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Non linear vibrations of stepped beam system 
under different boundary conditions
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Abstract. In this study, the nonlinear vibrations of stepped beams having different boundary conditions
were investigated. The equations of motions were obtained using Hamilton’s principle and made non
dimensional. The stretching effect induced non-linear terms to the equations. Forcing and damping terms
were also included in the equations. The dimensionless equations were solved for six different set of
boundary conditions. A perturbation method was applied to the equations of motions. The first terms of
the perturbation series lead to the linear problem. Natural frequencies for the linear problem were
calculated exactly for different boundary conditions. Second order non-linear terms of the perturbation
series behave as corrections to the linear problem. Amplitude and phase modulation equations were
obtained. Non-linear free and forced vibrations were investigated in detail. The effects of the position and
magnitude of the step, as well as effects of different boundary conditions on the vibrations, were
determined.

Keywords: stepped beam; nonlinear vibration; perturbation method.

1. Introduction

In real life, many engineering problems can be modeled as stepped beams. Examples of these
structures include bridges, rails, automotive industries and machine elements. The most important
aspect of vibration analysis is that the natural frequency of their can be estimated. If the system is
forced with a frequency close to its natural frequencies, the system comes to resonance state and
the amplitudes increase dangerously. While computing the natural frequencies of the systems,
assuming the systems linear makes the calculations easier but the results are usually not reliable.
Because no system moves linearly obtained linear results may deceive us. Therefore, nonlinear
effects originated from the stretching during the vibration of the beam should be included in the
computations as well.

Many studies on beam vibrations, both linear and nonlinear, have previously been performed.
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Particularly, the nonlinear behavior caused by the immobility of beam-ends has been analyzed by
various researchers (Hou and Yuan 1998, McDonald 1991, Pakdemirli and Nyfeh, 1994, Öz et al.

1998). Qaisi (1997) obtained the nonlinear vibration of beams with simply and clamped supports by
using a power series approach and compared the results with existing solutions. Özkaya et al.

(1997) analyzed mass beam system for different boundary conditions. By considering the effects of
stretching, they solved the obtained problem with the method of multiple scales, a perturbation
technique. Özkaya (2002) considered a beam-masses under simply supported system end conditions.
The effect of positions, magnitudes and number of the masses was investigated. 

Studies on stepped beam systems are usually linear. Balasubramanian et al. (1990) analyzed
vibrations for beams stepped in the middle and acquired natural frequencies for high mode
structures. Jang and Bert (1989) obtained the frequency equation for stepped beam under various
boundary conditions and computed the smallest natural frequencies for a circular cross-section
beam. They compared the results they obtained with the results used a finite element analysis. In
another study, Jang and Bert (1989) obtained natural frequencies for high mode structures using the
frequency equation they acquired from the study by Jang and Bert (1989). In a study performed by
Naguleswaran (2002), motion equations of three different Euler-Bernoulli stepped beams with all
states of boundary conditions were obtained and three natural frequencies were computed using
motion equation. His other study, he (Naguleswaran 2002) considered three different types of
stepped beams and investigated vibration of Euler-Bernoulli beam with up to three step changes.
The first three frequency parameters of beams with one, two and three step changes were tabulated.
The dynamic stability of a stepped beam carrying mass was studied by Aldraihem and Baz (2002).
The stepped beam equations of motion developed a discrete parameter form and a finite element
form. Aydo du and Taskin (2006), free vibration of simply supported FG beam explored and also
they found the equations by applying Hamilton’s principle. In order to obtain frequencies used
Navier type solution method. Kwon and Park (2002), focused on the effect of the position of the
stepped point and thickness ratio on the dynamic characteristics of the system. The equation of
motion and boundary were analytically obtained by using Hamilton principle. The exact solutions
were compared with the results obtained by FEM. Naguleswaran (2003) the vibration of beams with
up to three step changes in cross section and in which the axial force in portion was contented. The
frequency equation for classical boundary was expressed and the first three frequency parameters
for the three types of beams were displayed. Krishnan et al. (1998), the analysis of stepped beams
using finite difference method studied by using of a single differential equation. 

In this study, nonlinear vibration analysis for stepped beams was performed and the contributions
of nonlinear terms on natural frequency were investigated. Phase modulation equations were
acquired and frequency amplitude graphs were plotted using these equations.

2. Equation of motion

 
The considered system is a stepped beam with a single step located at x = xs, where x is the

spatial co-ordinate along the beam length. Six different cases of support at the ends of the beam are
treated, as shown in Fig. 1.

