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A geometrically nonlinear thick plate bending element 
based on mixed formulation and discrete 

collocation constraints

J. A. Abdalla
†

Department of Civil Engineering, American University of Sharjah, Sharjah, UAE

A. K. Ibrahim
‡

Department of Civil Engineering, University of Sudan for Science and Technology, Khartoum, Sudan

(Received October 25, 2006, Accepted March 8, 2007)

Abstract. In recent years there are many plate bending elements that emerged for solving both thin and
thick plates. The main features of these elements are that they are based on mix formulation interpolation
with discrete collocation constraints. These elements passed the patch test for mix formulation and
performed well for linear analysis of thin and thick plates. In this paper a member of this family of
elements, namely, the Discrete Reissner-Mindlin (DRM) is further extended and developed to analyze both
thin and thick plates with geometric nonlinearity. The Von Kármán’s large displacement plate theory based
on Lagrangian coordinate system is used. The Hu-Washizu variational principle is employed to formulate
the stiffness matrix of the geometrically Nonlinear Discrete Reissner-Mindlin (NDRM). An iterative-
incremental procedure is implemented to solve the nonlinear equations. The element is then tested for
plates with simply supported and clamped edges under uniformly distributed transverse loads. The results
obtained using the geometrically NDRM element is then compared with the results of available analytical
solutions. It has been observed that the NDRM results agreed well with the analytical solutions results.
Therefore, it is concluded that the NDRM element is both reliable and efficient in analyzing thin and
thick plates with geometric non-linearity.

Keywords: geometric nonlinear thick plate; Discrete Reissner-Mindlin; mixed formulation.

1. Introduction

Over the years there are many solutions that have been developed to solve thin and thick plate

bending problems. The thin plate theory is based on the assumptions of Kirchhoff in 1850

(Timoshenko and Woinowsky-Krieger 1972). Kirchhoff assumptions were relaxed by Reissner

(1945) and further relaxed by Mindlin (1951). Both relaxation is to accommodate thick plates where

shear deformation was considered. Classical (analytical) solutions of plate problems were proposed

by Navier, Kirchhoff and Levy (Timoshenko and Woinowsky-Krieger 1972, Levy 1942), and
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numerical solutions were derived by Galerkin (Oden 1967). The plate bending was one of the first

problems that attracted the finite element researchers as depicted in the work of Zienkiewicz and

Cheung (1964), Clough and Fellipa (1969) and Morely (1971). Recent development in this field is

given by Zienkiewicz and Taylor (2000) and Bathe (1996). 

Although plate bending was one of the first problems to receive considerable attention by the

finite element researchers going back to the early sixties, nevertheless, the development of a plate

element that accurately represents the behavior of both thin and thick plates remains an active topic

of an ongoing research. The major difficulty of using finite element in plate bending was in

obtaining the shape functions that satisfy compatibility conditions for convergence of finite element

solutions in case of thin plates and do not give poor results due to shear locking in case of thick

plate formulation. The major difficulty was not fully appreciated at that time and for these reasons

and others finite element plate bending remains a topic of active research to the present day.

Independent interpolation of rotations and displacements with discrete constraints (Zienkiewicz

et al. 1990), the use of Lagrangian multiplier, the use of reduced and selective integration (Pawsey

and Clough 1971, Zienkiewicz et al. 1971), the use of substitute shear strain fields (Hinton and

Huang 1986) and the use of assumed-stress (Darilmaz 2005), among others, are some of the salient

approaches used to overcome such major difficulties in formulating plate bending elements. As the

result many successful elements have been developed over the years. 

Among the large number of plate bending elements developed in recent years is a set of

triangular and quadrilateral finite elements that were introduced by Zienkiewicz et al. (1990),

Onate et al. (1992) and Taylor et al. (1993) which are based on mixed formulation. These

elements managed to overcome the difficulties of continuity and shear locking phenomena. In this

set of finite elements, the Discrete Reissner-Mindlin (DRM) element, is found to be of best

performance in analyzing both thin and thick plate bending problems. The main features of the

DRM element is the mixed interpolation adopted in its formulation and the use of line collocation

constraints to substitute for shear in the total potential energy equation in terms of rotations and

displacements. The characteristics and performance of the DRM element for both thin and thick

elastic plates was introduced by Zienkiewicz et al. (1990). The elastic characteristics of the DRM

element resting on elastic foundation were given in Abdalla et al. (2006). In this paper the element

is further developed and extended to solve problems of thin and thick plates with geometric non-

linearity.

