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Creep analysis of concrete filled steel tube arch bridges
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Abstract. Applying the method calculating creep of Concrete Filled steel Tube (CFT) members based
on the Elastic Continuation and Plastic Flow theory for concrete creep with the finite element method, the
paper develops a new numerical method for the creep of CFT arch bridges considering effects of bending
moment. It is shown that the method is feasible and reasonable through comparing the predicted stresses
and deflection caused by the creep with the results obtained by the method of Gu et al. (2001) based on
ACI209R model and experimental data of an actual CFT arch bridge. Furthermore, nine CFT arch bridges
with different types are calculated and analyzed with and without the effects of bending moment. As a
result, the bending moment has considerable influences on long-term deformations and internal forces of
CFT arch bridges, especially when the section of arch rib is subjected to a large bending moment. 
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1. Introduction

In recent years, CFT arch bridges, which have many advantages, such as favorable mechanical

behaviors, convenience to structure construction, aesthetical shapes, as well as good adaptability to

variable spans, have been used widely in many countries (Zhong 2003). There are more than 200

CFT arch bridges have been constructed in China. However, as one of the fundamental problems of

CFT arch bridges, creep influences on CFT bridges have not been studied adequately. 

Creep is a nonelastic deformation of concrete under sustained stress, has considerable influences

on arch and some other statically indeterminate structures as pointed by Neville (2002). Creep is

often taken into account in structural analysis by incorporating a selected concrete model with the

finite element method through transforming the creep strain as the change of geometrical actions,

concrete modulus, and internal forces (Murcia 1993, Yan 2004, Cheng 2006). In structural design,

the creep coefficient or the creep compliance function, based on a specific concrete creep model, is

used to consider the creep effects (Bazant 2001, JGT D62-2004).

For the analysis of the creep of CFT arch bridges, Gu et al. (2001), Xie and Qin (2001) carried

out primary work on by assuming that the internal forces on arch ribs do not vary during the period

of creep development, which is not coincident with actual facts. Additionally, Gu et al. (2001)
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simplified the arch ribs as axial compression members by neglecting influences of bending moment.

However, in real engineering, arch ribs always endure not only compression but also bending due to

reasons such as different kinds of acting loads, limited arch rise, construction error, and aesthetic

requirements. On the basis of the ageing theory of concrete creep, Xin and Xu (2003) presented

formulae for calculating the stress redistribution on the cross-sections of the ribs during the core

concrete creep. But the ageing theory, which overestimates the concrete creep with decreasing stress

(Neville et al. 1983), is not suitable for the creep analysis of CFT structures. Besides, the ageing

theory was not combined with a numerical method, creep influences on the deformation of CFT

arch bridge could not be considered by adopting the method. 

Based on the Elastic Continuation and Plastic Flow theory of concrete creep and the creep theory

of concrete under multi-axial stresses, considering the mechanical properties of CFT members,

Wang (2006), Wang and Han (1999), and Han and Wang (2001, 2004) developed one-dimensional

analytical models for creep of CFT members. The models take account of not only characteristics of

concrete under multiaxial stresses but influencing factors of creep, e.g. steel ratios, material grades,

and stress ratios of CFT members. Moreover, the theory of Elastic Continuation and Plastic Flow

based on the concrete rheological model, considering the composition of creep rationally, is suitable

to the unloading case of core concrete creep of CFT members. Therefore, the paper combines the

mentioned creep model of CFT members under eccentric loads with FEM to propose a new method

to analyze the creep of CFT arch bridges. 

2. Creep of CFT arch bridges with and without bending moment

Due to the stress distribution is not uniform on each cross-section of CFT members under

eccentric loads, and the deformations in different locations of the cross-section are different , the

analysis of the members is more complex than that of axial compression members. 

Following assumptions for CFT members under eccentric loads are adopted:

(1) CFT is an ideal elastic material;

(2) steel is an ideal elastic material;

(3) creep of core concrete obeys the principle of superposition, i.e. creep is linear;

(4) deformation between steel tube and concrete is compatible;

(5) deformation of members’ cross-section satisfies the plane hypothesis.

