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Abstract. Static response of an elastic beam on a two-parameter tensionless foundation is investigated
by assuming that the beam is symmetrically subjected to a uniformly distributed load and concentrated
edge loads. Governing equations of the problem are obtained and solved by pointing out that a
concentrated edge foundation reaction in addition to a continuous foundation reaction along the beam axis
in the case of complete contact and a discontinuity in the foundation reactions in the case of partial
contact come into being as a direct result of the two-parameter foundation model. The numerical solution
of the complete contact problem is straightforward. However, it is shown that the problem displays a
highly non-linear character when the beam lifts off from the foundation. Numerical treatment of the
governing equations is accomplished by adopting an iterative process to establish the contact length.
Results are presented in figures to demonstrate the linear and non-linear behavior of the beam-foundation
system for various values of the parameters of the problem comparatively.
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1. Introduction

The response of elastic beams resting on an elastic foundation is a structural engineering problem

of theoretical and practical interest. Since the soil exhibits a very complex behavior, its response is

modeled in various ways in the analysis of structural elements on soil, as given, e.g., by Kerr

(1964). The simplest representation has been given by Winkler assuming that the pressure exerted at

a specific point by the soil is proportional to the displacement of the soil at the same point. A

Winkler model can be considered as a system of closely spaced independent and unconnected linear

springs of stiffness K. This single parameter model has been the object of some criticism because of

the discontinuities in the displacement of the foundation surface between its loaded and unloaded

parts and because of the assumption that the foundation reacts not only in compression but also in
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tension, which is questionable in many practical situations.

Because of the absence of interaction between adjacent springs in a Winkler foundation, the

foundation surface outside the loading area does not contribute to the foundation response. The

model fails to reproduce the characteristics of a continuous medium. This shortcoming is eliminated

by using a two-parameter model such as the Pasternak or Wieghardt foundation models. These

models each can be considered as a system of closely spaced linear springs of a stiffness K coupled

to each other with elements which transmit a shear force proportional to the slope of the foundation

surface having a shear stiffness G or a membrane having a tensile force G on the linear springs

(Kerr 1964). The second parameter of the foundation represents shear behavior of the foundation.

The two-parameter model produces two types of foundation reaction. One of them is a distributed

reaction under the beam due to these two stiffnesses. The second one is a concentrated reaction at

the point where a discontinuity of the slope of the foundation comes into being.

Numerous linear studies for beams resting on a two-parameter foundation can be found. Nogami

and O’Neill (1985) performed a study dealing with beam on a two-parameter foundation and Ylinen

and Mikkola (1967) investigated a beam on this kind of foundation by taking into account the effect

of shear on the curvature of the beam. They pointed out that a concentrated foundation reaction

comes into being at the points where the slope of the foundation displacement has a discontinuity as

is the case at the end points of the beam and where distribution of the shearing force has a

discontinuity, when the effect of shear force on the deformation is taken into account. Buckling of a

beam on a two-parameter elastic foundation is studied by Smith (1969). Razaqpur and Shah (1991)

derived a new finite element and solved a continuous beam having supports at its two ends and a

free-free beam. In the later example two cases are considered. Firstly, the foundation does not

extend beyond the ends of the beam by avoiding the free end conditions partially. Secondly, the

foundation is assumed to be of infinite extent, where the shear force at the ends is assumed to be

proportional with the displacement at the same point, but with a different spring constant. Gülkan

and Alemdar (1999) obtained analytical expressions for the shape functions of a beam supported by

a two-parameter foundation and compared them with their conventional counterparts. A similar

study is carried out by Morfidis and Avamidis (2002) by deriving a generalized beam element on a

two-parameter elastic foundation. Eisenberger and Bielak (1992) investigated finite beams supported

by a infinite two-parameter elastic foundation.