2. Nonlinear plate elements

There are two major source of non-linearity in structural mechanics problems. Mainly: (1)

material non-linearity (nonlinear stress-strain relations); and (2) geometric non-linearity (large

displacements and/or large strains - nonlinear strain-displacement relations). For accurate

determination of displacements and stresses, geometric and material non-linearity need to be

considered in some plate bending problems. Also, strains due to membrane actions may

significantly affect displacements and stresses in plate bending and should not be ignored.

The nonlinear analysis of plates and shells has been treated by classical (Fourier Series) methods

by Chai (1980), Sundara (1966) and Shen (2000), finite difference method by Bhaumik (1967),

third-order theory by Reddy (1990), finite strip method by Sheikh (2000), dynamic relaxation by

Rushton (1972) and Turvey (1978), perturbation analysis by Thompson (1968) and for restricted
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classes of problems, by the use of Ritz procedure. However, partially as a result of its greater

flexibility, the finite element method appears to be the most popular numerical approach for

nonlinear analysis. The pioneering non-linear work on finite element is due to Turner et al. (1960).

However, most of the earlier analysis related primarily to the linear buckling problems by Crisfield

(1973). 

Using the finite element method, Bathe and Bolourchi (1980) presented a displacement based

approach for geometric and material nonlinear analysis of plates and shells. Likewise Pica, Wood

and Hinton (1980) formulated a Mindlin plate bending element for geometrically nonlinear analysis

of plates. Hughes and Lui (1981) and Dvorkin and Bathe (1984) developed nonlinear shell

elements. Singh et al. (1994) used higher-order shear deformation theory to formulate a 4-node, 14

degrees of freedom C1 continuous rectangular element to solve un-symmetrically laminated

rectangular plates with different boundary conditions. Zhu et al. (1997) developed a nonlinear

triangular thin plate element based on large deformation variational principle. They relaxed the

inter-element continuity requirement and the element is formulated based on total Lagrangian

assumption. The element is shear-locking free due to introduction of special element displacement

function and the element showed good performance. Kim et al. (2003) developed a geometric

nonlinear 6-node degenerated-shell element and a 12-node solid-shell element that were based on

the assumed natural strain sampling scheme. The shear locking phenomena had been avoided and

the element performed well. 

Zhang et al. (2003, 2006) developed a geometric nonlinear non-conforming triangular plate

element with drilling degrees of freedom using both total and updated Lagrangian approach and a

displacement-based 4-node quadrilateral elements based on first order shear deformation theory and

Von-Karman’s large deflection theory employing total Lagrarangian approach. The elements were

used to analyze plates with geometric nonlinearity and satisfactory results were obtained. By load

perturbation of the linear equilibrium equations in their finite element formulation, Levy et al.

(2001), derived the stiffness of a geometrically nonlinear three-node flat triangular shell element.

Leung and Zhu (2004) presented a geometric nonlinear trapezoidal hierarchical Mindlin plate

element for nonlinear vibration analyses of plates. They used Legendre orthogonal polynomials to

enrich the shape functions and therefore to avoid the shear-locking phenomenon. Kere and Lyly

(2005) formulated a plate element based on Reissner-Mindlin-Von Karman for analysis and design

of laminated composite structures subjected to large deflection. Andrade et al. (2006) developed a

3D 8-node hexahedral isoparametric element for geometric nonlinear analysis of plates and shells.

They avoided shear locking by using corotational system stress and strain components. 

Filho et al. (2004), used the formulation for nonlinear analysis described in Liu et al. (1998), for

the case of small strain/large rotation, and extended the 8-nodes hexahedral isoparametric finite

element developed by Hu and Nagy (1997). They employed a uniform reduced integration method

to free the element from shear locking. The modified element was used successfully for

geometrically nonlinear static and dynamic analysis of plates and shells undergoing large

displacements and rotations. A bibliography about recent development in geometric nonlinear

analysis by the finite element method is given by Mackerle (1999). Among all these approaches,

the mixed formulation with discrete collocation constraints is used here to develop a nonlinear

Discrete Reissner-Mindlin plate element due to its success in solving linear thin and thick plate

problems.
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3. Basic assumption in the development of DRM element for geometric nonlinearity

3.1 Equilibrium equations

 

The domain of the plate is given by

where t is the plate thickness.

Fig. 1 shows the stress resultant of a thick plate. The equilibrium equation for large displacement

and large strain can be formulated as the sum of internal and external generalized forces and is

given by a set of nonlinear equations as follows

(1)

B0 : strain-displacement transformation matrix for linear infinitesimal strain analysis

: strain-displacement transformation matrix for large displacement

: nodal parameters-translation and rotation degrees of freedom

σ : is the total stress due to small and large displacement

f : external generalized forces 

Eq. (1) is valid whether displacement and/or strain are large or small.