The Lagrangian for the system can be written as

go
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 (1)

where L is the length, ρ is the density, A1 and A2 are cross-sectional areas, E is Young’s modulus, I1

and I2 are the moment of inertia of the beam cross-section with respect to the neutral axis of the
beam, u1 and u2 are the left and right axial displacements, w1 and w2 are the left and right transverse
displacements, (·) and ( )' denote differentiations with respect to time t* and the spatial variable x*

respectively. The terms in Eq. (1) are the kinetics energies due to transverse motion of beam, elastic
energies due to bending and stretching of the beam, respectively. Invoking Hamilton’s principle 

 (2)

and substituting the Lagrangian from Eq. (1), performing the necessary algebra and eliminating the

£ 1/2( ) ρA1w
·
1

*2 x
*

d

0

x
s

∫ 1/2( ) ρA2w
·
2

*2 x
*

d
x
s

L

∫ 1/2( ) EI1w1
″*

2
x
*

d

0

x
s

∫– 1/2( ) EI2w2
″*

2
x
*

d
x
s

L

∫–+=

 1/2( ) EA1 u1
′* 1/2( )w1

′ *2+( )
2

x
*

d

0

x
s

∫– 1/2( ) EA2 u2
′* 1/2( )w2

′ *2+( )
2

x
*

d
x
s

L

∫–

δ £ t
*

d
t
1

t
2

∫ 0=

Fig. 1 The support end conditions for six different cases
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axial displacements, one finally obtains the following non-linear coupled integro-differential equations

 (3)

 (4)

In Eqs. (3) and (4) the dimensionless parameter α is defined as the ratio of the diameter of the
second portion to the diameter of the first portion (α = r2/r1). Note that viscous damping coefficient
µ*, external excitation with amplitude  and frequency Ω* are be added to the equations. The
boundary conditions equations can be written for this as follows

  (5)

(6)

The equations are made dimensionless through the definitions

 (7)

where R1, 2 is the radius of gyration of the beam cross-section with respect to the neural axis.
Substituting the dimensionless parameters into the equations of motion yield for the general case

  (8)

 (9)

and boundary conditions are

(10)

The equation of motion including damping and forcing is given below

  (11)

 (12)

The solutions and results for different parameters will be presented in the next section.
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3. Approximate analytical solution

In this section, we search for the approximate solutions of Eqs. (11) and (12) with the associated
boundary conditions. We apply the method of multiple scales (a perturbation technique) to the
partial differential system and boundary conditions directly. This direct treatment of partial
differential systems (the direct perturbation method) has some advantages over the more common
method of discrediting the partial differential system and then applying perturbation (the
discretization perturbation method) (Pakdemirli and Boyac  1995). In our case, however, both
methods may yield identical results, since we are not considering a higher order perturbation
scheme. Due to the absence of quadratic non-linearities, we assume expansions of the forms

   (13)

(14)

where ε is a small book-keeping parameter artificially inserted into the equations. This parameter
can be taken as 1 at the end upon keeping in mind, however, that deflections are small. We
therefore investigate a weakly non-linear system. T0 = t and T2 = ε 2t are the fast and slow time
scales. We consider only the primary resonance case and hence, the forcing and damping terms are
ordered so that they counter the effect of non-linear terms: that is 

 (15)

The time derivatives can be written as

 (16)

Inserting Eqs. (13)-(16) into Eqs. (10)-(12) and equating coefficients of like powers of ε, one
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(23)

 (24)

Eqs. (20) and (24) are the boundary conditions corresponding to Case I. Boundary conditions for
other cases can be written similarly.

3.1 Linear problem

The problem at order is linear. We assume a solution of the form

 (25, 26)

where cc represents the complex conjugate of the preceding terms. Substituting Eqs. (25) and (26)
into Eqs. (17)-(20), one will have

 (27, 28)

(29)

Solving Eqs. (27)-(29) exactly for different end conditions yields the mode shapes Yi and natural
frequencies ω. The transcendental equations were numerically solved for the first five modes. For
each case, the natural frequencies are listed for different α and η = 0.5 in Table 1.