These studies are extended to vibration and buckling problems of beams. Narasimba (1973) and

Matsunaga (1999) investigated buckling of beam on a two-parameter elastic foundation. Various

studies can be found dealing with vibration of Timoshenko beams given by Wang and Stephens

(1977), Wang and Gagnon (1978), Filipich and Rosales (1988), Yokoyama (1991), De Rosa (1995)

and El-Mously (1999). Further studies are carried out by Rade  (1970), Celep (1984), Franciosi

and Masi (1993), Onu (2000), Filipich and Rosales (2002), Rao (2003) and Mallik, Chandra and

Singh (2006). Recently, Çatal (2006) investigated free vibrations of a simply supported beam

subjected to an axial force on an elastic foundation. In these studies the problems are analyzed by

assuming that the foundation reacts in tension as well as in compression. Generally the numerical

examples assume that either the beam has supports at its two ends or the foundation is defined

under the beam only and does not extend beyond the end of the beam. In these ways generally

two types of simplification are accomplished. Firstly, the governing equation of the problem is

solved under the beam only and the differential equation for the foundation beyond the ends of the

beam is omitted. Secondly, the complexity of boundary conditions of the beam ends is reduced

(Onu 2000, Rao 2003). However, Kerr and Coffin (1991) pointed out that the omission of solution
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for base layer beyond the point of separation is a major error in the case of the completely free

beam.

Numerous solutions of problems can be found involving beams on Winkler foundation by

assuming that the foundation is attached to the beam. However, lift-off problems are much more

plausible to avoid tension reactions from the foundation (Weisman 1970). When separation

develops, analysis involving the tensionless Winkler foundation displays a non-linear character and

gets complicated, due to the difficulty that the extent of the contact region is not known in advance.

As a result of this difficulty, only a relatively limited number of studies dealing with the tensionless

Winkler foundation are published. Various lift-off problems involving beams resting on a tensionless

Winkler foundation are analyzed by Tsai and Westmann (1967), Weisman (1971), Lin and Adams

(1987), Celep, Malaika and Abu-Hussein (1989), Celep (1990), Kerr and Soicher (1996) and Zhang

and Murphy (2004).

A literature survey has revealed that only a limited number of studies have been done dealing the

two-parameter tensionless foundation. The major difficulty is the definition of the contact region

and the formulation of the corresponding boundary conditions. By using a variational approach,

Kerr (1976) derived the proper boundary conditions at the ends of the beam and the matching

conditions at the point where the contact and lift-off regions are separated. Furthermore, he pointed

out that intuitive approaches in the formulation of the boundary conditions may lead to incorrect

formulations by giving specific examples. Kerr and Coffin (1991) studied beams subjected to

symmetrically distributed load and a concentrated load at the middle. In addition to the analyses of

the problem, the authors pointed out two incorrectly formulated analyses. Ço kun (2003) discussed

the response of a beam of finite length subjected to a harmonic load, and Güler (2004) studied a

circular plate under uniformly distributed load and central concentrated load on a two-parameter

tensionless foundation. Nonlinear bending behavior of a Reissner-Mindlin free plate on this type of

foundation is investigated by Shen and Yu (2004). They formulated the lift-off condition of a plate

from a Pasternak-type foundation by stating that the lift-off develops when the displacement is

negative. As it will be discussed below, this requirement holds only for Winkler type of foundations

and it is not true for a two-parameter type foundation. Furthermore, Shen and Yu (2004) do not

consider the concentrated foundation reaction due to the membrane stiffness of the foundation as

well. Celep and Demir (2005) dealt with a circular rigid ring beam on a tensionless foundation

surface.