Generally, under the limitation of serviceability, the confining stress of steel tube to concrete can

Fig. 1 Cross-section of CFT members under eccentric loading
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not occur in arch ribs of CFT arch bridges (Zhong 2003), therefore, the paper does not consider the

confining stress in the following analysis.

In the study of creep influence on CFT arch bridges by FEM, the ribs are divided into beam

elements without shear force. Here, each element is considered as a member under eccentric force.

According to the plane hypothesis, the stress distribution on a cross-section of CFT member under

eccentric load is linear along the axis y, and the creep on the cross-section is also linear along the

axis, as shown in Fig. 1. 

Fig. 1 shows the strain distribution of CFT members under eccentric loading. εscg denotes the

maximum total strain;  is the maximum elastic strain;  stands for the maximum creep; εscl
denotes the minimum total creep;  is the minimum elastic strain,  stands for the minimum

creep; r is the diameter of core concrete; δ is the thickness of steel tube.

The internal force on the cross-section of CFT members under eccentric loading should satisfy the

following equilibrium equations

(1)

(2)

i.e.,

(3)

(4)

where Ns, Nc--axial force of steel tube and core concrete respectively;

      Ms, Mc--bending moment of steel tube and core concrete respectively.

Assume that steel tube and core concrete carry out the internal forces of CFT member according

to their stiffness, 

(5)

(6)

(7)

(8)

where Is,  Ic- inertia moment of steel tube and core concrete alternatively;

  Es, Ec- Young’s modulus of steel tube and concrete alternatively;

 As, Ac- cross-section area of steel tube and concrete alternatively.

Therefore, the stresses of core concrete and steel tube are
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(10)

where σs, σc- axial stress of steel tube, axial stress of core concrete.

According to Eqs. (9) and (10), the stresses of core concrete and steel tube are

(11)

(12)

where . 

While the redistribution of stress on the cross-section occurs during creep process, let  stand

for the increment of internal force of core concrete,  be the increment of stress;  stand for the

increment of internal force of steel tube, and  be the increment of stress, then

(13)

In accordance with the above formulae, it can be obtained that

(14)

where ; α- steel ratio of CFT members, 

Under the uni-axial stress, the stresses of steel tube and core concrete have

     (15)
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where, σc0- initial stress of core concrete under external force, ; 

c- concrete creep ratio under the uni-axial stress. It can be calculated according to Han and

Wang (2001). 

Under the assumption of deformation compatibility, ,  is the creep of CFT

member, and on the basis of Eqs. (16) and (17), there is

(18)

According to Eqs. (14) and (18), then

(19)

Substitute the above formula into Eq. (18), the creep of CFT members under eccentric loading can

be obtained along the axis y as following,

(20)

In order to calculate the creep of points in the section with different distances to the neutral axis,

it is assumed that the Young’s moduli of arch rib elements are not uniform, and the bigger the creep

is, the lower the Young’s modulus is relatively, vice versa. It can also be supposed that CFT

members under eccentric loading are at the elastic stage during the creep, then the Young’s modulus

of cross -section in aixs y at time t is

(21)

where - total strain in coordinate y at time t, ;

Isc- moment of inertia of CFT member’s cross-section, ; 

Asc- area of CFT member’s cross section, .

Due to the different Young’s modulus in every point with different distance to the neutral axis on

the cross section, the transformed moduli of elements after creep can not be directly used in a FEM

program as Gu et al. (2001) and Xie and Qin (2001), but it needs to integrate the stiffness matrix of

element, deducing the transformation element stiffness matrix at each time step during creep. 

