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Exact buckling load of a restrained RC column 
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Abstract. Theoretical foundation for the buckling load determination in reinforced concrete columns is
described and analytical solutions for buckling loads of the Euler-type straight reinforced concrete
columns given. The buckling analysis of the limited set of restrained reinforced concrete columns is also
included, and some conclusions regarding effects of material non-linearity and restrain stiffnesses on the
buckling loads and the buckling lengths are presented. It is shown that the material non-linearity has a
substantial effect on the buckling load of the restrained reinforced concrete columns. By contrast, the
steel/concrete area ratio and the layout of reinforcing bars are less important. The influence on the
effective buckling length is small. 
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1. Introduction 

Stability of structures is an important subject of engineers since a series of disastrous structural

collapses took place due to neglecting or misunderstanding theoretical aspects of stability during

their design (Bažant and Cedolin 1991). In contrast to steel and timber structures, typical reinforced

concrete structures are not slender and that is why an engineer is often prone to assume that the

stability check can be omitted. Experiments have, however, revealed that instability is an important

mode of collapse even for reinforced concrete structures (ACI-ASCE Committee 441 1966, Bažant

and Xiang 1997, Kim and Yang 1995). With certainty, the buckling load must not be overlooked in

prefabricated reinforced concrete structures or when structures are subjected to fire (Bratina et al.

2005). 

The stability analysis in structural mechanics starts in 18th century with Euler’s studies on the

buckling load of an elastic column (Euler 1774). Experiments on columns, however, did not entirely

verify his findings on critical loads. The disagreement was found to be due to presence of
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geometrical and material imperfections and the eccentricity of applied external loads (Bažant and

Cedolin 1991). At the time being, it is believed that the buckling theory of elastic structures is, in

principle, well-formed (see Aristizabal-Ochoa 1997, Bažant and Cedolin 1991, Essa 1998, Gadalla

and Abdalla 2006, Liu and Xu 2005, Mahini and Seyyedian 2006). Unfortunately, the assumption

that the material behaviour is linear elastic is not realistic for reinforced concrete structures (ACI-

ASCE Committee 441 1966, Bažant and Xiang 1997, Kim and Yang 1995). 

The stability analysis of materially non-linear structures is much more involved compared to the

elastic one. The issue of a prime complication is the irreversibility of inelastic deformations. It has

been found that the irreversal (plastic) deformations have a significant influence on behaviour of

columns subjected to an axial compression force. Two stability modes, which could not be observed

in linear elastic columns, can occur: (i) the continuous set of bifurcation points on the primary load-

deflection curve, and (ii) not necessarily the loss of column stability at any of the bifurcation points

on the primary load-deflection curve. The fact that the column must buckle at the least bifurcation

load was established by the elastic buckling analysis (Battini 1999, Hutchinson 1974). But a new

feature of elastoplastic buckling is that the column is not at its stability limit at the bifurcaton point,

which means that the deflected post-bifurcation states can be stable. Engesser (1889) was the first to

study theoretically the stability of elasto-plastic columns. He found that the material non-linearity

can substantially lower the critical load. He suggested that the critical load of an inelastic column is

obtained from Euler’s formulae, in which the elastic modulus is replaced with an inelastic tangent

modulus for loading. The further research of the subject lead him to reject the idea of the loading

tangent inelastic modulus, and to introduce the reduced modulus instead as a proper combination of

loading and unloading moduli. The investigations performed much later showed that Engesser’s

original proposal of the loading tangent modulus must be taken into consideration in the case of

elasto-plastic columns rather than the reduced modulus (Shanley 1947). Today, Engesser’s original

theory is generally accepted (Bažant and Cedolin 1991, Groper and Kenig 1987, Wang et al. 2005). 