3.2 Strain-displacement relations

When the middle surface displacements are large, the rotational strains and the in-plane strains are

coupled. The membrane part of Von Kármán’s strain-displacement relations for large deflection can

be considered as a special case of the Green-Lagrange strains and the resulting strain-displacement

relationship, in terms of middle surface strains and change in curvature, will be as given in Eq. (2)

below (Zienkiewicz and Taylor 2000).
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Fig. 1 Stress resultant in a thick plate element
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(2)

Where u and v are in-plane displacement components, while w is the displacement component

normal to the x-y plane. For a plate subjected to out of plane loads only, the in-plane strain terms

(due to u and v) can be neglected and the total strains will contain strains due to linear curvature

( ) and strains due to nonlinear rotation ( ) associated with the out-of-plane (lateral) displacement

only as given by Eq. (3). 
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strain can be written in terms of strain transformation matrices and nodal parameters as 

(6)

3.3 Stress-strain relations

For linear material behavior the constitutive relation can be written as follows

where, D is the set of elastic constants, ε is the strain vector, ε0 is the initial strain vector and σ0 is

the initial stress vector. Ignoring the initial strain and initial stress effect, the remaining stress-strain

relationship will be as

(7)

4. Formulation of the non-linear Discrete Reissner-Mindlin element

The total potential energy including the effect of geometric non-linearity is as follows 

(8)

Where the terms above represent bending and in-plane strain energy due to linear curvature and
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moment ( ) and work due to prescribed shear ( ), respectively.

Using Eqs. (6), (7) can be written as

Mixed interpolation formulation of displacement and rotation are given by
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θ Nθθ̂=
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(9)

The effect of geometric non-linearity assuming that in-plane strains ( ) are developed due to

bending only are now included in Eq. (9). After minimization of the total potential energy of

Eq. (9), collecting terms and expressing the equilibrium equations in matrix form, the following

system of equations will be obtained.

 (10)
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evaluated numerically using three points Gauss Quadrature rule. In the above formulation the load

vector is given for the uniformly distributed load q. It is clear that the contribution of the nonlinear
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 Nwŵ( )TqdΩ
Ω

∫– Nθθ̂( )TM̃dΓ
Γ

t
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nodes each has three degrees of freedom (T3D3), mainly, plane rotations, θx, θy and a lateral

translation w, i.e., no in-plane degrees of freedom are considered. A single shear variable S and one

hierarchical rotational degree of freedom ∆θ were introduced on each of the element sides as shown

in Fig. 2. 

The element variables can be written in terms of nodal degrees of freedom and shape functions

using triangular coordinate system as shown below

 (16)

where ek is a tangent vector
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6. Exact solutions

The Von Kármán equations for large displacement of isotropic plate as shown in Chai (1980) are

given by 
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Fig. 2 The DRM element variables
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(20)

Where F is the Airy stress function, q is the applied uniformly distributed load, D is the flexural

rigidity, E is the modulus of elasticity and t is the plate thickness. Using generalized double Fourier

Series (Sandra et al. 1966), it can be shown that for simply supported square plate subjected to

uniformly distributed transverse loading, the lateral deflection w, after some manipulation, is given

by Chai (1980) 

(21)

For fixed edges square plate the lateral deflection w is given by

(22)

This exact solution is used as a bench mark for comparison with the finite element solution.
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Fig. 3 Flow Chart for the NDRM computer program
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7. Computer implementation and numerical results

A computer program to generate the stiffness matrix of the NDRM element, together with details

needed for the assembly of the structure stiffness matrix and the solution of the nonlinear system of

equation, is written as detailed in Ibrahim (1998). The integration of the terms of the element

stiffness matrix is computed numerically using Gauss Quadrature and Radau integration constant

with third order integration process. For the nonlinear solution the program computes the non-linear

terms of the element stiffness matrix using the residual load. For each iteration process, a line

search is conducted using the norm of the residual load vector in order to achieve convergence of

solution in a finite number of iterations. The program is capable of solving linear and nonlinear

plate bending problems. A detailed flow chart diagram for the program is shown in Fig. 3. 

The input to the program is the number of elements in the x-direction, the number of elements in

the y-direction, plate boundary conditions indicator for clamped or simply supported edges, young

modulus, plate thickness, Poison’s ratio and the incrementally applied load. The mesh is then

generated automatically and the finite element analysis is carried out. The mesh sizes, number of

elements and number of nodes used for testing and verification of the finite element solution is

shown in Table 1. Fig. 4 shows samples of 2 × 2 and 4 × 4 finite element mesh.

The output of the program contains the elastic solution and the solutions of the different iterations

of the non-linear calculations. The solutions consist of nodal displacements, mainly x-rotations, y-

Fig. 4 2 × 2 and 4 × 4 finite element meshes

Table 1 Elements and nodes of the different meshes

Mesh Number of elements Number of nodes

2 × 2 8 25

4 × 4 32 81

8 × 8 128 289

10 × 10 200 441
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rotations and z-translations, the bending moments about x and y axes in each nodal point, and the

shear forces.