According to the FEM, consider the increment of cross–sectional Young’s modulus, the

transformation stiffness matrix of plane bar element is

(22)

where Ey- transformation Young’s modulus of the CFT member at y;
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Take into account the increment of cross-sectional Young’s modulus, the transformation stiffness

matrix of plane beam element without shear force is

(23)

Combining Eq. (22) with Eq. (23), the transformation stiffness matrix of beam elements of the rib

at each creep step can be obtained, and then according to the transformation stiffness matrix, the

internal force and deformation of CFT arch bridge after creep (Kwak and Seo 2000, Liao and

Zhang 2000) can be calculated by the FEM. The flow chart to implement it is shown as Fig. 2.

3. Examples 

Xin and Xu (2003) gave the test results of the creep of Yajisha Bridge, a CFT arch bridge, in

Guangdong Province, China. The paper calculates and analyzes the creep of Yajisha Bridge by the
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Fig. 2 Flow chart for calculating creep effects of CFT arch bridges 
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presented method and the method proposed by Gu et al. (2001) based on ACI209R model,

comparing the predicted stresses and deflections caused by creep with the experimental data of Xin

and Xu (2003). 

The main bridge of Yajisha is a half-through and non-hinged arch bridge with main span of

344 m, arch ribs are designed in a shape of catenary with arch rise 76.45 m, and ratio of rise to span

is 1/4.5. Coefficients of arch m and k are equal to 2 and 1.317 alternatively. Each arch rib is

composed with 6 CFTs, which are made of steel tube of Φ750 mm, and is constituted into a CFT

truss by connecting with transverse flat plates and web members. Thereinto, the size of outer and

inner steel tubes of the truss is Φ750 mm × 18 mm, the size of middle steel tube is

Φ750 mm × 20 mm, and the thickness of transverse flat plates between steel tubes is 500 mm. C50

concrete is filled into the tubes of arch ribs and inside between transverse flat plates. More details

about the bridge can be seen in Xin and Xu (2003). For the convenience of calculation, the spatial

system of the structure is simplified to a plane system, as seen in Fig. 3.

In the following analysis, suppose that all loads are put on the bridge in a lump, creep is not

considered during construction period, the loading age of concrete is 28 days, and loads would

sustain 560 days. The bridge is divided into 267 nodes and 484 elements. The total deflection and

stress of vault section of main arch were measured respectively when the bridge was completed and

open to traffic after 1 year, heretofore, the loading age of concrete of arch rib is approximately 18

months (Xin and Xu 2003). The experimental data and results gotten by the two methods without

considering bending moment are listed in Table 1.

According to Table 1, it can be shown that there are some differences between numerical results

and experimental data when the bridge was completed, and the deference in steel tube stresses

between the calculated results and experimental data are about 15% and 21%, and concrete stresses

are about 31% and 21% for the results of the paper and Gu et al. (2001) respectively. The reasons

are related to the factors such as the modelling simplification, ignoring the creep during construction

as well as bending monents. After the bridge was operated 1 year, the discrepancies of steel tube

and core concrete stresses between numerical results and experimental data are 10% and 14% as

well as 49% and 47% respectively, and the deflections have dispersions about 12% and 7%. It can

be concluded that the calculated results agree well with the experimental data. 

Fig. 3 Structural model of Yajisha CFT arch bridge

Table 1 Comparison of predicted deflections and stress of vault section with experimental data

Contents Location
Experimental 

data
Results of this 

paper
Gu et al. 
(2001)

Stresses of upside of the vault 
when bridge was completed (MPa)

steel 206.4 237.8 248.9

concrete 13.8 18.2 16.8

Stresses of upside of the vault 
after the bridge was operated 1 year (MPa)

steel 218.3 239.2 250.6

concrete 11.3 16.8 16.6

Total deflection caused by creep (cm) 12.0 13.7 12.8
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The stress and deformation curves of Yajisha Bridge obtained by the method of Gu et al. (2001)

without bending moment and the paper’s method with and without bending moment are shown as

Figs. 4, 5. From Table 1 and the figures, it can be seen that the stresses and deflections of the

bridge after 1-year creep obtained by the two methods are close to each others, but for results on

the early stage and the creep development, the presented method has a better description than that

of the method proposed by Gu et al. (2001) based on ACI209R model.