The aim of the present paper is to study the behavior of an elastic beam on the two-parameter

tensionless foundation under uniformly distributed load and two edge loads. The study is carried

out by considering the symmetry of the problem. The analysis is done in two separate parts; first

assuming that complete contact exists between the beam and the foundation, and second

assuming that a partial contact develops and the beam lifts off the foundation. Special attention is

paid to the boundary and matching conditions and global force equilibrium. Numerical results are

presented to verify the solution procedure. It is noted that iterations are required in the numerical

solutions in case of partial contact, because the lift-off and the contact regions are not known in

advance. They depend on the parameters of the problem, and the governing equation of the

problem is highly non-linear. The paper gives various parametric numerical results and discuses

them comparatively. The analysis presented is equally valid whether the foundation reacts in

compression or in tension.
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2. Statement of the problem

Consider a completely free elastic beam of length L and bending stiffness EI, on a two-parameter

elastic foundation having stiffnesses K and G, as Fig. 1 shows. The figure can be seen as a

combined footing which supports two columns. The beam is assumed to be subjected to two

concentrated loads R applied at its two ends and a uniformly distributed load Q. Since the geometry

and the loading of the problem is symmetric with respect to the middle axis, all the parameters of

the problem reflect the same symmetry, including the vertical displacement of the beam and that of

the elastic foundation. For the two-parameter foundation, it is assumed that foundation reaction

Pf (X) and the foundation displacement Ws(X) are related to each other according to

(1)

where the prime denotes differentiation with respect to X. As the inspection of Eq. (1) reveals, the

two-parameter foundation can be seen as closely spaced linear springs of stiffness K which are

connected to each other by a membrane having a surface tension G. Furthermore, Eq. (1) displays

that the foundation reaction consists of two parts. The first one is related to the displacement

directly, i.e., vertical reactions of the linear springs. The second part is proportional to the second

derivative of the surface displacement, i.e., the vertical component of the surface tension.

2.1 Complete contact

Assuming the complete contact between the beam and the foundation, the displacement of the

foundation is expressed in two regions. The first one is the free surface of the foundation, where no

pressure is exerted on the foundation and its displacement  is controlled by the equation

Pf X( ) Pk X( ) Pg X( )+ KWs X( ) GWs
″ X( )–= =

Ws X( )

Fig. 1 Elastic beam on a two-parameter foundation having complete contact
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(2)

In formation of the governing equations the symmetry of the problem with respect to the middle

axis of the beam is used. The second region corresponds to the displacement of the foundation

under the beam and is governed by the equation assuming the validity of beam bending theory

(3)

where the foundation displacement and the beam displacement are equal, i.e., . By

introducing the following non-dimensional parameters

(4)

the two governing equations of the problem (2, 3) can be expressed as

  (5a,b)

where

The solution of the first Eq. (5a) can be expressed as

(6)

where the condition  is used to eliminate the second integration constant. The

solution of the second Eq. (5b) assumes different forms depending on the value of αo.

(i) when , then

(7a)

where

(ii) when , then

(7b)

where

GWs
″ KWs– 0 for X L/2≥=

EIWb

iv
GWb

″– KWb+ Q for 0 X L/2≤ ≤=

Ws X( ) Wb X( )=

x X/L ws x( ) Ws X( )/L wb x( ) Wb X( )/L===

g GL
2
/EI= k KL

4
/EI= r RL

2
/EI q QL

3
/EI==

ws″ λ
2
ws– 0 wb

iv
4αoβo

2
wb″– 4βo

4
wb+ q==

4βo

4
k 4αoβo

2
g λ

2
βo

2
/αo k/g= = = =

ws x( ) A1e
λx–

=

ws x ∞→( ) 0=

αo 1<

wb x( ) B1sinβxsinhαx B2cosβxcoshαx q/ 4βo

4
( )+ +=

α βo 1 αo+ β βo 1 αo–= =

αo 1>

wb x( ) B1coshγx B2coshδx q/ 4βo

4
( )+ +=

γ βo 2 αo αo

2
1–+( ) δ βo 2 αo αo

2
1––( )= =
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In formation of these solutions, the symmetry condition of the problem with respect to the middle

axis of the beam is used. It is possible to express a separate solution  for  as well;

however, sufficiently accurate numerical results can be obtained by just using one the above

solutions for . For this reason the solution for  is not presented here. The

solutions (6) and (7) have three integration constants A1, B1 and B2 to be determined from the

boundary conditions. Since the symmetry of the problem is already used in the derivations of these

solutions, the two remaining boundary conditions are the continuity of the deflections and one of

the free end conditions of the beam,

(8)

