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Multi-stage design procedure for modal controllers of 
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Abstract. The modal controller of single-input system cannot stabilize the defective system with
positive real part of repeated eigenvalues, because some of the generalized modes are uncontrollable. In
order to stabilize the uncontrollable modes with positive real part of eigenvalues, the multi-input system
should be introduced. This paper presents a recursive procedure for designing the feedback controller of
the multi-input system with defective repeated eigenvalues. For a nearly defective system, we first
transform it into a defective one, and apply the same method to manage. The proposed methods are based
on the modal coordinate equations, to avoid the tedious mathematic manipulation. As an application of
the presented procedure, two numerical examples are given at end of the paper.

Keywords: design of the feedback controller; multiple-input systems; recursive design procedure;
defective systems; nearly defective systems.

1. Introduction 

The vibration control theory for non-defective system which has the complete eigenvectors to

span the eigenspace has been well developed, and many important achievements have been

obtained. For example, the conditions that the closed-loop eigenvectors have to satisfy to obtain the

output feedback gain matrices and to enable the desired eigenvalue placements have been discussed

(Kimura 1977). The techniques for synthesis of output feedback gains have been developed by

(Srinathkumar 1978, Maghami and Juang 1990, Andry et al. 1983). Dissipative output feedback

gain matrices were used to assign eigenproblem (Maghami and Gupta 1997). The measures of

controllability and observability of the repeated modes are discussed (Liu et al. 1994), but it does

not deal with the corresponding design of the feedback control laws. The standard design methods

for feedback control laws can be found in Meirovitch 1990. Recent papers in this field include the

robust state feedback design (Smagina and Brewer 2000), robust stability and performance

(Ugrinovskii and Peterson 2001), and model reduction of uncertain system (Dolgin, and Zeheb

2005).

In actual engineering problems, such as general damping systems, flutter analysis of aeroelasticity,

and so on, the system called defective system (Appendix A) does not have a set of complete

eigenvectors to span the eigenspace (Shi and Zhu 1989, Chen and Xu 1992, Xu and Chen 1994).
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The defective characteristics of the dynamic analysis of mobility and graspability of general

manipulation systems, and the consistent task specification for manipulation systems with general

kinematics are discussed (Prattichizzo and Bicchi 1997, 1998). Thus, it is desirable to develop the

control theory for the defective systems. Recently, the modal optimal control procedure for nearly

defective systems (Appendix B), and the quantitative measurements of modal controllability and

observability of defective and nearly defective systems were developed (Chen et al. 2001, Chen

et al. 2001).

The defective systems differ from nondefective ones in that the state matrix A cannot be

diagonalized, thus the standard methods for designing the feedback controllers cannot be used to

deal with the modal control problems of the defective and nearly defective systems (Appendix A,

B). For this reason, an approach for designing modal controllers for the defective and nearly

defective system was developed, but the procedure for determining the gain vector is limited to the

single-input system (Chen 2003). However, the modal controller of single-input system cannot

stabilize the defective system with repeated eigenvalues possessing positive real part, because some

of the generalized modes are uncontrollable. Therefore, It is necessary to introduce the multi-input

system and corresponding procedure to determine the feedback gain matrix of the multi-input

system. To this end, this study presents a multi-stage procedure to determine the gain matrix of the

multi-input systems. The proposed method is based on the modal control equation to avoid the

tedious mathematic manipulation. For the nearly defective system, we first transform it into a

defective one, and then use the same way to proceed. The theory is demonstrated by two numerical

examples to show the validity.

2. Feedback control design of the single-input systems with defective eigenvalues

Consider the single-input control system indicated by the following state equation

(1)

A is the state matrix.  is the state vector,  is the input,  is called the

actuator distribution matrix, indicating the locations of control forces.

For the sake of simplicity, In Eq. (1), we assumed that the n eigenvalues of A are defective

repeated ones, i.e., , . The right and left modal matrices are

expressed as Um and Vm, and ξm is the modal coordinate corresponding to the repeated eigenvalues.

Using the modal transformation, we obtain the modal control equations

(2)

where

 (3)

If the  repeated eigenvalues are defective, the standard method for determining gain vector

cannot be used for this special case (Meirovitch 1990).

If the direct state feedback control is used, the modal control force is given as follows

x· t( ) Ax t( ) bz t( )+=

x t( ) R
n 1×∈ z t( ) b R

n 1×∈

m n= λ1 λ2 … λm λ= = = =

ξ
·
m Jmξm Vm

H
bzm t( )+ Jmξm pmzm t( )+= =

pm Vm

H
b=

m =n( )
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(4)

where  is the gain vector.