As shown in the curves obtained by the two methods with and without bending moment , it can

be concluded that the deflection of CFT arch ribs will increase with creep developing. These curves

change obviously in early time, after 60 days, the curves will develop slowly, be close to horizontal

lines after 180 days, and almost terminate after 360 days. The increment of the deflection is about

30% of its initial value. The deflection increment of the middle span with bending moment is 10%

bigger than that without bending moment. Stresses of core concrete and steel tube with bending

moment are also 20% larger than that without bending moment. In addition, concrete stresses have

Fig. 4 Stress curves at mddle span of arch rib

Fig. 5 Deflection curves at middle span of arch rib
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been decreasing during creep, while steel tube stresses increasing.

Based on the above work, in order to analyze the creep effects on arch bridges with different

types and spans as well as the effects of moment on the creep of CFT bridge, nine different CFT

arch bridges, shown as in Table 2, are chosen and calculated respectively by using two methods

with and without considering bending moments.

For the purpose of comparison, calculated results such as deflections and stresses of some

important positions of 9 samples are listed from Table 3 to Table 7. Table 3 shows that after 360

days the creep occurred, the deflection at middle span with bending moment is bigger than that

without bending moment, but the increments are small: the most is about 8.29% and the least is

2.38%. In addition, it can also be shown in Table 3 that bridge 3 and bridge 4 with small ratio of

rise-span have bigger increments of deflections. That indicates that arch shapes will affect the creep

of CFT arch bridges. While the arch is designed to endure moments, the influences of creep on the

deflection of CFT arch bridge will increase accordingly.

Table 3 to Table 7 indicate that the maximum stresses of core concrete and steel tube vary to

some extent after 1-year creep. Because of bearing larger bending moment at arch string than that at

Table 2 Basic parameters of nine calculated models 

No.
Span 
(m)

Ratio of 
rise-span

Arch shape Structure type

Configuration of arch rib 
Concrete

gradeConstitution
Height

(m)
Dimension
(mm × mm)

bridge.1 85 1/4 quadratic parabola half-through three-limb truss 2.5 650 × 12 C50

bridge.2 160 1/5 catenary m=1.543 deck-type dumb-bell 2.5 1000 × 10 C50

bridge.3 115 1/6 catenary m=1.347 through-type dumb-bell 2 800 × 10 C30

bridge.4 100 1/9.6 quadratic parabola half-through Single tube 0.65 650 × 10 C30

bridge.5 120 1/4 quadratic parabola half-through dumb-bell 2 900 × 10 C40

bridge.6 76 1/4 quadratic parabola half-through dumb-bell 1.9 800 × 10 C40

bridge.7 46 1/3 quadratic parabola half-through Single tube 0.8 800 × 14 C50

bridge.8 160 1/5 catenary m=1.5 through-type dumb-bell 3.75 1500 × 16 C50

bridge.9 360 1/4.5 catenary m=2 half-through six-limb truss 6.75 750 × 18 C50

Table 3 Deflection at middle span- comparison of results of two methods

No.
Deflection before creep 

(without bending 
moment) (MPa)

Deflection before 
creep (with bending 

moment) (MPa)

Deflection after creep 
(without bending 
moment) (MPa)

Deflection after 
creep (with bending 

moment) (MPa)

Ratio
(%)

bridge.1 25.14 38.78 39.92 1.14 2.94

bridge.2 59.64 90.60 94.40 3.80 4.19

bridge.3 52.79 69.68 74.65 4.96 7.12

bridge.4 54.08 72.60 78.62 6.02 8.29

bridge.5 26.15 37.71 40.33 2.62 6.95

bridge.6 20.96 30.21 31.69 1.47 4.87

bridge.7 5.71 9.02 9.42 0.40 4.44

bridge.8 45.63 69.37 72.25 2.88 4.15

bridge.9 410.74 534.89 547.62 12.73 2.38
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Table 4 Concrete stress at middle span-comparison of results of two methods

No.

