 Variation of normal stress t33 with distance x
(Concentrated chemical potential source)
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range  and decrease in the remaining for G-L theory whereas for C-T theory

the values of normal stress t33 decrease in the range  and increase in the

remaining range.

Fig. 19 shows the variations of temperature distribution θ with distance x, which for TED in case

of G-L theory is smaller than C-T theory in the range  and is greater in the

remaining range.

Fig. 20 shows the variations of chemical potential distribution P with distance x, which for TED

decrease sharply in the range  and increase in the remaining range for both G-

L and C-T theories. 

8.3.2 Uniformly distributed chemical potential source

Fig. 21 shows the variations of normal displacement u3 with distance x, which for both TED in

case of G-L theory is greater than C-T theory in the range  and is smaller in

the remaining range.

Fig. 22 shows the variations of normal stress t33 with distance x, which for TED has an oscillatory

behavior in the range  for C-T theory .The values of normal stress t33 for G-L theory

increase in the range  and decrease in the remaining range.

Fig. 23 shows the variations of temperature distribution θ with distance x, which for TED increase

sharply in the range  decrease sharply in the remaining range for both G-L and

C-T theories.

Fig. 24 shows the variations of chemical potential distribution P with distance x, which for TED

decrease sharply in the range  and then has an oscillatory behavior for both G-L and C-

T theories.

0 x 2≤ ≤ 5 x 10≤ ≤,
0 x 3≤ ≤ 6 x 8≤ ≤,

0 x 1.2≤ ≤ 5 x 10≤ ≤,

0 x 2≤ ≤ 7 x 10≤ ≤,

2 x 4≤ ≤ 8 x 10≤ ≤,

0 x 10≤ ≤
0 x 2≤ ≤ 5 x 10≤ ≤,

0 x 3≤ ≤ 6 x 9≤ ≤,

0 x 2.3≤ ≤

Fig. 19 Variation of temperature distribution θ with
distance x (Concentrated chemical potential
source)

Fig. 20 Variation of chemical potential distribution P
with distance x (Concentrated chemical
potential source)
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9. Conclusions

Effect of diffusion plays important role in the deformation of the body. As disturbances travel

through different constituents of the medium, it suffers sudden changes, resulting in an inconsistent/

non-uniform pattern of curves. It is observed from the figures that the diffusivity effects the

disturbances produced due to concentrated and distributed loads. The trend of curves exhibits the

properties of thermo-diffusivity of the medium and satisfies the requisite condition of the problem. It

Fig. 21 Variation of normal displacement u3 with
distance x (Uniformly distributed chemical
potential source)

Fig. 22 Variation of normal stress t33 with distance x
(Uniformly distributed chemical potential
source)

Fig. 23 Variation of temperature distribution θ with
distance x (Uniformly distributed chemical
potential source)

Fig. 24 Variation of chemical potential distribution P
with distance x (Uniformly distributed
chemical potential source)
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is observed that the values of normal displacement u3, normal stress t33, temperature distribution θ and

chemical potential distribution P in case of concentrated and uniformly distributed normal force and

chemical potential source have almost similar behavior with difference in their magnitude. The results

of this problem are very useful in the two dimensional problem of dynamic response due to various

sources of the thermoelastic diffusion which has the various geophysical and industrial application.

Study of phenomenon of thermoelastic diffusion is used to improve the conditions of oil extraction.
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