Substituting Eq. (4) into Eq. (2), yields

 (5)

Eq. (5) indicates that the effect of the input variables given by Eq. (4) is to change the Jordan

matrix Jm into a new matrix Hm, that is

 (6)

Denote the assigned new distinct eigenvalues as  and corresponding

eigenvectors as wj, we have the following eigenvalue problem

, (7)

Since , the eigen-determinant of the matrix is zero

(8)

Considering , we have

(9)

After introduction of Eq. (9) into Eq. (8), we have

, (10)

Expanding Eq. (10), yields

, (11)

If , we have

,  (12)

pmzm t( ) Vm

H
bgm

T
ξm=

gm GM1 GM2 … GMm, , ,[ ]T=

ξ
·
m Jm pmgm

T
+( )ξm=

Hm Jm pmgm

T
+=

ρj j 1 2 … m, , ,=( )

Jm pmgm

T
+( )wj ρjwj= j 1 2 … m, , ,=( )

wj 0≠

det Jm pmgm

T
ρjI–+( ) 0=

pm p1 p2 … pm, , ,[ ]T=

pmgm

T

p1GM1  p1GM2  …  p1GMm

p2GM1 p2GM2 …  p2GMm

    

pmGM1  pmGM2  …  pmGMm

=

… …… …

det

λ ρj– p+
1
GM1  1 p+ 1GM2  …  p1GMm

p2GM1 λ ρj– p+
2
GM2 …  p2GMm

    

pmGM1  pmGM2  …  λ ρj– p+ mGMm

0=

… … … …

j 1 2 … m, , ,=( )

λ ρj–( )m 1 1–( )l
pl s+ GMs

λ ρj–( )l 1+
--------------------------

s 1=

m

∑
l 0=

m 1–

∑+ 0= j 1 2 … m, , ,=( )

ρj λ≠

1–( )l
pl s+ GMs

λ ρj–( )l 1+
--------------------------

s 1=

m

∑
l 0=

m 1–

∑– 1= j 1 2 … m, , ,=( )
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In order to obtain a convenient form, we introduce the following notations

 (13)

where

, (14)

and

(15)

(16)

With above notations, and considering the gain vector , we can

write Eq. (12) in a compact matrix form

(17)

Hence, the gain vector gm can be obtained by

(18)

This is the solution for the gain vector of the defective systems with repeated eigenvalues. The

control law of the defective system is given by

(19)

Using the modal transformation

(20)

one has

(21)

thus, Eq. (19) becomes

 (22)

F

f1

f2

fm

=

…

fj
1–( )0

ρj λ–( )
------------------

1–( )1

ρj λ–( )2
-------------------- … 1–( )m 1–

ρj λ–( )m
---------------------, , ,= j 1 2 … m, , ,=( )
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⎧ ⎪ ⎨ ⎪ ⎩

gm GM1 GM2 … GMm, , ,[ ]T=

FPgm e=

gm P
1–
F

1–
e=

z t( ) gm

T
ξm=

x t( ) Umξm t( )=

ξm t( ) Vm

H
x t( )=

z t( ) gm

T
Vm

H
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When the eigenvalues  are distinct, the gain vector is denoted by = ,

, which can be computed by

(23)

where  are assigned new eigenvalues, and are eigenvalues

associated with controllable modes. The eigenvalue diagonal matrix Λd is changed into Hd

 (24)

where . (Meirovitch 1990).

3. Recursive design procedure for modal controller of multi-input defective systems

The modal controller of single-input system discussed in the above section cannot stabilize the

defective systems with positive real part of the repeated eigenvalues, if the generalized modes are

uncontrollable. In order to stabilize the uncontrollable modes with positive real part of eigenvalues,

the multi-input control system should be introduced. In this section, we deal with the design of the

modal controller of multi-input systems given by state equations of the form

 (25)

where x(t) is the n × 1 state vector, A is the n × n state matrix, B is the n × r input matrix, and z(t)

is the r × 1 input vector.

If the input matrix B has the partitioned form

 (26)

then Eq. (25) can be written as

(27)

If Eq. (27) is compared with Eq. (1), it is evident that each entry  of the input

vector z(t) in Eq. (25) can be generated in the same manner as z(t) in Eq. (1) to determinate the

desired eigenvalue changes.

If  in Eq. (27) are written in the following form

(28)

where gim are the gain vectors associated with the ith stage design.