As Fig. 1 shows, the slope of the deflection of the foundation displays discontinuity at the ends of

the beam, although the displacement itself is continuous. A concentrated foundation reaction load

comes into being due to this discontinuity

(9)

or in a non-dimensional form

(10)

The third boundary condition is the force equilibrium at the end of the beam between the

foundation concentrated reaction, the external edge load and the shearing force of the beam

(11)

The distributed foundation reaction  given in Eq. (1) can be expressed as two non-

dimensional parts as well,

(12)

In the present formulation, non-dimensionlization is carried out for the parameters of the problem,

so that a wide range of numerical values of the parameters can be covered in the numerical

evaluation. Having applied the boundary conditions (8) and (11), the following system of algebraic

equations are obtained

(13)

where

(i) when , than

wb x( ) αo 1=

αo 1 0±= αo 1=

ws 1/2( ) wb 1/2( ) wb″ 1/2( ) 0= =

Pc G Ws′ L 0–( ) Ws′ L 0+( )–[ ]=

pc Pc L
2
/EI 4αoβo

2
wb′ 1/2( ) ws′ 1/2( )–[ ]= =

4αoβo

2
wb′ 1/2( ) ws′ 1/2( )–[ ] wb″′ 1/2( ) r+=

pf x( )

pf x( ) Pf X( )L
3
/EI pk x( ) pg x( )+= =

pk Pk L
3
/EI 4βo

4
wb pg PgL

3
/EI 4αoβo

4
wb″–= == =

a11  a12  a13

a21  a22  a23

a31  a32  a33

B1

B2

A1

q– / 4βo

4
( )

0

r–

=

αo 1<

a11 β/2sin sinhα/2 a12 cosβ/2coshα/2 a13= e
λ/2–

–= =
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(ii) when , than

By considering the entire beam the global force equilibrium can be written as

(14)

where

or in the non-dimensional form

(15)

where

In the global equilibrium Eqs. (14), (15) pc denotes the concentrated foundation reaction at the

ends of the beam; Pks and pks, the sum of the foundation reaction exerted by the linear springs and

its non-dimensional form and Pgs and pgs, the sum of the foundation reaction applied by the vertical

component of the surface tension and its non-dimensional form. As seen in Eq. (15), the global

equilibrium of forces can be satisfied only by including the edge force pc. It is strictly not

admissible to neglect it, as it is done by various authors (Shen and Yu 2004, Onu 2000). As it will

be discussed below, the edge force will not develop when the end of the beam lifts off the

foundation. This fact indicates that the definition of the lift-off condition is of prime importance for

satisfaction of global force equilibrium.

The foundation pressure  is proportional to the displacement and displays a positive

variation under the beam, when the beam penetrates into the foundation. It has a maximum value

 at the two ends of the beam and a minimum value  under the middle of

a21 α
2

β
2

–( ) β/2sin sinhα/2 2αβcosβ/2coshα/2+=

a22 α
2

β
2

+( )cosβ/2coshα/2 2αβ β/2sin sinhα/2 a23– 0= =

a31 β 3α
2

β
2

– 4αoβo

2
–( )cosβ/2sinhα/2 α α

2
3β

2
– 4αoβo

2
–( ) β/2sin coshα/2+=

a32 β β
2

3α
2

– 4αoβo

2
+( )sinβ/2coshα/2 α α

2
3β

2
– 4αoβo

2
–( )cosβ/2sinhα/2+=

a33 4αoβo

2
λe

λ/2–

–=

αo 1>
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–==
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2
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2
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2
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2
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the beam. However, the foundation pressure  is proportional to the second derivative of the

displacement and displays a negative variation. It is  at the two ends of the beam

due to the free boundary condition of the beam (8). Thus, the total foundation reaction  gets

its smallest value under the middle of the beam

(16)

Numerical solution of the problem can be carried out in a straightforward manner by using the

equations above, where complete contact is assumed between the beam and the foundation surface.

