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Damage detection in truss structures using a flexibility 
based approach with noise influence consideration
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Abstract. The damage detection process may appear difficult to be implemented for truss structures
because not all degrees of freedom in the numerical model can be experimentally measured. In this
context, the damage locating vector (DLV) method, introduced by Bernal (2002), is a useful approach
because it is effective when operating with an arbitrary number of sensors, a truncated modal basis and
multiple damage scenarios, while keeping the calculation in a low level. In addition, the present paper
also evaluates the noise influence on the accuracy of the DLV method. In order to verify the DLV
behavior under different damages intensities and, mainly, in presence of measurement noise, a parametric
study had been carried out. Different excitations as well as damage scenarios are numerically tested in a
continuous Warren truss structure subjected to five noise levels with a set of limited measurement sensors.
Besides this, it is proposed another way to determine the damage locating vectors in the DLV procedure.
The idea is to contribute with an alternative option to solve the problem with a more widespread
algebraic method. The original formulation via singular value decomposition (SVD) is replaced by a
common solution of an eigenvector-eigenvalue problem. The final results show that the DLV method,
enhanced with the alternative solution proposed in this paper, was able to correctly locate the damaged
bars, using an output-only system identification procedure, even considering small intensities of damage
and moderate noise levels.
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1. Introduction

Structural health monitoring (SHM) procedures, which have witnessed significant progresses in

the last few decades, are based on processing vibration measurements and typically deals with

structural (mass, stiffness, damping) and modal (modal frequencies, damping rates and mode

shapes) parameters (e.g., Kaminski Jr. and Riera 1996, Doebling et al. 1996, Riera and Rios 2000,

Hu et al. 2001, Sohn et al. 2003, Qu et al. 2003, Zhu et al. 2003, Cho et al. 2004, Riera 2004,

Maity and Tripathy 2005, Amani et al. 2006, Kim et al. 2006, Zhu and Law 2006, Fadel Miguel

et al. 2006a, Zhao and DeWolf 2007, Fadel Miguel 2007). The main objective in those studies is

the evaluation of changes in the structural and modal parameters, to verify their importance and to

detect correlations among individual changes, while controlling the complexity of processing

collected data.

In vibration based damage detection the modal parameters extracted from dynamic tests during

the lifetime of the structure, under different operating conditions, are compared with reference

modal parameters corresponding to a model in a well-known healthy condition. Differences in the

identified modal parameters may lead to the identification of structural damage. Within such

context, automatic global vibration-based monitoring techniques turned out to be a useful alternative

to visual inspections or local non-destructive (e.g., ultrasonic) evaluations performed manually.

Among several damage identification methods proposed in the literature, a very important class

employs the dynamically measured flexibility matrix (Pandey and Biswas 1994, Topole 1997)

mainly because it is insensitive to high frequency modes, which are typically difficult to determine

experimentally. Hence, this matrix can be constructed by truncated modes at sensor locations

without significant loss of accuracy.

The flexibility matrix can be estimated at sensor locations when the input is measured, and there

is at least one co-located sensor and actuator pair. In this way, the experimental data can be used to

construct the flexibility matrix and no additional information is required. However, for output-only

measurements, mode shapes are not mass scaled, but recent techniques are available to normalize

the experimental modes with respect to mass. The scheme has been used in a controlled mass

addition experiment by Parloo et al. (2002), while Deweer and Dierckx (1999) employed an

acoustic excitation technique on a plate structure.

Among the flexibility-based damage detection methods, the damage locating vector (DLV)

proposed by Bernal (2002) is the most recent method with mathematical rigor and minor practical

difficulties. Moreover, the DLV method is a very efficient approach because it is effective when

operating with multiple damage scenarios, a truncated modal basis and an arbitrary number of

sensors, without great computational effort.

In most previous studies, vibration characteristics of structures were estimated in laboratory tests

under controlled environmental condition. However, in field studies, the variation of structural

modal parameters due to environmental effects, which is always present in dynamic field tests, may

hide the changes caused by structural damage. Therefore, if a method cannot properly account for

the effect of noise in the damage detection process, false positive or negative damage diagnosis may

occur, in which case the vibration-based health monitoring method is not reliable.