According to Eq. (17), we can obtain the gain vector for the defective eigenvalues by setting the

elements of gim corresponding to the uncontrollable modes at zero in the following equation

λ1 λ2 … λn, , , gd G[ D1 GD2 …, ,
GDn ]

GDj ρk λj–( )  pj λk λj–( )
k j≠

j 1=

n

∏
k 1=

n

∏= j 1 2 … n, , ,=

ρk k 1 2 … n, , ,=( ) λj j 1 2 … n, , ,=( )

Hd Λd pdgd

T
+=

pd Vd

T
b=

x· t( ) Ax t( ) Bz t( )+=

B b1 b2 … br, , ,[ ]=

x· t( ) Ax t( ) bizi t( )
i 1=

r

∑+=

zi t( ) i 1 2 … r, , ,=( )

zi t( )

zi t( ) gim

T
Vim

H
x t( ),= i 1 2 … r, , ,=( )
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(29)

where Pi is composed by

(30)

and Fij has the form

 (31)

where ρij is used to denote the jth assigned new eigenvalue at the ith stage design.

If the eigenvalues are distinct, the elements of the corresponding gain vector gid can be obtained

by Eq. (23), that is

(32)

where pij are the corresponding elements of pid.

(33)

and

,  (34)

In Eqs. (28), (30), and (33), Vim and Vid are the left modal matrix of the matrix , which is

given by the following recurrence relation

, (35)

where

(36)

(37)

The details of the computations of recursive design procedure for modal controller of multi-input

defective systems are shown in the next section’s numerical examples.

4. Numerical examples

In order to illustrate the applications of the present procedure, two numerical examples of the

defective system are given as follows.
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Example 1.

Consider a system with the state matrix

The control matrix B in Eq. (25) for the multi-input control force vector z(t) is

The eigenvalues of A are

The Jordan form matrix is

This system is defective (Appendix A). By the invariant subspace recursive procedure (Chen et al.

2001), the right and left modal matrices U1 and V1, can be obtained as follows

and

With the singular-value decomposition to obtain the modal controllability (Chen et al. 2001), it

can be seen that the first and third modes of the system are controllable, and the second mode is

uncontrollable.

In order to improve the defective characteristics of the original uncontrolled system, the new

eigenvalues can be assigned as  and the third eigenvalue is unchanged, such that the

system is changed into nondefective one with distinct eigenvalues.

Because the second mode is uncontrollable, the modal control force is given by

 

A
17  0  25–

0  3  0

9  0  13–

=

B
1  1

1  1

1  1

=

λ1 λ2 2.0  λ3, 3.0= = =

J
2  1  0

0  2  0

0  0  3

=

U1

0.857493  0.514496  – 0.000000

0.000000  0.000000  1.000000

0.514496  0.857493  0.000000

=

V1

0.857493  0.514496  – 0.000000

0.000000  0.000000  1.000000

0.514496  0.857493  0.000000

=

ρ1 2–=

p1mz1m t( ) V1m

H
b1g1m

T
ξm=
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where V1m contains only the first 2 columns, . Using Eq. (9), one

has

The eigendeterminate (10) becomes

Expanding this equation, yields

or

If , we have

It follows that the entry GM1 of the gain vector  is

where .

Since the third eigenvalue is unchanged, we can set , then the required control law can

be obtained

It may readily be verified that the state matrix of the close-loop system defined by

g1m GM1 0,[ ]T ξm ξ1 ξ2,[ ]T=,=

p1mg1m

T p1GM1  0

p2GM1  0
=

det
λ1 ρ1– p1GM1+ 1

p2GM1 λ1 ρ1–

0=

λ1 ρ1– p1GM1+( ) λ1 ρ1–( ) p2GM1– 0=

λ1 ρ1–( )2 1
p1GM1

ρ1 λ1–

-----------------–
p2GM1

ρ1 λ1–( )2
-----------------------– 0=

ρ1 λ1≠

p1GM1

ρ1 λ1–

-----------------
p2GM1

ρ1 λ1–( )2
-----------------------+ 1=

g1m GM1 0,[ ]T=

GM1

ρ1 λ1–( )2

p1 ρ1 λ1–( ) p2+

-------------------------------------- 3.109841–= =

ρ1 2–=

g1d 0=

z1 t( ) g1m

T
    g1d

T[ ]V1

H
x t( )= …

2.66667–

0.00000

1.60000–

T

x t( )=

H1

λ1  1  0

0  λ1  0

0  0  λ3

p1mg1m

T
    0

…    …

0    p1dg1d

T

+=

…

…

…

2.266667–   1.000000  0.000000

1.066667–   2.000000  0.000000

0.000000  0.000000  3.000000

=
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Using Eq. (37), the state matrix, (A)2, can be obtained

The eigenvalues and modal matrices of (A)2 are as follows

 The above results show that the eigenvalues of (A)2 are distinct after the first state design.