This case is possible only when the foundation pressure is positive  or for the present

problem . However, beyond the case , complete contact is lost, and a

partial lift-off appears in the middle beam.

2.2 Partial contact

Fig. 2 shows the same beam on the two-parameter foundation. The beam has a lift-off region for

 and a contact region for . The displacement of the beam and the foundation

are denoted as  and , =

 and , respectively. The corresponding governing equations of these

displacements can be expressed as follows

(17)

where the above defined non-dimensional parameters are used

pg x( )

pg x 1/2±=( ) 0=

pf x( )

pf x 0=( ) 4β o

4
ws x 0=( ) 4αoβ o

2
ws″ x 0=( )–=

pk x( ) 0≥

pk x 0=( ) 0≥ pk x 0=( ) 0≥

A– X A≤ ≤ A X L/2≤ ≤

Wb1 A– X A≤ ≤( ), Wb2 A X L/2≤ ≤( ) Ws1 A– X A≤ ≤( ) Ws A X L/2≤ ≤( )

Wb2 A X L/2≤ ≤( ) Ws2 X L/2≥( )

wb1

iv
q, wb2

iv
4αoβo

2
wb2″– 4βo

4
wb2+ q= =

ws1″ λ
2
ws1– 0= ws2″ λ

2
ws2– 0=

Fig. 2 Elastic beam on a two-parameter foundation having partial contact
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The following solutions are obtained for the displacement functions

(18)

(i) when , then

(19a)

(ii) when , then

(19b)

where the condition  and the symmetry property of the problem are used. The most

critical step in the analysis of contact problems dealing with a two-parameter tensionless foundation

is the statement of the boundary conditions. The solutions (18) and (19) have eight integration

constants  and D1 to be determined on the basis of the boundary conditions.

The ninth unknown is the coordinate of the point which separates the contact and the lift-off regions,

i.e., A = aL. These nine constants require the nine boundary or continuity conditions

(20a~i)

The above boundary conditions require continuity of the displacements and their slope at the

separation point (x = a) (Eqs. (20b,c,d,i)) and that of the shearing force and bending moment of the

beam at the separation section (x = a) (Eqs. (20e,g)) and continuity of the displacements at the end

of the beam ( ) (Eq. (20a)) and the moment-free end condition (Eq. (20f)). Force

equilibrium at the end of the beam between the foundation concentrated force, the edge load and the

shearing force of the beam is another condition to be satisfied (Eq. (20h)). Since the lift-off region

develops at the middle of the beam, not at the end, a concentrated reaction exists at the end of the

beam as in the complete contact case. This once more indicates the importance of the definition of

the contact condition. At the separation point the slopes of the beam and the foundation are equal. It

is not correct to require that the distributed foundation reaction should be zero at the separation

point. The nine boundary conditions (20) lead to the following system of nine linear algebraic

equations for the eight unknowns  and D1

(21)

where the non-zero terms of the matrix aij and the vector ci are

ws1 x( ) Ws1 X( )/L ws2 x( ) Ws2 X( )/L==
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(i) when , then

(ii) when , then

αo 1<
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In case of partial contact, the sum of the foundation reactions to be used in the global force

equilibrium (15) yields

(22)

where the integration will be carried along the contact region .

The governing equations of the problem (13) where the complete contact is maintained are linear

and can be solved numerically in a straightforward manner without requiring any iteration.