Within this context, the influence of noise on the accuracy of the damage locating vector method

(DLV) is assessed in this paper. In order to verify the DLV performance for different damages

intensities and, mainly, in presence of measurement noise, a parametric study was carried out. Two

different excitations as well as three damage scenarios are numerically simulated in a continuous
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Warren truss structure with a set of limited measurement sensors, considering five noise levels.

In addition, a new procedure to determine the damage locating vectors in the DLV method is

herein presented. This procedure constitutes an alternative option to solve the problem with a better

known algebraic method. The original formulation via singular value decomposition (SVD) is

replaced by the solution of a simple eigenvalue problem. This is possible due to the algebraic

relationship between the singular value decomposition of a matrix and the eigenproblem solution of

this matrix pre-multiplied by its transpose.

The paper is organized as follows: First, the so-called damage locating vector is introduced,

describing its methodology as well as basic aspects of the alternative formulation. Next, an

approach formulated by Bernal (2004) to obtain the flexibility matrix at sensor locations in output-

only system identification is described in detail, followed by the description of Gao and Spencer

(2005) criterion, who showed that the modal normalization constants can be determined testing the

‘healthy’ structure with additional known masses and that the constants may be applied without loss

of accuracy in the damaged condition. Finally, to assess the DLV performance in a structure

subjected to different excitations, damage location and intensities, as well as variable noise level, a

continuous Warren truss with a limited number of sensors is numerically simulated.

2. Damage locating vectors (DLV) method

The damage locating vectors (DLV) method proposed by Bernal (2002) is a general approach to

extract spatial information for damage localization from changes in measured flexibility. The

fundamental idea of the DLV approach is that the vectors that cover the null-space of changes in the

flexibility matrix (between the pre- and post-damage states) induce no stress in the damaged

elements (small in the presence of truncations and approximation) when they are treated as static

loads on the structure. This unique characteristic can be employed to localize damage.

For a linear structure, the flexibility matrices can be constructed at sensor locations before and

after damage occurs and are denoted as Fu and Fd, respectively. It is assumed that there is a group

of load vectors, defined at sensor locations, which produces the same deformations at sensors in the

undamaged and damaged states. If all the linearly independent vectors that satisfy this requirement

are collected in a matrix L it is evident that

(1)

From the definition, the DLVs are also seen to satisfy Eq. (1); that is, because the DLVs induce

no stress in the damaged elements, the damage of those elements does not affect the displacements

at the sensor locations. Therefore, the DLVs are indeed the vectors in L.

In this paper, the solution of Eq. (1) is obtained in an alternative way. Differently from Bernal

(2002), who solved this equation through singular value decomposition, it is proposed next that the

vectors L can be found using a simple eigenproblem of the matrix formed by the difference

flexibility matrix pre-multiplied by its transpose

(2)

FDL FUL  or F∆L FD FU–( )L 0= = =

F∆

T
F∆ λV λ1 0

0 0
V1 V0

= =
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in which λ1 is diagonal and contains the non-zero eigenvalues, V1 is a basis for the row space and

V0 = L is a basis for the null space.

For ideal conditions, the DLVs are simply V0 = L, that are the columns of the eigenvectors V

associated with the null space. However, in practical applications the singular values corresponding

to V0 are never equal to zero due to noise and computational errors. To select the DLVs from V, an

index svn was proposed by Bernal (2002) and it is adapted to the alternative approach proposed in

the present paper

(3)

in which m is the number of columns in V, λi is the ith eigenvalue of , ci is a constant used to

normalize the maximum stress in the undamaged element of the structure, induced by the static load

, to have a value of one. The vector  can be taken as a DLV when .