The present paper provides the application of the standard stability analysis to restrained

reinforced concrete columns with symmetric cross-sections. Such restrained columns are often used

in practice to model the columns of totally braced, partially braced and unbraced elastic frames

(Aristizabal-Ochoa 1997, Gantes and Mageirou 2005, Mageirou and Gantes 2006, Mahini and

Seyyedian 2006, Liu and Xu 2005). The geometrically exact beam theory of Reissner (Reissner

1972) is employed as the theoretical basis. Both flexural and axial deformations of the column are

taken into account in the analysis, and behaviour of both concrete and steel is assumed non-linear.

Shear deformations and imperfections are, however, neglected. 

2. Theory 

2.1 Basic equations 

We consider a restrained straight reinforced concrete column of initial, undeformed length L and

constant cross section A. The ends of the column are restrained. ρ1 and ρ2 represent the rotational

spring constants and µV denotes the translational spring constant against lateral translation. The

column is centricaly loaded (Fig. 1). If we assume that the x-axis coincides with the centroidal axis

of the undeformed column, and employ Reissner’s model of the beam (Reissner 1972), yet neglecting

shear strains, the following governing equations of the column can be derived (Planinc et al. 2001)
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(1)

(2)

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

Here the prime denotes the derivative with respect to x; u(x) and w(x) are the displacements of the

centroidal axis in the x and z directions, and ϕ (x) is its cross-section rotation about the y-axis

(Fig. 1). The deformation quantities, ε (x) and κ(x), are the extensional strain of the centroidal axis

(the membrane deformation) and its pseudocurvature (the flexural deformation), respectively. The

extensional strain, D, of an arbitrary fibre z = const. is a function of ε and κ, and it is given by 

(9)

The functions H(x) and V (x) are the equilibrium stress-resultants in the x and z directions, and

M(x) is the equilibrium bending moment of the cross-section. The equilibrium internal forces

N(x) and Q(x), which are given with respect to the rotated basis (Fig. 1), are related to H 
and V by

the equations 

(10)

 (11)

In addition to the equilibrium internal forces, Eqs. (7)-(8) introduce the constitutive internal axial

force, Nc(x), and the constitutive internal bending moment, Mc(x). These constitutive quantities

f1 1 u′ 1 ε+( )cosϕ–+ 0= =

f2 w′ 1 ε+( )sinϕ+ 0= =

f3 ϕ′ κ– 0= =

f4 H′ 0= =

f5 V ′ 0= =

f6 M′ 1 ε+( )Q– 0= =

f7 Nc N– 0= =

f8 Mc M– 0= =

D ε zκ+=

N Hcosϕ Vsinϕ–=

Q Hsinϕ Vcosϕ+=

Fig. 1 Deformed and undeformed configuration of a restrained RC column. Reinforced concrete cross-section
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depend on the material models of concrete and steel and are given by the equations 

(12)

(13)

where  denotes areas of reinforcing bars  in the reinforced concrete column, 

( ) denote z-coordinates of the centroids of the reinforcing bars with respect to the

concrete cross-section centroid (Fig. 1). σc is the normal stress in concrete and σs in steel; they

depend on the corresponding strain, D, and are given by constitutive laws of concrete and steel. Ac

denotes the region occupied by concrete. The material parameters of the constitutive laws must be

determined experimentally for the particular material under consideration (Bratina et al. 2004). In

practice, they are nearly always taken from the database given in the building codes (see Section 3)

rather than performing experiments, thus introducing further inaccuracy in the analysis. 

The kinematic and static boundary conditions for the columns under consideration are (Fig. 1) 

u(0) = 0 (14)

w(0) = 0 (15)

 (16)

H(L) + F = 0 (17)

(18)

(19)

A set of parameters  and  and end restraints µV, ρ
1 and ρ2 determines different

combinations of the boundary conditions for restrained reinforced concrete columns. Eqs. (1)-(11)

and (14)-(19) constitute a system of sixteen non-linear algebraic-differential equations for sixteen

unknown functions and parameters. 