In order to stabilized the first mode and the second mode of (A)2, the first and the second

eigenvalues can be assigned as , and the λ23 is unchanged.

Using Eq. (23), the gain vector g2d can be obtained

The state matrix of the closed-loop system obtained by the second stage design is

It may be verified that the eigenvalues of H2 are as required , .

The required control law can be obtained for the second stage

The multi-input vector is

A( )2 U1H1V1

H
=

1.10784–   0.00000  0.864707–

0.00000  3.00000  0.000000

2.93138  0.00000  0.841174

=

λ21 1.73333, λ22 3.0, λ23 2.0–= = =

U2

0.291162  0.000000  0.695973–

0.000000  1.000000  0.000000

0.956674–   0.000000  0.718068–

=

V2

0.718068  0.000000  0.956674–

0.000000  1.000000  0.000000

0.695973–   0.000000  0.291162–

=

ρ21 4.0–= ρ22 3.0–=,

p2d V21

H
b2 0.022095  1.0  1.24784–[ ]T= =

g2d 969.653  33.1578–   0.0[ ]T=

H2

λ21  0  0

0  λ22  0

0  0  λ23

p2dg2d

T
+=

λ31 4.0 λ32 3.0–=,–= λ33 2.0–=

z2 t( ) g2d

T
V2

H
x t( )=

696.277

33.1578–

678.852–

T

x= t( )

z t( )
z1

z2⎩ ⎭
⎨ ⎬
⎧ ⎫ 2.666667  – 0.0  1.6–

696.277  33.1578  – 674.852–

x t( )= =
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Example 2.

Assume that the state matrix presented in Example 1 is perturbed into

The system has two close eigenvalues, i.e., , where

, ,

Therefore, the system is nearly defective (Appendix B).

The algebra average of λ1 and λ2 is

The Jordan form matrix is

where . Therefore, the control problem of a nearly

defective system can be approximated by a defective one.

With recursive procedure, the right and left generalized modes U1 and V1, corresponding to λ0 and

λ3 can be obtained as follows

It can be shown that the nearly defective system has been transformed into a defective one, which

is the same as one of the Example 1. Thus, the required control law for this nearly defective system

is the same as those obtained by Example 1.

5. Conclusions

The vibration control of the systems with repeated or close eigenvalues is an important problem in

engineering. This paper focuses on the case of defective repeated eigenvalues and presents the

design methods of the modal controller based on the generalized modal coordinates, to avoid the

tedious mathematic manipulation. Because some of the generalized modes are uncontrollable, the

multi-input vector is required to stabilize the modes of the defective eigenvalues with positive real

A
17  0  24.99999–

0  3  0

9  0  13–

=

J diag λ1 λ2 λ3, ,( )=

λ1 2.009487= λ2 1.990513= λ3 3.0=

λ0

1

2
--- λi

i 1=

2

∑ 2.0= =

J J0 δJ0+
λ0  1

   λ0

λ1 λ0–   1–

   λ2 λ0–

+= =

δ max λi λ0– 0.009487, i 1 2,=( )= =

U1

0.857493  5.14496–   0.0000000

0.000000  0.000000  1.0000000

0.514496  0.857493  0.0000000

=

V1

0.857493  5.14496–   0.0000000

0.000000  0.000000  1.0000000

0.514496  0.857493  0.0000000

=
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part. For such case, the present recursive procedure is effective to compute the gain matrix. The

conclusions are supported by two given numerical examples.
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Appendix A: The eigenvalue problem for defective system

This section presents a brief review on eigenvalue problem for defective system given by Gantmacher
(2000) and Dief (1982).

 Consider a matrix eigenvalue problem given by

(A.1)

Assume that the first m eigenvalues are repeated, and the rest  eigenvalues are distinct. It is assumed
that AM is used to denote the algebra multiplicity of the eigenvalue λ in Eq. (A.1), and GM is used to denote
the number of the linear independent eigenvectors corresponding to λ.

If AM = GM, the system with distinct and repeated eigenvalues is non-defective, and if AM > GM, the sys-
tem with repeated eigenvalues is defective (Gantmacher 2000, Dief 1982).