However, in case of the partial contact, it is worth noting the following points:

a. The governing Eq. (21) of this case consist of nine linear equations having eight unknowns

 and D1. In fact there is one additional unknown to be determined, i.e.,

the extent of the contact region a which appears in the coefficients of the matrix in a highly

non-linear manner by to virtue of unilateral constraints. It requires an iterative process for the

numerical solution.

b. A concentrated foundation reaction force comes into being at the end of the beam due to the

discontinuity in the slope of the foundation displacement at the end of the beam (x = ±1/2)

independent of the lift-off. However at the separation points of the beam and the foundation

surface (x = ±a), there is no concentrated reaction force due to the continuity of the slope of the

foundation surface as stated in Eq. (20d).

c. The distributed foundation reaction

(23)

consists of two parts as seen, and it vanishes obviously for the free surface of the foundation

a14 sinhδ/2 a17 e
λ/2–
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4
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 and  due to Eq. (5a). Since the foundation displacement is continuous at

the separation point, so is the first part of the foundation reaction pk in Eq. (23). However, the

second derivative of the displacement of the beam is continuous at the separation point

Eq. (20e), whereas the second derivative of the displacement of the foundation is not continuous

which causes a discontinuity of the second part of the foundation reaction pg and consequently

in the total foundation reaction pf as well. This result will be discussed further in the numerical

solutions.

3. Numerical solutions and discussion

Various numerical examples are solved and their results are presented in figures in order to

illustrate the effects of the parameters of the problem on the behavior of the beam. Fig. 3 shows

a– x +a< < x 1/2>

Fig. 3 (a), (b), (c), (d) and (e) Variation of the beam and foundation displacement wb, ws; foundation reactions
pk, pg, pf and the sum of the foundation reactions pks, pgs, pfs for q = 0, r = 10, k = 300 and various
values of g
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variations of the displacement of the beam and the foundation under the beam =

 and the foundation beyond the end of the beam , the foundation

reactions  and  for various values of the foundation stiffness g

for  and . Since all of the foundation reaction is compression

 for the numerical values of the parameters used in Fig. 3, complete contact

develops between the beam and the foundation, i.e., = . As Fig. 3

shows, an increase in the stiffness g causes a decrease in the displacements  and  near

the free end of the beam, whereas the displacements display the opposite trend under the middle of

the beam and beyond the edge of the beam.

The stiffness g represents the tension of the membrane in the foundation model. When the

stiffness of the membrane g decreases, the effect of the stiffness of the spring k becomes evident.

Consequently, the behavior of the two-parameter foundation resembles a Winkler model and a

discontinuity of the foundation displacement starts to appear at the edge of the beam, as Fig. 3(a)

shows. However, when g gets larger, the membrane behavior of the foundation becomes effective

wb 0 x 0.5≤ ≤( )

ws 0 x 0.5≤ ≤( ) ws 0.5 x 1.0≤ ≤( )

pk x( ) pg x( ), pf x( ) pk x( ) pg x( )+=

q 0= r 10=, k 300=

pf 0 x 0.5≤ ≤( ) 0≥

wb 0 x 0.5≤ ≤( ) ws 0 x 0.5≤ ≤( )

wb x( ) ws x( )

Fig. 4 (a), (b), (c), (d) and (e) Variation of the beam and foundation displacement wb, ws; foundation reactions
pk, pg, pf and the sum of the foundation reactions pks, pgs, pfs for q = 0, r = 10, g = 10 and various
values of k
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and its cooperation with the springs becomes pronounced. Consequently a smooth variation of

displacement extending beyond of the beam edge appears. The foundation reaction  displays a

similar variation. Furthermore, an increase in the stiffness g produces a decrease in the total

foundation reaction , and a corresponding increase in the foundation reaction . When

complete contact is maintained, the problem is linear and all displacements and foundation reactions

depend on the loads r and q linearly. Fig. 3(e) shows variations of the concentrated foundation

reaction pc and the sum of the distributed reactions of the foundation pks and pgs for various values

of the stiffness g. The foundation reactions pc and pgs come into being due to the stiffness g.