2.2 Linearized buckling analysis 

The buckling load of the column is obtained from the linear theory of stability (Keller 1970). In

line with this theory, we linearize Eqs. (1)-(8) of the column to obtain 

(20)

(21)

 (22)

(23)

(24)

Nc σcdA
A
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M 0( ) ρ

1
ϕ 0( )– 0=

s1

2
V 0( ) µVw L( )+ 0=

s2

2
M L( ) ρ

2
ϕ L( )+ 0=

s1

1
s1

2
, s2

2
0 1,{ }∈

δf1 δu′ 1 ε+( )sinϕδϕ cosϕδε–+ 0= =

δf2 δw′ 1 ε+( )cosϕδϕ sinϕδε–+ 0= =

δf3 δϕ ′ δκ– 0= =

δf4 δH′ 0= =

δf5 δV′ 0= =
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(25)

(26)

(27)

Here C11, C12, C21 and C22 are the components of the tangent constitutive matrix of the cross-

section, defined by 

(28a)

 (28b)

(28c)

 

Note that C12 = C21 = 0, which is due to the symmetry of the cross-section. By the help of the

tangent moduli of both concrete and steel 

(29)

(30)

and after the introduction of the effective area, Aeff, and the effective moment of inertia, Jeff, of the

composite cross-section of the column, the non-vanishing components of the tangent constitutive

matrix can be written as

(31)

(32)

In order to obtain the perturbed solution, we have to derive the fundamental solution of Eqs. (1)-

(8). The solution is easily established by the following argument. The fundamental equilibrium

mode of a column whose ends are subjected to centric axial force F > 0, is characterized by the

condition that the column remains straight, i.e., the rotation ϕ is equal to zero in all cross-sections.

Consequently, w(x) = 0 and the solution of Eqs. (1)-(6) reads

(33a)

(33b)

(33c)

(34a)

δf6 δM′ Qδε 1 ε+( )Nδϕ– 1 ε+( )sinϕδH– 1 ε+( )cosϕδV–– 0= =

δf7 C11δε C12δκ Qδϕ cosϕδH– sinϕδV+ + + 0= =

δf8 C21δε C22δκ δM–+ 0= =

C11

∂Nc

∂ε
----------=

C12 C21

∂Mc

∂ε
------------ 0= = =

C22

∂Mc

∂κ
------------=

ETc

∂σc

∂D
--------=

ETs

∂σs

∂D
--------=

C11 ETcAc ETs An
i

n
i

1=

n

∑+ ETcAeff= =

C22 ETcJc ETs zn
i

2
An

i

n
i

1=

n

∑+ ETcJeff= =

u x( ) ε x L–( )=

w x( ) 0=

ϕ x( ) 0=

H x( ) N x( ) F–= =
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(34b)

(34c)

(35a)

(35b)

Only u, N� and ε are not zero. ε is evaluated from Eq. (7), in which we consider Eqs. (12), (34a)

and (35b)

(36)

Substituting Eqs. (28a)-(35b) into Eqs. (20)-(27) yields the linearized system of equilibrium

equations for the variations of the unknowns of the problem

(37)

(38)

(39)

(40)

(41)

(42)

 (43)

 (44)

Eqs. (37)-(44) constitute a system of algebraic and differential equations of the first order with

constant coefficients. The corresponding set of the boundary conditions is obtained through the

linearization of Eqs. (14)-(19) yielding 

(45)

(46)

(47)

(48)

(49)

(50)

Both ε and C22 are constants. Thus, from Eqs. (38), (39) and (44) we have δM�' = .