w13 αw23= w13
′ αw23

′=   w13
″ α

5
w23
″= , w13

″′ α
5
w23
″′= at x, , η=

w13 w13
″ 0 at x 0   w23 w23

″ 0 at x 1= = =,= = =

w11 A T2( )e
iωT

0

cc+[ ]Y1 x( ),  w21 A T2( )e
iωT

0

cc+[ ]Y2 x( )==

Y1

iv
ω

2
Y1– 0, Y2

iv 1

α
2

-----ω
2
Y2– 0==

Y1 αY2= Y1
′ αY2

′= Y1
″ α

5
Y2
″= Y1

′″ α
5
Y2
′″= at x, , , η=

Table 1 The first five natural frequencies for different stepped ratio and end conditions (η = 0.5)

Cases α ω 1 ω 1 [10] ω 2 ω 2 [10] ω 3 ω 3 [10] ω 4 ω 4 [10] ω 5 ω 5 [10]

Pinned-
pinned

1 9.8696 9.8696 39.4784 39.4784 88.8264 88.8260 157.9136 157.9140 246.7401 246.7400

51/4 10.4129 10.4129 50.6566 50.6566 103.7111 103.7110 195.1266 195.1270 295.4998 295.5000

201/4 9.0747 9.0747 60.1464 60.1464 124.3604 124.3600 213.3760 213.3760 367.8333 367.8330

Clamped-
pinned

1 15.4182 15.4182 49.9649 49.9649 104.2476 104.2480 178.2697 178.2700 272.0494 272.0310

51/4 16.2811 16.2811 63.5852 63.5852 121.7557 121.7560 221.9135 221.9140 322.3577 322.3580

201/4 14.2538 14.2568 80.1265 80.1265 137.1124 137.1120 251.7603 251.7600 393.9259 393.9260

Clamped-
clamped

1 22.3733 22.3733 61.6728 61.6728 120.9575 120.9030 199.9749 199.8590 299.9258 298.5560

51/4 25.9591 25.9591 78.1518 78.1518 142.0877 142.0880 245.5919 245.5912 359.0943 359.0970

201/4 30.3213 30.3213 90.2097 90.2097 173.2790 173.2790 266.8390 266.8390 444.5712 444.3510

Clamped-
sliding

1 5.5933 5.5933 30.2258 30.2258 74.6389 74.6390 138.7913 138.7910 222.6850 222.6830

51/4 5.6912 5.6912 34.9709 34.9710 92.0034 92.0030 167.6614 167.6610 267.8909 267.8910

201/4 5.3573 5.3573 43.0595 43.0595 98.8486 98.8490 211.3065 211.3070 291.9155 291.9160

Sliding-
pinned

1 2.4674 2.4674 22.2066 22.2066 61.6850 61.6850 120.9026 120.9030 199.8595 199.8590

51/4 2.4372 2.4372 26.8677 26.8677 75.8534 75.8530 143.4017 143.4020 247.3280 247.3280

201/4 2.1841 2.1841 27.5026 27.5026 97.8727 97.8730 154.6877 154.6880 292.9891 292.9890

Sliding-
sliding

1 9.8696 9.8696 39.4784 39.4784 88.8264 88.8264 157.9136 157.9140 246.7401 246.7400

51/4 13.5124 13.5124 45.0027 45.0027 111.3453 111.3450 187.1320 187.1320 301.7942 301.7940

201/4 18.2949 18.2949 50.3222 50.3222 125.0623 125.0620 231.8222 231.8220 327.4873 327.4870
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3.2 Non-linear problem

Solving order ε3, one obtains the non-linear corrections to the problem. Because the homogeneous
Eqs. (15)-(20) have a non-trivial solution, the non-homogeneous problem (21)-(24) will have a
solution only if a solvability condition is satisfied. To determine this condition, we first separate the
secular and nonsecular terms by assuming a solution of the from

   (30, 31)

Substituting this solution into (21)-(24), we eliminate the terms producing secularities. Hence we
deal with that part of the equation determining φI as follows

(32)
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In obtaining these equations, we substituted the substituted first order solutions (25) and (26) into
Eqs. (21)-(24). We also assumed that the external excitation frequency is close to one of the natural
frequencies of the system; that is
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Where σ is a detuning parameter of order 1. After some algebraic manipulations, one obtains the
solvability condition for Eqs. (32)-(35) as
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where the equations are normalized by requiring and the coefficients are defined as follows
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Note that condition (36) is valid for all Cases I to VI but, of course, the numerical values of b and
 differ for each case.