Stresses before 
creep 

(without bending 
moment) (MPa)

Stresses before 
creep 

(with bending 
moment) (MPa)

Stresses after creep 
(without bending 
moment) (MPa)

Stresses after creep 
(with bending 

moment) (MPa)

D-value
(MPa)

Ratio
(%)

bridge1 11.32 13.55 9.93 10.49 0.56 5.7

bridge.2 6.59 7.57 5.80 6.65 0.85 14.6

bridge.3 5.95 6.85 5.04 5.83 0.79 15.8

bridge.4 5.64 6.29 4.65 5.12 0.48 10.2

bridge.5 5.98 6.33 4.95 5.24 0.29 5.9

bridge.6 6.36 6.72 5.42 5.73 0.31 5.8

bridge.7 3.89 4.77 3.08 3.73 0.65 21.1

bridge.8 5.25 6.12 4.61 5.36 0.75 16.3

bridge.9 22.50 25.88 14.06 16.81 2.74 19.5

Table 5 Steel tube stress at middle span-comparison of results of two methods

No.
Stresses before creep 

(without bending 
moment) (MPa)

Stresses before 
creep (with bend-

ing moment) 
(MPa)

Stresses after creep 
(without bending 
moment) (MPa)

Stresses after 
creep (with 

bending 
moment) (MPa)

D-value
(MPa)

Ratio
(%)

bridge1 56.75 70.85 86.46 105.51 19.05 22.0

bridge 2 36.24 42.28 55.41 64.24 8.83 15.9

bridge 3 49.57 56.04 66.34 75.31 8.97 13.5

bridge 4 44.99 49.65 60.36 66.56 6.21 10.3

bridge5 37.73 40.09 54.09 57.40 3.31 6.1

bridge6 41.41 43.81 59.33 62.74 3.41 5.7

bridge7 19.67 25.23 29.99 37.54 7.56 25.2

bridge8 28.83 34.21 44.08 51.93 7.85 17.8

bridge9 158.59 183.62 207.74 239.18 31.44 15.1

Table 6 Concrete stress at arch springing- comparison of results of two methods

No.

Stresses before creep 
(without considering 

bending moment) 
(MPa)

Stresses before 
creep (considering 
bending moment) 

(MPa)

Stresses after creep 
(no considering 

bending moment) 
(MPa)

Stresses after creep 
considering bend-

ing moment) 
(MPa)

D-value
(MPa)

Ratio
(%)

bridge1 10.34 17.19 7.67 12.78 5.10 66.5

bridge2 8.40 9.32 7.39 8.20 0.81 10.9

bridge3 7.06 7.54 5.99 6.43 0.44 7.4

bridge4 6.06 7.29 4.99 5.89 0.90 18.1

bridge5 8.09 8.76 6.69 7.24 0.55 8.2

bridge6 8.72 9.41 7.42 8.02 0.60 8.1

bridge7 6.13 9.19 4.83 7.02 2.19 45.2

bridge8 6.67 7.40 5.87 6.49 0.63 10.7

bridge9 25.02 29.04 15.02 18.65 3.63 24.2
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middle span, the stress variation of core concrete and steel tube at arch string is greater than that at

middle span.

 

4. Conclusions

(1) Curves of stress and deflection of CFT arch bridges influenced by the creep develop rapidly in

early age and then slowly. Trends of the curves are nearly horizontal after 180 days, and

changes almost terminate after 360 days. 

(2) After 360-day creep, calculated deflections and stresses of concrete and steel tube with

bending moment are comparatively bigger than that without bending moment. The curves of

stress and deflection of CFT arch bridges under long-term loads with and without bending

moment have the same trends. 

(3) Generally, there are bending moments on arch ribs, creep effects on the stresses of steel tube

and concrete of the ribs are bigger. The influence of bending moment on the creep of CFT

arch bridge must be taken into account.
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