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Dynamic response for electromechanical integrated 
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Abstract. In this paper, the equivalent exciting force caused by electric excitation is derived. By
dividing load and displacement vectors into mean values and time-varying ones, the dynamic equations of
the system are transformed into linear ones for time-varying portion of the displacements. The analytical
equations of the forced time responses of the drive system to electric excitations are obtained. Using the
Laplace transformation, the transfer function of the drive system is obtained. These equations are used to
analyze the time and frequency responses of the drive system to the electric excitation. It is known that
electric excitation can cause forced responses of the drive system, the total dynamic responses are decided
by three phase exciting voltages, exciting frequency and natural frequencies of the drive system, and the
drive parameters have obvious influence on the time and frequency responses. 
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1. Introduction 

Toroidal drive can transmit large torque in a very small size and is suitable for technical fields

such as aviation, space flight, and so on Kuehnle (1966, 1981). In Kuehnle (1998, 1999), the new

type of the toroidal drive was proposed and a method of assembling the drive was disclosed. In

Lizhong (2004), Lizhong et al. (2004), Lizhong and Zhen (2003) investigated operating efficiency,

mesh theory and contact stress of the drive. In Yao et al. (2004, 2005), a new manufacturing

principle of the stator was investigated. In Yao et al. (2005, 2006), meshing characteristics with

respect to different meshing rollers of the toroidal drive were discussed. In Yao et al. (2006), the

error and compensation for toroidal drive were analyzed.

As electrical and control techniques are utilized in mechanical engineering field, generalized

composite drives become advancing edge of the mechanical science. The electromagnetic harmonic

drive (Da Lio et al. 1994, Shang and You 1997) and piezoelectric harmonic one (Barth 2005) are

active drives in which the meshing forces between flexible gear and rigid gear are controlled by

electromagnetic force or piezoelectric force, and drive and power are integrated. The permanent

magnetic gearing (Rasmussen et al. 2003, Atallah et al. 2004, Okano et al. 2002) is a passive drive

in which mechanical elements and magnetic elements are integrated. The main advantage of the

permanent magnetic gearing is meshes without contact. 
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Based on the toroidal drive, the authors presented a kind of active generalized composite drive:

electromechanical integrated toroidal drive. In the drive, the toroidal drive, power and control are

integrated (Xu and Huang 2005).

The drive consists of four basic elements, Fig. 1: (a) the central worm; (b) radially positioned

planets; (c) a toroidal shaped stator; and (d) a rotor, which forms the central output shaft upon

which the planets are mounted. The central worm is fixed and the coils are mounted in helical

grooves of its surface. The planets have permanent magnets instead of teeth. The N and S polar

permanent magnets are mounted alternately on a planet. The stator has helical permanent magnets

instead of helical teeth. In the same manner as planet, The N and S polar helical permanent magnets

are mounted alternately on the stator.

If a specific parameter relation is realized, N pole of one element will correspond to the S pole of

the other one all along. The attractive forces between N and S pole of the different elements are the

driving forces and the meshes without contact are realized. When the alternate current is connected

to the coils of the worm, a toroidal circular field is formed. It drives several planets to rotate about

their own axes. By means of magnetic forces between teeth of the planet and stator, the rotor is

driven to rotate about its own axis. Thus, a power of low speed and large torque is obtained.

When compared with the toroidal drive, the new drive is easy to produce, without wear, and does

not need lubrication. It can be substituted for a servo system to simplify the structure of the existing

electromechanical systems. Besides the aforementioned fields that require compactness, the drive

can also be used in fields such as robots, where accurate control is required. 

The operating behavior of the drive is influenced by fluctuation of the electric parameters.

Therefore, the dynamic responses of the drive system to electric excitation should be investigated.

In this paper, based on electromechanical coupled dynamic equations for the drive system, the

Fig. 1 The electromechanical integrated toroidal drive 
 (a) Diagram of the drive (1. Planet 2. Worm 3. Stator 4. Rotor), (b) Model machine of the drive 
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dynamic response of the drive system to electric excitation is investigated. Based on the analysis of

the electromechanical coupled forces, the equivalent exciting force caused by electric excitation is

derived. By dividing load and displacement vectors into mean values and time-varying ones, the

dynamic equations of the drive system are transformed into the linear ones for time-varying portion

of the displacements. The analytical equations of the forced time responses for the drive system to

electric excitations are obtained. Using the Laplace transformation, the transfer function of the drive

system is given. These equations are used to analyze the forced time and frequency responses for

the drive system to the electric excitation. Changes of the time and frequency response along with

main parameters of the drive system are also obtained. It is known that electric excitation can cause

forced responses of the drive system, the total dynamic responses are decided by three phase

exciting voltages, exciting frequency and natural frequencies of the drive system, drive parameters

have obvious influence on the time and frequency responses, and it is because mesh stiffness and

equivalent exciting force of the drive system are influenced by these parameters. These results can

be used to predict the noise and dynamic load and are useful in maximizing the power density of

the drive and reducing noise radiation. 