Each DLVs is then applied to the undamaged analytical model of the structure, and the stress in

each structural element is calculated. The normalized cumulative stress  for the jth element is

defined as

where (4)

In Eq. (4) k is the number of elements, σj is the cumulative stress in the jth element, σij is the

stress in the jth element induced by the ith DLV and ndlv is the number of DLVs. If an element has

zero normalized cumulative stress, then this element is a possible candidate of being damaged.

However, in practice the normalized cumulative stresses induced by the DLVs in damaged elements

may not be exactly zero due to noise and uncertainties. Reasonable thresholds should be chosen to

select the damaged elements, such as 0.1 (Bernal 2002).

In order to introduce additional robustness into the technique, the information from multiple DLVs

should be combined. The vector of weighted-average stress indices for each DLVs, WSI, needs to

be calculated to select the potentially damaged elements

where (5)

If an element has WSI < 1.0 then it is a candidate of being damaged.

3. Contruction of flexibility matrices

It was pointed out that the flexibility matrices in the healthy and damage conditions need to be

constructed at sensor locations to implement the DLV method. Especially in the case of output-only

measurements, mode shapes are not mass scaled and its construction may appear to be difficult.

Considering a linear structure, the flexibility matrix takes the form

 (6)
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in which Φm is the mass normalized mode shapes matrix and Φm = ψα, in which ψ is the undamped

arbitrarily normalized mode shapes matrix and α is the matrix of modal normalization constants.

For output-only measurements, these modal normalization constants can be determined by an

alternative approach, which consists of testing the structure with additional known masses at the

sensor locations (Parloo et al. 2002, Brincker and Andersen 2003, Bernal 2004).

The mass perturbation method proposed by Bernal (2004) for a linear structure with proportional

damping is presented next. The mass matrix of the modified structure can be expressed as 

(7)

in which M1 is the mass matrix of the original structure, M0 is the mass matrix of the modified

structure and ∆M is the mass perturbation matrix. The eigenvalue problem for the modified

structure is 

(8)

in which λi, j is the jth eigenvalue of the modified structure and  is the jth eigenvector of the

modified structure. The corresponding eigenvalues and eigenvectors for the original structure are

λ0, j and , respectively. The mode shape  can be written as

(9)

in which ,  is the column null space of ,  and  are

coefficient vectors. Substituting Eq. (9) into Eq. (8) and multiplying both sides by  yields

(10)

in which

(11)

in which  and . By neglecting the error

term εj, Eq. (10) can be rewritten as

(12)

which can be de-coupled to solve for the unknown αi as

(13)

Eq. (13) shows that there is one group of vectors  for each vector . However, it is

recommended to use i = j because it gives the most accurate values of the modal normalization
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constants  (Bernal 2004). The dynamic characteristics for both, the original and modified

structures, must be determined by applying some stochastic system identification techniques, for

instance the so-called stochastic subspace identification (SSI) method (e.g., Van Overschee and de

Moor 1993, Peeters and de Roeck 1999, Fadel Miguel et al. 2006b).

Gao and Spencer (2005) presented a criterion which uses modal normalization constants αi

determined for the healthy condition, in output-only damage detection procedures, on damaged state

to construct the flexibility matrix in this situation. Moreover, they contend that this can be done,

since in large civil structures damage has a local effect and is not expected to significantly change

the global structural characteristics, including these modal normalization constants.

4. Numerical example and discussion

The damage detection approach proposed in this paper is numerically tested in the continuous

Warren truss shown in Fig. 1. This planar truss consists of 37 nodes and 71 steel bars, which have a

cross section of 2 × 10−3 m2. Young’s modulus of the material is 2 × 1011 N/m2 and its mass density

7.86 × 10 3kg/m3. The height of the truss is 9 m while the total length is 168 m. The supports of the

structure are modeled as two hinged supports at nodes 1 and 37 and as a roller support at node 19.

The pinned end allows nodes to rotate freely with all three translations restricted. It must be pointed

out that the model considered in the example does not correspond to a built structure, able to

withstand design loads for a bridge of those dimensions. However, the amplitude of the excitation

was chosen to result in response amplitudes, in terms of displacements, expected in real conditions,

which is an important factor in health monitoring. As a consequence, simulated deformations and

displacements are inside a band that may be considered typical in field monitoring.