Inserting the expression into Eq. (42), considering Eq. (38), and differentiating Eq. (42) with respect

to x, we obtain a new form of the linearized equilibrium moment equation (42), in which the only

unknown function of x is the variation of the transverse displacement, δw

V x( ) Q x( ) 0= =

M x( ) 0=

ε x( ) const.=

κ x( ) 0=

Nc ε κ, 0=( ) N– Nc ε κ, 0=( ) F σcAc σsAn
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n
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δf1 δu ′ δε– 0= =
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δf3 δϕ ′ δκ– 0= =

δf4 δH′ 0= =

δf5 δ V′ 0= =

δf6 δM′ 1 ε+( )Fδϕ 1 ε+( )δV–+ 0= =

δf7 C11δε δH– 0= =

δf8 C22δκ δM– 0= =

δu 0( ) 0=

δw 0( ) 0=

s1

1
δM 0( ) ρ

1
δϕ 0( )– 0=

δH L( ) 0=

s1

2
δV 0( ) µVδw L( )+ 0=
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2
δM L( ) ρ

2
δϕ L( )+ 0=

C22

δw″′

1 ε+
-----------–
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(51)

Because ε is constant and F a given value, Eq. (51) represents an ordinary homogeneous fourth-

order differential equation with constant coefficients for the unknown function δw(x). Once the

inequalities C22 > 0 and (1 + ε)F > 0 are considered, and the buckling load parameter k is

introduced as 

(52)

Eq. (51) reads 

 (53)

The solution of the above equation is 

(54)

In Eq. (54)  are unknown integration constants that will be derived from the

linearized boundary conditions. By imposing the boundary conditions (46), (47), (49) and (50) to

the solution (54), we obtain a homogeneous system of four linear algebraic equations, which is

solved for the four unknown constants Bi. The non-trivial solution of the homogeneous system of

linear algebraic equations is obtained only if the determinant of the system matrix, KT, is zero (see,

e.g., Planinc and Saje 1999) 

detKT  = 0 (55)

Considering the actual form of matrix KT, 

 

we derive

(56)
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depend on both k and ε in a complicated way. Finally, for the determination of the buckling load of

restrained reinforced concrete columns, the following coupled system of three non-linear algebraic

equations for three unknowns kcr, Fcr and εcr must be solved 

(57)

(58)

(59)

This system of simultaneous algebraic equations cannot be solved analytically. The Newton

iterative solution method is used here. 

3. Buckling load of RC columns according to EC 2 constitutive law 

In our numerical examples we assume the constitutive laws of concrete and steel as given by the

European standard for concrete (Eurocode 2 2002)

 

(60)

(61)

The parameters χc, χs1, χs2 and χs3 describe the domain of functions σc and σs for concrete and
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Fig. 2 Constitutive laws of (a) concrete and (b) reinforcing steel according to Eurocode 2 (2002) 
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steel. If Dcu < D < 0, then χc = 1; otherwise χc = 0. Similarly, when , then χs1 = χs3 = 0

and χs2 = 1. If Ds1 <  < Ds2, χs1 = χs3 = 1 and χs2 = 0. The meaning of the remaining parameters

in Eqs. (60)-(61) is clear from Fig. 2. 

The related tangent moduli are obtained by the differentiation of Eqs. (60)-(61) with respect to D,

and read 

(62)

(63)
 

The material and geometric parameters of the reference cross-section are given in Fig. 3. The

material parameters required in the Eurocode 2 rules (60)-(61) are also taken from the Eurocode 2.

They are: the mean compressive strength of concrete, fcm = 3.8 kN/cm2; elastic modulus of concrete,

Ecm = 3,200 kN/cm2; yield stress of steel, fy = 50.0 kN/cm2; the peak and ultimate compression

strains of concrete, respectively: Dc1 = −2.2‰ and Dcu = −3.5‰; the elastic modulus of steel, Es =

20,000 kN/cm2; the hardening modulus of steel, Ep = 0 kN/cm2 (no strain-hardening); and its

ultimate strain Dy2 = Du = 40‰. 