Consequently they get larger, as the stiffness g increases. Of course, then the foundation reactions

decrease to satisfy global force equilibrium (15), i.e., . Fig. 4 shows

variations of the displacement of the beam and the foundation under the beam =

 and the foundation beyond the beam ends , as well as variations

of the foundation reactions ,  and  for various values of the foundation stiffness k

pk x( )

pf x( ) pg x( )

2pc pks pgs+ + 2r q+ 20= =

wb 0 x 0.5≤ ≤( )

ws 0 x 0.5≤ ≤( ) ws 0.5 x 1.0≤ ≤( )

pk x( ) pg x( ) pf x( )

Fig. 5 (a), (b), (c), (d) and (e) Variation of the beam and foundation displacement wb, ws; foundation reactions
pk, pg, pf and the sum of the foundation reactions pks, pgs, pfs for q = 20, r = 0, k = 300 and various
values of g
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for  and g = 10. Since the variation of the total foundation reaction under the beam is

 is positive for the numerical values adopted, complete contact of the beam develops here as

well. As seen, increase in the stiffness k causes uniform decrease in the displacements  and

 and in the foundation reaction , the latter offset by increase in the foundation reaction

. Fig. 4(e) shows the variations of the foundation reactions pc, pks and pgs for various values of

the stiffness g. Since the foundation reactions pc and pgs directly depend on the stiffness g and

indirectly on k, they display a smooth variation in Fig. 4(e). Since ,

the foundation reaction pg vanishes under the free end of the beam, i.e., . As Fig. 3

and Fig. 4 show, the foundation pressure pk displays positive variation, whereas the foundation

pressure pg displays negative variation, due to negative values of the second derivative of the

displacement. Fig. 5 and Fig. 6 show the corresponding results for the beam subjected to a

distributed load. As it is seen, the sum of the foundation reactions pk and pg both display positive

variations.

In the above figures, complete contact has been established due to the numerical combination of

q 0 r 10=,=

pf x( )

wb x( )

ws x( ) pk x( )

pg x( )

wb″ x 0.5=( ) ws″ x 0.5=( ) 0= =

pg x 0.5=( ) 0=

Fig. 6 (a), (b), (c), (d) and (e) Variation of the beam and foundation displacement wb, ws; foundation reactions
pk, pg, pf and the sum of the foundation reactions pks, pgs, pfs for q = 20, r = 0, g = 10 and various
values of k
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Fig. 7 (a) and (b) Variation of the contact length a as a function of the foundation stiffnesses k and g for q = 0

Fig. 8 (a), (b), (c), (d) and (e) Variation of the beam and foundation displacement wb, ws; foundation reactions
pk, pg, pf and the sum of the foundation reactions pks, pgs, pfs for q = 0, r = 10, k = 1000 and various
values of g
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the parameters of the beam and the foundation, i.e.,  for .

Fig. 3(d) shows that the total foundation reaction approaches zero at the middle of the beam, i.e.,

, for larger values of g. Since a negative value, i.e., tensile reaction for 

cannot be supported by the foundation, a lift-off region enters the picture, as it is shown in Fig. 2.

In this case non-linearity arises due to the fact that the foundation cannot support tension and the

beam lifts off the foundation. Fig. 7 shows the lift-off length a for various values of the foundation

stiffnesses k and g for a beam subjected to two end loads r, but no uniformly distributed load q.