Eq. (37) determines the modulations in the complex amplitudes. We use the polar form to
calculate real amplitudes and phases
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 (40, 41)

where γ and Λ are defined by

 (42)

4. Numerical results

In this section numerical examples are presented for different cases. Firstly, the linear natural
frequencies for various boundary conditions and different stepped ratio are given in Table 1 and
compared with those given by Jang and Bert (1989).

Then, the non-linear frequencies for free, undamped vibrations are calculated. In Eq. (40) and
Eq. (41), by taking µ = f = σ = 0, one obtains

 (43)

Note that a0 is the steady-state real amplitude of response. Hence the non-linear frequency is

 (44, 45)
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Table 2 The non-linear frequency correction coefficients for different stepped ratio, step location and end
conditions

Cases

α η
Case-I Case-II Case-III Case-IV Case-V Case-VI

ω1 λ ω1 λ ω1 λ ω1 λ ω1 λ ω1 λ

0.5

0.2 4.7613 14.2781 11.2659 20.1648 16.1990 14.7906 4.1563 4.1617 1.2189 4.1005 5.2086 8.5587

0.4 4.5198 9.1014 13.5509 12.0201 17.0716 5.9488 6.1189 4.5853 1.1538 3.6157 7.3835 9.5764

0.6 5.1545 5.8585 10.5991 6.3422 13.6119 3.7483 6.5614 1.4288 1.0940 2.6539 9.4960 5.9104

0.8 7.7399 2.8663 11.7411 4.3228 16.2339 1.4176 5.1411 0.8739 1.1619 2.0553 8.1674 3.9549

0.8

0.2 7.9133 3.7081 14.4048 3.4214 20.5444 2.5293 5.4331 0.7043 1.9745 0.9600 8.3815 2.8224

0.4 8.1407 3.2076 14.1931 3.1407 19.8208 2.2641 5.8588 0.6263 1.9833 0.9576 9.0454 2.5652

0.6 8.8135 2.3870 13.9883 2.6100 19.8115 1.5584 5.6908 0.5788 2.0233 0.9133 9.1719 2.6562

0.8 9.6399 1.7995 14.9713 1.7187 20.0827 1.2335 5.4273 0.5015 2.1424 0.6440 9.0631 2.5729

2.0

0.2 15.4799 0.3582 21.8931 0.1558 32.4679 0.1772 6.4545 0.0325 4.5486 0.0661 16.3348 0.4943

0.4 10.3090 0.7323 16.4368 0.3648 27.2238 0.4685 5.9935 0.0313 3.3475 0.0460 18.9920 0.7388

0.6 9.0397 1.1376 13.9313 0.7190 34.1433 0.7436 4.9838 0.0500 2.5050 0.0695 14.7671 1.1970

0.8 9.5227 1.7847 14.6087 1.4030 32.3980 1.8488 4.5042 0.0877 2.1685 0.1380 10.4172 1.0698

3.0

0.2 13.8815 0.2882 22.7937 0.0965 33.4141 0.1622 7.9418 0.0742 5.2319 0.0135 24.7660 0.1284

0.4 7.8317 0.3570 12.7181 0.1878 31.7823 0.1652 5.2539 0.0146 2.7301 0.0136 28.5641 1.4068

0.6 7.1493 0.5836 10.7547 0.3455 49.6127 1.0978 3.7116 0.0198 1.8566 0.0243 15.7834 1.4410

0.8 8.7401 1.4009 12.9824 1.0061 34.4018 2.2833 3.3233 0.0347 1.6277 0.0552 9.7674 0.8611

1.0 1.0 9.8696 1.8505 15.4182 1.6117 22.3733 1.2684 5.5933 0.3171 2.4674 0.4626 9.8696 1.8505
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To this order of approximation, then, the non-linear frequencies have a parabolic relation with the
maximum amplitude of vibration. λ can be defined as the non-linear correction coefficient. The
non-linear correction coefficients are listed in Table 2 for different condition values of α and η and
first mode corresponding to different case. λ is a measure of the effect of stretching. The non-
linearities are of hardening type.