Geometric and material parameters of the reinforced concrete columns are selected in a way, that

every reinforced concrete column reaches its sideway buckling before reaching the cross-section

ultimate axial bearing capacity Nult = −4,043.74 kN (Fig. 4(a)). The variation of the normalized

D Ds1<

D

ETc χc

10fcm
2
ε Dc1 ε–( ) 11Dc1

2
Ecm 11Dc1Ecmε 20fcmε+ +( )

Dc1 10Dc1fcm– 11Dc1Ecmε 20fcmε+ +( )
2

----------------------------------------------------------------------------------------------------------------------------=

ETs χs2Es χs3Ep+=

Fig. 3 Reference reinforced concrete cross-section. Geometric and material data

Fig. 4 The variations of (a) constitutive axial force Nc and (b) normalized flexural tangent stiffness  =
C22/EcmJc and normalized axial tangent stiffness 

 
= C11/EcmAc with respect to membrane

deformation ε 

C22

C11
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flexural tangent stiffness (
 
= C22/EcmJc) with respect to membrane deformation ε is shown in

Fig. 4(b). For convenience, the variation of the normalized axial tangent stiffness (
 
= C11/

EcmAc) vs. ε is also displayed in Fig. 4(b). These relationships are practically linear and coincident.

This shows that both the ultimate axial and the ultimate flexural bearing capacity of the cross-

section are reached simultaneously. 

3.1 Reinforced concrete Euler’s columns 

Four sets of boundary conditions will be analysed, marked as Euler’s columns (see Fig. 5). If the

column is pinned at both ends, the boundary conditions read: w(0) = 0, M(0) = 0, w(L) = 0,

M(L) = 0. Imposing these conditions to the solution (54), and equating determinant in Eq. (56) to

zero, gives sinkcrL = 0 and, consequently, kcrL = mπ (m = 0, 1, 2, ...). The critical load is the least

possible force, which here occurs when m = 1. Thus, kcr = π/L. After inserting kcr into Eq. (52), we

have (1 + εcr)Fcr = ETc Jeffπ
2/L2. Adding Eq. (57), we have the following system of two non-linear

coupled algebraic equations 

(64)

(65)

which must be solved for two unknowns Fcr and εcr. When material is linear elastic and

incompressible, the axial strain is zero: εcr = 0. The procedure for deriving the buckling loads for

the remaining combinations of the boundary conditions (CC is the fixed-free column, FPC is the

fixed-pinned column, FFC is the fixed-fixed column) is similar and need not be given here. The

results are presented in Table 1. As indicated in Table 1, the buckling load formulae for Fcr of

reinforced concrete and elastic columns differ only in the scalar factor 1 + εcr. In elastic columns,

where elastic modulus of material is constant, εcr is a small number compared to 1 and can thus

C22

C11

Nc εcr κcr, 0=( ) Fcr+ σcAc σsAn
i

n
i

1=

n

∑ Fcr+ + 0= =

1 εcr+( )Fcr

ETc Jeffπ
2

L
2

--------------------=

Fig. 5 Euler’s reinforced concrete columns 
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safely be neglected. In reinforced concrete columns, εcr is small, too, yet its value grossly effects the

flexural stiffness ETc Jeff and should not be neglected. Note that if the reinforcement can be

neglected, we have ETc Jeff = Ecm Jc. Then Eq. (65) reduces to Euler’s buckling load for the pinned-

pinned elastic column, Fcr = Ecm Jcπ
2/L2. 

The numerical values of the buckling load are presented in Table 2. For the sake of comparison,

the related exact buckling loads for elastic columns are also given in Table 2. It is clear that the

non-linearity of material has a substantial impact on the buckling load. The buckling load of a RC

column is always smaller than that of the corresponding elastic column. This is particularly true for

the fixed-fixed column (FFC), which has the smallest buckling length (Lu = 0.5L) of the four

columns. Table 3 shows the related values of the critical membrane deformation at Fcr. Note that the

critical membrane deformation is smaller than the peak compression strain of concrete. Observe also

that it is smaller than the corresponding critical deformation of the elastic column. 

The effect of the non-linearity of concrete and steel on the buckling load is further shown in

Fig. 6, where the plot of the normalized buckling load, Fcr /Fult, versus the column slenderness,

, is shown for all types of the columns in one curve for both linear elastic and

reinforced concrete columns. Fig. 6 shows that buckling occurs, if the slenderness is bigger than

λult = 17.32. The figure indicates that the material non-linearity has no influence on the buckling

load, if the slenderness is larger than about 150. 