When the external loads increase linearly, the location of the point of separation of the beam and

the foundation does not change, as indicated by Kerr and Soicher (1996). As expected, the beam

lifts off the foundation for large values of the foundation stiffnesses k and g. Fig. 8 and Fig. 9 show

variations of the displacement of the beam and the foundation under the beam  and

the foundation beyond the end of the beam , and the foundation reactions

 and  for various values of the foundation stiffness g and k, respectively, for q = 0

pf x( ) pk x( ) pg x( )+= 0≥ 0 x 0.5≤ ≤

pf x 0=( ) 0→ pf x 0=( )

wb 0 x 0.5≤ ≤( )

ws 0.5 x 1.0≤ ≤( )

pk x( ) pg x( ), pf x( )

Fig. 9 (a), (b), (c), (d) and (e) Variation of the beam and foundation displacement wb, ws; foundation reactions
pk, pg, pf and the sum of the foundation reactions pks, pgs, pfs for q = 0, r = 10, g = 30 and various
values of k
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and r = 10. These two figures correspond to the lift-off case. The lift-off region develops where the

total foundation reaction  vanishes. The corresponding contact length a can be found

in Fig. 7. As explained, the problem becomes highly non-linear and its numerical solution requires

iteration. The displacements of the beam and the foundation as well as their derivatives are equal at

the point which separates the contact and lift-off regions, as stated in Eqs. (20d) and (20i). This

result complicates the numerical procedure and increases the number of iterations. Since there is not

any condition which requires the continuity of the second derivative of the foundation displacement

at the separation point, i.e., x = a, a discontinuity appears at this point. This discontinuity appears in

the foundation reaction  and consequently in  as well, as seen in Figs. 8(c), 8(d), 9(c)

and 9(d). These results show once more that the assumption of zero contact reaction at the

separation point is not correct (Kerr and Coffin 1991). Due to the nature of the problem, the

difference between the displacements of the beam and the foundation is very small in the lift-off

region.

4. Conclusions

The paper presents an analysis for the lift-off problem of a beam subjected to concentrated end

loads and uniformly distributed load supported by a two-parameter foundation. Special attention is

paid to the conditions which define the onset of the lift-off and to the boundary conditions in cases

of either complete or partial contact between the beam and the foundation, including the foundation

reaction at the end of the beam and the discontinuity of the foundation pressure at the contact point.

The formulation and the numerical results presented contribute to the understanding of the

interaction between the completely free beam and the two-parameter tensionless foundation. The

problem is linear when complete contact between the beam and the foundation exists. However, it is

highly non-linear when it is assumed that the foundation cannot support tension and part of the

beam lifts off the foundation. The numerical solution is accomplished by using iteration, and

comparative results are presented for various values of the parameters of the problem. The global

vertical force equilibrium is checked for each case as well. From the analyses presented, the

following conclusions can be drawn:

a. Although small displacements for the beam and the foundation are assumed in the problem, the

governing equations of the problem are highly non-linear when the beam lifts off the

foundation. However, when complete contact develops, the problem is linear and its numerical

solution is straightforward.

b. Since the problem is highly non-linear, evaluation of the contact region can be accomplished by

using an iterative procedure in the case of partial contact. Usually numerical iteration requires

an initial estimation of the contact length, so that the iteration can be accomplished easily.

Consequently, it is recommended that the numerical solution should start from the complete

contact case, by gradual changing one of the parameters, so that the partial contact case can be

dealt with relatively easily.

c. When the external loads of any type increase linearly, the displacements of the beam will

increase linearly, the position of the point of separation will not change and the overall

equilibrium between the external loads and the foundation reaction will be established.

d. In a two-parameter foundation model, the separation point is to be determined by requiring the

continuity of the displacement and the slope of the displacement of both the beam and the

pf 0 x a≤ ≤( )

pg x( ) pf x( )
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foundation. However, a discontinuity of the second derivative of the foundation displacement

appears at this point, which causes a discontinuity in the foundation reactions as well. On the

other hand, the second derivative of the displacement of the beam displays continuity, provided

that there is no concentrated external moment (there is no such moment in the present problem).

e. When complete contact is established, an edge reaction comes into being a result of

discontinuity of the slope of the foundation displacement. In the presented formulation, the

reaction is included in the governing equations of the problem as a boundary condition.

f. As it is shown, the free end condition of the beam depends on whether the contact is established

or not and an intuitive approach in the formulation of the boundary conditions may lead to

incorrect formulation.
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