One can from Table 2 that the effects of stretching generally decrease as α increases for all cases.
Pakdemirli and Boyac  (2001) compared with case I of this paper by assuming η = 1 and α = 1. It
was observed that the results of both cases were 1.8505. The curves that show the relationship
between nonlinear frequency and amplitude are displayed in Figs. 2-8 for different α, η values and
different boundary conditions. Fig. 2, for Case-I, shows the variation of non-linear frequencies with
amplitude. As η increases, so do the effects of stretching. For Case-II, as η increases, the effects of
stretching decrease (Fig. 3). For Case-III, as the stepped shifts left to right, the stretching effects
increase (Fig. 4). For Case-IV, as η increases, the effects of stretching decrease (Fig. 5). For all
cases, the stretching effects decrease as α increases. The results for Case V and Case VI are given
in Fig. 6 and Fig. 7 for different α parameters. As α increases, the effects of stretching decrease.
The non-linear frequencies for all cases are shown in Fig. 8. We now consider the case in which
there is damping and external excitation. In Eqs. (40) and (41), when the system reaches the steady
state region, a' and γ' vanish and hence one obtains.

,  (46, 47)

Squaring and adding both equations and solving for the detuning parameter σ yield

 (48)
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Fig. 2 Non-linear frequency versus amplitude for
different stepped location values; first mode,
Case-I. α = 3 

Fig. 3 Non-linear frequency versus amplitude for
different stepped location values; first mode,
Case-II. α = 0.5
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and λ is defined in Eq. (45). The detuning parameter shows the nearness of the external excitation
frequency to the natural frequency of system, several figures are drawn using Eq. (48) assuming
f = 1 and damping coefficient µ = 0.2. 

Fig. 4 Non-linear frequency versus amplitude for
different stepped location values; first mode,
Case-III. α = 3 

Fig. 5 Non-linear frequency versus amplitude for
different stepped location values; first mode,
Case-IV. α = 0.5

Fig. 6 Non-linear frequency versus amplitude for
different stepped ration values; first mode,
Case-V. η = 0.2 

Fig. 7 Non-linear frequency versus amplitude for
different stepped ration values; first mode,
Case-VI. η = 0.2
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Frequency response curves are presented in Figs. 9-13. In Fig. 9, the frequency-response, curves
for Case-I are shown for different η values (α = 0.5). The effect of stretching bends the curves to
the right causing multi-valued regions of solution. This phenomenon is the well-known jump

Fig. 8 Non-linear frequency versus amplitude for
different boundary conditions; first mode,
α = 0.8, η = 0.2 

Fig. 9 Frequency-response curves for different stepped
locations; first mode, Case-I α = 0.5

Fig. 10 Frequency-response curves for different
stepped locations; first mode, Case-III.
α = 0.5 

Fig. 11 Frequency-response curves for different
stepped locations; first mode, Case-IV
α = 3.0 
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phenomena. For Case I, when η decreases and provided that other parameters are kept constant, the
multi – valued regions increases drastically. Fig. 10 shows frequency-response curves for Case-III
(η = 0.2, 0.4, 0.6, 0.8). The effect of forcing is maximum when η = 0.6 and, is minimum when
η = 0.4. In Fig. 11, the frequency-response curves for Case-IV are shown for different η values
(α = 3). When the step position is shifted from left to right, the amplitudes increase. This same
result can be seen from the Fig. 12, which was drawn for Case-V. In Fig. 13, for fixed α and η
(α = 3, η = 0.2) frequency response curves for Case I-VI are shown on the same plot.

5. Conclusions

The non-linear response of a stepped beam supported by six different end conditions was
investigated. The non-linear equations of motion including stretching due to immovable end
conditions were derived. Forcing and damping terms were added to the equations. Linear and non-
linear analyses were performed. Approximate solutions were searched by applying the method of
multiple scales directly to the partial differential equations. The first term lead to the linear problem.
Mode shapes and natural frequencies were calculated for different stepped ratios, step location and
end conditions. The second terms provide the non-linear corrections to the linear problem. Non-
linear frequency-amplitude and forcing frequency-amplitude relations were investigated and plotted.

As the step ratio is increased, the natural frequencies and nonlinear frequencies generally increase,
but it decreases some case. One can observe that the stretching caused a non-linearity of the
hardening type. When the ratio step is increased (α), the effect of stretching on the non-linear
frequencies generally decreases. At the step ratios 0.5 and 0.8, when the step position (η) is
increased, the effect of stretching on the non-linear frequencies (λ) generally decreases. At the step

Fig. 12 Frequency-response curves for different
stepped locations; first mode, Case-V.
α = 3.0 

Fig. 13 Frequency-response curves for different end
conditions; first mode, η = 0.2, α = 3.0 
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ratios 2 and 3, when the step position (η) is increased, the effect of stretching on the non-linear
frequencies generally increases (λ).
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