The NDRM element has been tested for square plates with clamped edges and simply supported

edges subjected to uniformly distributed loads. The uniformly distributed load (q) has been applied

incrementally. The non-linear responses such as deflections and stress resultants have been

calculated. The performance of the NDRM element for both thin and thick plates where the

thickness of the plate was varied from t/a = 0.05 representing very thin plate to t/a = 0.5

representing very thick plates was investigated. An analytical solution using Von Kármán equations

(Chai 1980, Sandra 1966) with Double Fourier Series method was used for verification of results.

Different finite element meshes were used ranging from a 2 × 2-mesh to a 10 × 10-mesh. Fig. 5

shows the linear and non-linear central deflections for thin and thick plates with clamped edges and

simply supported edges for different mesh sizes. As the mesh is refined the non-linear solution

departs from the linear solution. Fig. 6 shows the variation of central deflection response for a

clamped edges plate with various plate thickness. Fig. 7 shows the variation of central deflection

response for a simply supported edges plate with various plate thickness.

Table 2 shows a comparison between the result of the NDRM element and the analytical solution.

Comparison of performance of the NDRM and that of the analytical solution in central deflection

for simply supported edges plate is graphically shown in Fig. 8. It is observed that the NDRM

element result is identical to that of the analytical solution for the linear part for small loads and

deviate slightly for the nonlinear part as the load increases. Comparison of performance of the

Fig. 5 Load-central deflection (w/t) of thin and thick plates (thin plate (t/a = 0.05) and thick plate (t/a = 0.5))
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Fig. 8 Comparison of central deflection exact and
NDRM-simply supported thin plate 

Fig. 9 Comparison of central deflection exact and
NDRM-fixed edges thin plate 

Fig. 6 Variation of central deflection with plate
thickness for fixed edges plate (q = 150 KN/
m2)

Fig. 7 Variation of central deflection with plate
thickness for simply supported edges plate
(q = 150 KN/m2)

Table 2 Comparison of NDRM solution and exact Von Kármán solution for thin plates

Simply supported edges Fixed edges

Load intensity

Exact solution
NDRM solution 

(10 × 10)
Exact solution

NDRM solution 
(10 × 10)

0 0 0 0 0

80 1.2818 1.3539 1.2258 1.2536

160 1.6150 1.8036 1.5494 1.7103

240 1.8488 2.0641 1.7759 1.9662

320 2.0349 2.3203 1.9561 2.1584

400 2.1920 2.5034 2.1081 2.3454

480 2.3294 2.6628 2.2409 2.4840

q

E
---

a

t
---

⎝ ⎠
⎛ ⎞

4
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NDRM and that of the analytical solution in deflection for clamped edges plate is shown in Fig. 9.

Similar trends to that of the simply supported plate were observed for the fixed edges plate. 

8. Conclusions

In this study a non-linear thick plate element based on mixed formulation with discrete collocation

constraints was developed. The element has been tested for thin and thick square plates with

clamped edges and simply supported edges subjected to uniformly distributed transverse loads. The

non-linear responses such as deflections have been calculated. The deflections obtained from the

finite element solution were then compared with that of the analytical solutions. The following

points have been concluded:

• The performance of the NDRM element, which has been tested for geometric nonlinear plates

subjected to uniformly distributed load, was found to be quite acceptable as compared to the

analytical solution based on Von Kármán. As expected, when the number of element increases

the NDRM solution approaches the Von Kármán solution for nonlinear plates, i.e., it converges. 

• As the load increases the discrepancy between the NDRM solution and the exact solution

becomes apparent. This could be attributed to the assumption made regarding the exclusion of

the in-plane strains due in-plane deformation (u, v) which becomes more significant as the load

increases. 

• The finite element analysis using the NDRM element handles plates of varying thickness

ranging from t/a = 0.05 (for very thin plates) to t/a = 0.5 (for very thick plates). Therefore, the

NDRM element can be use to analyze both thin and thick plates with no shear locking.

• In the formulation of the NDRM element discrete constraints are used to express the shear stress

resultants parameters in terms of displacements parameters. Therefore, shear locking was

avoided and no singularity was observed.

• As expected, the nonlinear displacement is smaller than the linear displacement due to

membrane action where stress due to membrane action reduces deflection due to flexure.

• The nonlinear characteristics of the NDRM element have been formulated in this study, further

extension of the DRM element to plates subjected to combined lateral and in-plane loading and

plates with material non-linearity can be formulated in a similar manner.
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