The structure is numerically modeled using a MatLab finite element code. The dynamic problem

is solved by numerical integration of the equations of motion using Newmark method, with an

integration time step equal to 0.0005s. Damping of the structure is assumed proportional to the mass

and stiffness matrices. The proportionality constants were determined to yield damping ratios in

both the 1st and 5th modes equal to ξ = 1%.

As indicated before, two standard excitations were simulated: an impulsive and an ambient

excitation. The latter was modeled by 69 uncorrelated Gaussian white noise signals (generated with

MatLab), with zero mean and standard deviation equals to one, applied at all generalized

coordinates of the structure. This representation seems adequate to represent a broad band, ambient

excitation of the structure, as suggested in several experimental studies (Brownjohn et al. 1999,

Peeters and de Roeck 2001, Maeck and de Roeck 2000, Cunha et al. 2001, Ren et al. 2004, He

et al. 2005). The impulsive loading is represented by the application of a sequence of four impact

α i

Fig. 1 Continuous Warren truss
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excitations at node 7 in the y-direction. As mentioned before, the excitation magnitude was chosen

to result in the response amplitudes, in terms of displacements, similar expected in real conditions.

The excitations are shown in Figs. 2 and 3. In order to have a clearer visualization, the ambient

excitation signal is partly shown.

For the identification procedure, the response is calculated for a time interval of 80s for the

transient condition and for a time interval of 200s for ambient vibrations. To reduce the number of

data points and to make the identification more accurate in the range of frequency of interest, the

output data are filtered with an eight-order Chebyshev type I lowpass filter and the data is re-

sampled at a rate of 100 Hz.

To better represent the experimental conditions imposed to the structures during real tests in

output-only identification procedures, just the 22 nodal responses (y-direction) of the lower chord

are considered for the modal parameter estimation. In this context, just mode shapes at these 22

DOFs can be established, and besides this, the responses are collected in terms of accelerations,

since accelerometers are usually used as the measurement transducers. Figs. 4 and 5 shows the 10

node y-displacement response, both for the impact loading and for the ambient excitation. In order

to have a clearer visualization, the ambient excitation signal is partly shown.

To consider the variation of structural modal parameters due to noise effects and to evaluate the

DLV robustness in field conditions, five levels of noise are simulated through the addition of five

different white noise signals with RMS amplitude varying from 0% to 2.5%, 5%, 10% and 15% of

Fig. 2 Ambient excitation: Sample of white noise
process

Fig. 3 Impulsive excitation

Fig. 4 Part of the ambient response Fig. 5 Impulsive response
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the measured response. This noise is applied at all loaded nodal coordinates.

After getting the outputs for each noise level, the output-only system identification is carried out

using stochastic subspace identification (SSI), which presents the main advantage of avoiding any

preprocessing to obtain spectra or covariances, identifying models directly from time signals.

In addition, three different damage cases are studied to provide details of the performance of the

DLV method concerning the effect of noise. In the first case of damage, i.e., Case 1, shown in Fig. 6,

the damaged element is bar number 8. In Case 2 (Fig. 7) the stiffness of element 45 is reduced,

which was chosen because it presents small sensitivity to damage. Finally, Case 3 consists of a

multiple damage condition, in which diagonal element 17 and longitudinal element 54 are damaged

simultaneously. This last case is illustrated in Fig. 8. The structural damage is simulated by

uniformly reducing the member area along its length. In addition to this, the percentage of reduction

in the cross section of the elements considered in the studies was 5%, 10%, 15% and 20%.

Due to the presence of noise, virtual tests of the structure were conducted 50 times for every

noise, excitation and damage case and the modal parameters determined as the average of the fifty

simulated responses. A sample size of 50 was chosen to be statistically representative.