λ Lu Ac/Jc=

Table 1 Buckling load Fcr of reinforced concrete columns

Type of the column Reinforced concrete column Elastic column (ε = 0) 

PPC 

CC 

FPC 

FFC 

1 εcr+( )Fcr

ETc Jeffπ
2

L
2

--------------------= Fcr

Ecm Jcπ
2

L
2

------------------=

1 εcr+( )Fcr

ETc Jeffπ
2

2L( )
2

--------------------= Fcr

Ecm Jcπ
2

2L( )
2

------------------=

1 εcr+( )Fcr

ETc Jeffπ
2

0.69915565…L( )
2

---------------------------------------------= Fcr

Ecm Jcπ
2

0.69915565…L( )
2

---------------------------------------------=

1 εcr+( )Fcr

ETc Jeffπ
2

0.5L( )
2

--------------------= Fcr

Ecm Jcπ
2

0.5L( )
2

------------------=

  

Table 2 Buckling load Fcr of reinforced concrete columns

Fcr [kN] CC PPC FPC FFC 

Present exact analysis 2124.270 3668.307 3936.186 4012.639 
Elastic analysis 2631.89 10527.58 21534.05 42110.31 

Table 3 Critical membrane deformation εcr of reinforced concrete columns

εcr [‰] CC PPC FPC FFC 

Present exact analysis −0.736 −1.659 −2.002 −2.186 
Elastic analysis −0.914 −3.655 −7.477 −14.622 
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In order to study the effect of the steel/concrete area ratio on the buckling load, we analysed five

different ratios (µ = 0.5%, 1.0%, 1.5%, 2.0%, 3.0%), for two different reinforcement settings (4φ,

12φ) in the cross-section. The results are presented in Table 4 and in Fig. 7. We can observe a

relatively small increase in the buckling load with the reinforcement increase for any type of

columns and any layout of reinforcing bars (4φ, 12φ). The buckling load at the ratio as high as

3.0%
 
is only about 20% larger than the one obtained with the 0.5%

 
reinforcement. Fig. 7 shows the

graphs of Fcr versus µ for a series of low to high-strength concretes for the pinned-pinned (Fig.

7(a)) and fixed-fixed columns (Fig. 7(b)) for the 12φ-layout. The graphs clearly indicate that the

relations are linear functions of µ with the inclination being independent both of the type of

concrete and the percentage of the reinforcement. This rule holds only if the column collapses due

to buckling. If, in contrast, the collapse is due to fracture of material, Fcr is virtually independent on

µ. As expected, the number of reinforcing bars (4φ vs. 12φ) at a given µ only slightly effects the

critical load. It is interesting that the 4φ-columns seem to exhibit slightly higher values of the

buckling load than the 12φ-columns, provided, however, that the local buckling of each individual

bar is prevented by the correct placement of stirrups. The effect of compression strength of concrete

Table 4 The effect of the reinforcement layout and the steel/concrete area ratio on the buckling load Fcr [kN].
Concrete C30/37

µ [%]  0.5 1.0 1.5  2.0 3.0

 [kN] 3 620.97 3 827.92 4 043.74 4 259.77 4 709.03

12φ

PPC 3 320.86 3 491.79 3 665.96 3 843.28 4 207.07
CC  1 977.25 2 050.17 2 123.29 2 196.61 2 343.77
FPC  3 537.48 3 732.78 3 933.01 4 138.14 4 562.99
FFC 3 597.89 3 801.05  4 009.82 4 224.20 4 669.77

4φ

PPC 3 340.24 3 532.00 3 728.45 3 929.55 4 345.49
CC 1 997.33 2 090.89 2 185.18 2 280.15 2 472.00
FPC 3 548.87 3 756.32 3 969.51 4 188.45 4 643.71
FFC 3 603.89 3 813.18 4 028.24 4 249.10 4 708.35

Nult

 

 

Fig. 6 The variation of normalized buckling load Fcr /Fult vs. column slenderness λ
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on the buckling load is depicted in Figs. 7(c) and 7(d). As expected, the effect is substantial. Note

that the relation Fcr vs. fcm is linear. 