From the algebra theory for the defective matrix A, there exists a non-singular matrix U to produce

(A.2)

where U is the generalized modal matrix of A, J is the Jordan block of A given by

(A.3)

Eq. (A.3) can be written in the following form 

(A.4)

The conjugate and transpose of A, i.e., AH, is called adjoint system, the generalized modes satisfy the fol-
lowing equation

(A.5)

where AH and JH are the conjugate and transpose of A and J respectively, V is the generalized modal matrix
of the AH.

Eq. (A.5) can be also written as follows

(A.6)

Au λu=

n m–

AU UJ=

J

λ 1

λ 1 0

1

λ

λm 1+

0

λn

=

…

…

A λI–( )u1 0=

A λI–( )ui ui 1– , i 2 3 … m, , ,==

A λjI–( )uj 0,    j m 1+ … n, ,== ⎭
⎪
⎬
⎪
⎫

A
H
V VJ

H
=

A
H

λ̃ I–( )vi vi 1+
, i 1 2 … m 1–, , ,= =

A
H

λ̃ I–( )vm 0,=

A
H

λ̃ jI–( )vj 0,    j m 1+ … n, ,== ⎭
⎪
⎬
⎪
⎫
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where ui and vi are the right and the left generalized modes, respectively.
The right generalized modal matrix U and the left generalized modal matrix V satisfy the following orthog-

onal condition

(A.7)

Appendix B: The nearly defective system

The numerical analysis results show that if some changes of parameters in the defective system are made,
the system with defective repeated eigenvalues can be perturbed into one with close eigenvalues and the
corresponding eigenvectors to near parallel, which is called a nearly defective system. For such a special case
from the viewpoint of mathematics, although the close eigenvalues are distinct, the dynamic characteristic of
the system is still defective. Thus, the formula for obtaining the gain matrix in Eq. (23) of systems with the
distinct eigenvalues cannot be used for the case of the nearly defective system. In addition, the formula for
obtaining the gain matrix in Eq. (17) of system with repeated eigenvalues of defective system as discussed in
the main text cannot be also used directly to deal with a nearly defective system.

Assume that n eigenvalues of A are close. The right modal matrix , and the left
modal matrix , satisfy the following equations

(B.1)

and the orthogonal condition

(B.2)

where .
Taking the algebra average of 

(B.3)

and letting

 (B.4)

 (B.5)

the matrix J in Eq. (B.1) can be written in the following form

(B.6)

Considering the orthogonal condition (B.2), and substituting Eq. (B.5) into Eq. (B.1), yields

V
H
U I=

U u1 u2 … un, , ,[ ]=

V v1 v2 … vn, , ,[ ]=

AU UJ, A
H
V VJ

H
==

U
H
V VU

H
I= =

J diag λ1 λ2 … λn, , ,( )=

λ1 λ2 … λn, , ,

λ0

1

n
--- λi

i 1=

n

∑=

J0

λ0 1

λ0

1

λ0

=

…

…

δJ0

λ1 λ0– 1–

λ2 λ0–

1–

λn λ0–

=

…

…

J J0 δJ0+=
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(B.7)

where

(B.8)

If  are the close eigenvalues and , it can be shown that the error matrix,
, is a small perturbational one and its norm satisfies

(B.9)

Since the eigenvalues of J0 cannot be changed by the orthogonal transformation, the eigenvalues of A are
identical with those of J0. Eq. (B.7) indicates that the matrix A is equal to the sum of the defective matrix Ar

with n repeated eigenvalues and the perturbed matrix δA, and the right and the left modal matrices U and Vr

of Ar are the same as those of A. Therefore, Eq. (B.1) can be written as follows
 

(B.10)

Using the modal transformation

(B.11)

if δ is sufficiently small, the control Eq. (B.10) can be approximated by

(B.12)

Eq. (B.12) shows that the control problem of the nearly defective system with close eigenvalues can be
transformed into one of the defective system with repeated eigenvalues, which are equal to the average value
of the close eigenvalues.

AU UJ0V
H

UδJ0V
H

+=

Ar δA+=

Ar UJ0V
H

δA UδJ0V
H

=,=

λ1 λ2 … λn, , , δ max λi λ0–=

δA UδJ0V
H

=

δA 2 U 2 δJ0 2
V

H
2≤

 δJ0 2
δ

2≤ ≤

AU U J0 δJ0+( ), A
H

V V J0 δJ0+( )H= =

x t( ) Uξ t( )=

ξ
·

t( ) J0ξ t( ) V
H
Bz t( )+=