In order to apply the DLV method, it is required to assemble the flexibility matrix for the

‘healthy’ state, with mass addition and in the damaged state. Since in real situations, the healthy and

mass added modal parameters may be obtained in more controlled experiments, the noise is fixed as

5% for these conditions. Additional noise levels were considered for damaged structures. In order to

apply the mass perturbation method, 50 kg masses were added in each of the nodes of the lower

Fig. 6 Case 1 - Bar 8 damaged

Fig. 7 Case 2 - Bar 45 damaged

Fig. 8 Case 3 - Bar 17 and 54 damaged
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chord of the truss, which represent less than 10% of its total mass. In most cases such an excess

mass would be admissible in real monitoring procedures. It is important to point out that according

to the modal normalization constants precision determined through this criterion, there is a clear

indication that these values could still be lower. In addition, following Gao and Spencer (2005), the

modal normalization constants determined in the healthy state are used on damaged condition to

construct the flexibility matrix for this situation. As it was pointed out, this is a reasonable

assumption since the damage has a local effect and is not expected to significantly change the

global structural characteristics for large civil structures.

After determining flexibility matrices, damage locating vectors are evaluated using the alternative

solution proposed in this paper, and applied as static forces on the undamaged structure. It is

important to point out that the index svn application presented some difficulty to determine the

correct vectors. In this example, the last eight DLVs provided good results with the current sensor

configuration and therefore they were used to localize damage in the different cases. The DLV

determination is one of the most important points in the methodology, since if the selection is not

effective to taken account the correct vectors, false positive or negative damage diagnosis may

occur, so that DLV method becomes unreliable. Considering that svn index is not always efficient, it

is not recommended its employment in a blind fashion, but as a reference to the true DLV

determination. It may be numerically interesting to pre-select a set of damage cases results and then

to compare which results are obtained by adding or removing some vectors from the group.

Following this procedure, generally false DLVs can be identified and then discarded.

Since the WSI index and the normalized cumulative stress presented quite similar results, just

those from the later are showed. The normalized cumulative stress for three damage cases are

shown in Figs. 9, 10 and 11. They correspond to the ambient vibration, 5% of reduction in the cross

section and 5% of noise level.

The results indicate that the normalized cumulative stress for damaged elements, in the three

cases, is considerably smaller than other elements and smaller than the 0.1 threshold (Bernal 2002).

Apparently, the reason why bar 10 also has a small cumulative stress is due to the equilibrium of

forces in the node 6 of the truss. Under the application of the DLVs just in the lower chord, if either

of these two elements has small stress, so does the other.

In damage Case 2, the neighbor bars 44 and 46, which are in the original condition, also have

normalized cumulative stress small than the 0.1 threshold. This may be not a problem because the

elements are inside of the same bay. Besides this, bar 36 also has a small normalized cumulative

stress. Finally, for Case 3, just the real damaged elements presented normalized cumulative stress

small than the threshold. Actually, the DLV method identifies a small group of potentially

Fig. 9 Case 1 - Ambient vibration - Noise 5%
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Fig. 10 Case 2 - Ambient vibration - Noise 5%

Fig. 11 Case 3 - Ambient vibration - Noise 5%

Table 1 Localization comparison: ambient vibration 

Noise
Damage

5% 10% 15% 20%

0%

Case 1 X X X X

Case 2 X X X X

Case 3 X X X X

2.5%

Case 1 X X X X

Case 2 X X X X

Case 3 X X X X

5%

Case 1 X X X X

Case 2 + X X +

Case 3 X X X X

10%

Case 1 + X X X

Case 2 ◊ ◊ + +

Case 3 + X X X

15%

Case 1 + X X X

Case 2 ◊ ◊ ◊ +

Case 3 + X X X
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candidates to damage that contain the real damaged elements.

Table 1 shows a comparison of the results of the DLV method for ambient vibration, considering

the different damage cases and noise levels. The ‘X’ symbol indicates that only the damaged bar

was identified as damaged. As already pointed out, element 10 is always identified jointly with 8.