  

3.2 Restrained reinforced concrete columns 

We consider the reinforced concrete columns with end restraints, as shown in Fig. 8. Columns can

be utilized in the stability analysis of unbraced (RCA), partially braced (RCB) and totally braced

(RCC) frames (see, e.g., Liu and Xu 2005, Mahini and Seyyedian 2006). 

The consideration of the specific boundary conditions of the RCA column in Eq. (56) gives 

(66)

Likewise, for the RCB column we obtain 

detKT = (A 
+ BcoskcrL + kcrCsinkcr L)  = 0 (67)

detKT
1

1 εcr+( )
4

---------------------- C22 cr,
kcr

4
C22 cr,
( kcr ρ

1
ρ

2
+( )coskcrL C22 cr,

2
kcr

2
– ρ

1
ρ

2
+( )sinkcrL+( ) ) 0= =

1

1 εcr+( )
4

----------------------

Fig. 7 The effect of the steel/concrete area ratio and strength of concrete on buckling load Fcr. (a) and (c)
pinned-pinned column (PPC); (b) and (d) fixed-fixed column (FFC)
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where 

For the RCC column we have 

(68)

If linear elastic material is considered along with the inextensibility condition εcr = 0, and if the

reinforcement is neglected, Eqs. (66)-(68) reduce to the expressions as given by Wang and co-

workers (Wang et al. 2005). 

In what follows we study effects of various parameters and types of end restraints on the buckling

load. In particular, we are interested in the effective length factor α, defined as 

Lu = αL  (69)

In this case the condition detKT = 0 can conveniently be replaced with 

(70)

A 2 1 εcr+( )
2
µVρ

1
ρ

2
=

B 2 1 εcr+( )
2
µVρ
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2
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1
ρ

2
+( ) kcr

2
L 1 εcr+( )

2
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µV ρ
1

ρ
2

+( )–+=

C C22 cr,
C22 cr,
( kcr

2
C22 cr,

kcr

2
– L 1 εcr+( )

2
µV ) 1 εcr+( )

2
µVρ

1
+ +( )  +=

C22 cr,
1 εcr+( )

2
µV C22 cr,

kcr

2
ρ

1
L 1 εcr+( )

2
µVρ

1
–+( )ρ

2
)

detKT
1

1 εcr+( )
2

---------------------- kcr 2ρ
1
ρ

2
2ρ

1
ρ

2
C22 cr,

kcr

2
L ρ

1
ρ
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kcr C22 cr,
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kcr

2
L ρ

1
+( )( C22 cr,

Lρ
1

–( )ρ
2
)sinkcrL+ ) ) 0=

1 εcr+( )Fcr

ETc Jeffπ
2

αL( )
2

--------------------=

Fig. 8 Reinforced concrete columns with end restraints 



Exact buckling load of a restrained RC column 307

Fig. 9 shows the effect of material non-linearity of concrete and steel and the spring stiffnesses on

the effective length factor for RCA columns. In Fig. 9, ω1 and ω2 denote the normalized stiffnesses,

 (i = 1, 2), and  is the normalized translational

spring stiffness. 

Comparing Figs. 9(a) and 9(b), we can observe that the material non-linearity has a relatively

small influence on the effective length of a RCA column. The numerical values of the effective

length factor for log ω1 = log ω2 = 1 are also displayed in Table 5. If log ω1 and log ω2 are big, α

approaches 1, and if log ω1 and log ω2 are small, α approaches  (Fig. 9). Unlike the effective

buckling length, the buckling load is very much affected by the non-linearity of material. For

example, for the RCA column with log ω1 = log ω2 = 1 and 
 
= 0, the buckling load is 3,489.78

kN, in contrast to 7,383.92 kN of the elastic column (Table 5). 

The effect of the material non-linearity of RCB and RCC columns on the buckling load is shown

in Figs. 10 and 11 and in Table 5. As in the RCA columns, the material non-linearity effects Fcr and

εcr, while its effect on the effective length factor is small. The effective length factor of the RCB

column varies from α = 1 for large ω1 and ω2 to a large α for log ω1 = log ω2 = 0. For the RCC

columns (Fig. 11), the effective length factor α varies from α = 0.5 for large ω1 and ω2 (fixed-fixed

column) to α = 1 for log ω1 = log ω2 = 0 (pinned-pinned column). 

ω i ρ
i

ρ
i
L/ EcmJc( )= = µV µVL/ EcmAc( )=

∞

µV

Fig. 9 Variation of effective length factor α with respect to logω1 and logω2 for reinforced concrete columns
RCA (µV = 0): (a) elastic constitutive relations for concrete, with reinforcement being neglected, and
(b) non-linear constitutive relations for both concrete and steel

Table 5 The effect of the non-linear constitutive relations of concrete and steel on buckling load parameters
Fcr, εcr and α (logω1 = logω2 = 1).

Type of column Material model Fcr [kN] εcr [‰] α

RCA (  = 0) 
elastic column 

RC column 
7 383.92 
3 489.78 

−2.564 
−1.500 

1.20 
1.13 

RCB (  = 0.005) 
elastic column 

RC column 
20 211.67 
3 970.24 

−7.018 
−2.071 

0.72 
0.63 

RCC  = 1) 
elastic column 

RC column 
30 365.71 
3 994.99 

−10.544 
−2.132

0.59 
0.56 

µV

µV

µV
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4. Conclusions 

This paper has provided the theoretical foundation and the exact solutions for the buckling load of

centrically loaded restrained reinforced concrete columns. Based on the analytical results and the

parametric studies undertaken, the following conclusions can be drawn: 

• The non-linearity of concrete and steel has a substantial effect on the buckling load and the

corresponding membrane deformation. For the columns with a short effective buckling length,

the effect appears to be the largest; e.g., for the fixed-fixed column, the ratio  is

about 10 (Table 2). If the slenderness of the column is large, the effect of the material non-

Fcr

elastic
/Fcr

RCcolumn

Fig. 11 Variation of effective length factor α with respect to log ω1 and log ω2 of reinforced concrete columns
RCC (  = 1): (a) elastic constitutive relations for concrete, with reinforcement being neglected,
and (b) non-linear constitutive relations for both concrete and steel 

µV

Fig. 10 Variation of effective length factor α with respect to log ω1 and log ω2 for reinforced concrete
columns RCB (  = 0.005): (a) elastic constitutive relations for concrete, with reinforcement being
neglected, and (b) non-linear constitutive relations for both concrete and steel 

µV
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linearity is small; e.g., for fixed-free column, the ratio  is only about 1.2 (Table 2). 

• Unlike in the linear elastic columns, the effect of membrane deformations on the buckling load

of restrained reinforced concrete columns is very important and should not be neglected in the

analysis. 

• The buckling load of the restrained reinforced concrete columns linearly increases with strength

of concrete and the steel/concrete area ratio, µ. The increase rate is somewhat bigger for small

ratio. For example, if µ = 0.5%, the ratio  is about 4.6, while for µ = 3.0%, this

ratio is about 3.6 (Figs. 7(a) and 7(b)). 

• For a given concrete, the buckling load magnitude changes linearly with the steel/concrete area

ratio. This ratio has only a moderate influence on the buckling load. For example, 

 is about 1.30 (Table 4). The layout of the steel bars is rather unimportant. If the bars

are gathered solely at the corners of the cross-section rather than placed along the sides, the

buckling load is only negligibly higher (Table 4). 

• The non-linearity of concrete and reinforcing steel has a relatively small influence on the

effective length factor. This holds true for both unrestrained and restrained columns. 
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