The symbol ‘+’ indicates that a small group of elements was identified, with normalized cumulative

stress small than the threshold, including the actually damaged elements. Finally, the ‘◊’ symbol

indicates that a small group of elements has a normalized cumulative stress slightly higher than the

threshold, including actually damaged elements.

In general, the DLV method presented very good results. The results in Table 1 indicate that

damage localization is easier for low noise levels. Even in cases of small intensity of damage, the

method proved able to identify the damaged elements in almost all conditions. However, in Case 2,

which presents a very small variation of modal parameters, for high noise levels (10% and 15%),

the normalized cumulative stress is lower than in some undamaged bars, but slightly higher than the

threshold.

For the impulsive vibration again the case with 5% of reduction in the cross section and 5% noise

level, the normalized cumulative stress for the three damage cases are shown in Figs. 12, 13 and 14.

As in ambient vibration, it was observed that the damaged elements have a smaller normalized

cumulative stress than undamaged elements and is smaller than the 0.1 threshold. In Case 2, just bar

36 and bar 45 presented normalized cumulative stress smaller than the threshold. For the third case,

the bars 17, 36 and 54 presented normalized cumulative stress smaller than the threshold.

Table 2 shows a comparison of results of the DLV method for impulsive loading, considering the

different damage cases and noise levels. The criterion adopted in the classification is the same used

Fig. 12 Case 1 - Impulsive vibration - Noise 5%

Fig. 13 Case 2 - Impulsive vibration - Noise 5%
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for ambient vibrations.

In a similar way, the DLV method provided good results for impulsive loading. By observing

Table 2, it can be seen that even for 5% of damage it was possible to identify the correct element in

all analyzed cases. However, as in the former situation, at some noise levels, in Case 2 damaged

bars presented lower normalized cumulative stress than other bars, but slightly higher than the

threshold. It must be pointed out that for 20% damage, although all damage elements were

successfully identified, some localizations are not clearly identified for high noise intensity (10%

and 15%). This may be explained by the use of modal normalization constants determined in the

healthy state to construct the flexibility matrix for the damaged condition. As damage levels

increase, these values tends to move away from each other, leading to a loss in the approach

capacity, until a point in which this consideration is no longer valid. However, this criterion is

satisfactory for most values of interest.

Fig. 14 Case 3 - Impulsive vibration - Noise 5%

Table 2 Localization comparison: impulsive vibration

Noise
Damage

5% 10% 15% 20%

0%

Case 1 X X X X

Case 2 X X X X

Case 3 X X X X

2.5%

Case 1 + X X X

Case 2 + X X X

Case 3 X X X X

5%

Case 1 X X X +

Case 2 + X X X

Case 3 + X X +

10%

Case 1 + + X X

Case 2 ◊ + X X

Case 3 + X X X

15%

Case 1 + X X +

Case 2 ◊ ◊ + ◊

Case 3 X X X X
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5. Conclusions

In this paper, a vibration based damage detection approach that employs the so-called damage

locating vector (DLV) method was described. This is a very efficient flexibility-based methodology

which has the main advantage that it can be constructed by truncated modes at sensors locations.

However, for the important output-only system identification procedures, the construction of the

flexibility matrix is not an easy task. To circumvent the difficulty, vibration tests of the structure

with additional known masses at sensor locations have been recently proposed, approach that is also

discussed in the paper.

It is shown that damage locating vectors may be obtained in an alternative manner, which consists

of replacing the original singular value decomposition by a simple eigenproblem. Thus, DLVs can

be found as the eigenvectors that cover the null-space of the matrix formed by the difference

flexibility matrix pre-multiplied by its transpose.

A simulation study of a continuous Warren truss structure with a set of limited measurement

sensors was conducted. In order to assess the DLV performance under different damage location

and intensity and, mainly, in presence of measurement noise, a parametric study was carried out.

Although it is recognized that the final validation of the method must necessarily be given by

successful damage identification using field data from real structures, the numerical simulation

presented provides an indication of the expected performance of the approach in field applications.

This is an important step to evaluate the global feasibility of the approach, such as its accuracy and

minimum monitoring instrumentation requirements.
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