 

 

2. The equivalent exciting force 

Space phase relation of the worm coils is shown in Fig. 2. In Fig. 2, the lines AA, BB and CC

represent three phase worm coils, respectively. The points 1,2,3,4 are four planet teeth, respectively.

The symbol φv denotes face width angle of the worm. Then, in the transverse plane of the planet,

the phase angle of the phase-i is

where np is phase number of the worm coils (np = 3), p is number of the pole-pairs, here subscript i

represents the phase.

Let position angle θ = 0 of the planet when tooth of the planet is aligned completely with phase-1

coil. Inductances of the every phase can be calculated as below 

Self-inductances:

where Lii is self-inductance of the ith phase coils, L0 is average inductance, L1 is the first order

harmonic component of the inductance. Here, the subscript 0 means average value, the subscript 1

means the first order harmonic component.

mutual-inductances between adjacent phases:

where L01 is average mutual-inductance between the adjacent two phase coils, the subscript 01

means the adjacent two phases.
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mutual-inductances between two spacing phases:

where L02 is average mutual-inductance between the spacing two phases coils, the subscript 02

represents the spacing two phases, here  (i = 1 to np), z1 is tooth number of the

planet.

The magnetic linkage λi of the worm coils can be calculated as follows

 (1)

where Ii is the current in the ith phase worm coils, Lij is the mutual-inductance of the coils, the

subscript j represents the phase different from the phase i.

The magnetic energy stored in the electric system is

 (2)

Symbols dζ and dθ denote relative displacement and relative rotating angle between magnet poles

of the different elements, respectively, and then dζ = Rdθ. The electromagnetic force between

magnet poles is calculated as follows

 (3)

Substituting Eqs. (1) and (2) into (3), the electromechanical coupled force between a tooth of the

planet and worm is given as

(4)

where the subscript w represents worm, the subscript p represents planet.
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Fig. 2 Space phase relation of the worm coils 
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Let  denote equivalent electric exciting force,  denote increment of the magnetic

meshing force between a planet and worm, then 

 (5)

 (6)

As three phase currents are connected to coils of the worm, Eq. (5) can be changed into following

form 

 (7)

Three phase electric excitation vector is given as below

 (8)

where v is the amplitude of the exciting voltage applied to coils, ωe is the frequency of the exciting

voltage applied to coils. 

When only the first phase voltage excitation is considered, substituting Eq. (8) into (7), the

equivalent exciting force is

 (9)

where rΩ is resistance of each phase worm coils, I is effective value of the current, .

When only the second phase voltage excitation is considered, the equivalent exciting force is

(10)

When only the third phase voltage excitation is considered, the equivalent exciting force is

 (11)

 

3. The dynamic response of the drive system to electric excitations 

The dynamic equations for the electromechanical integrated toroidal drive is derived as below
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 (12)

where X and F are displacement and load vectors, respectively 

 

 

M, C and K are mass, damp and stiffness matrix, respectively, the subscript r represents rotor.

 

here, 

 and . kwpi and kspi are mesh stiffness between planet-i and

worm or stator, respectively; kczi and kcxi are planet support stiffness in axial and radial directions,

respectively.

For the sake of convenience, the rotations are replaced by their corresponding translational mesh

displacements as . Here, m is planet number, θj is the rotation of planet or

rotor, rj is the rolling circle radius for planet and the radius of the circle passing through planet

centers for the rotor. A displacement vector qj and a mass matrix mj are defined for each planet j as

 and . Here, Jj and mj are polar mass moment of inertia

and mass for planet j, respectively. Mr  is equivalent mass of rotor corresponding to its

displacement ur. Here, subscript j means the jth planet.

The total load of the drive system consists of the static load and the dynamic load. Hence, the

load vector is

 (13)
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 and 

γwpi and γspi are the lead angles at contact point between planet-i and worm or stator, respectively.

The subscript pi means ith planet.

Then, the total forced displacement of the each component consists of the static displacement and

the dynamic displacement as well. Hence, the displacement vector is

 (14)

where  and  are the static displacement vector and the dynamic displacement vector,

respectively,  and , the subscript j means the

jth planet.

Eqs. (13) and (14) are substituted into Eq. (12), under condition that nonlinear terms are

neglected, the linear dynamic equations of the drive system are obtained

(15)

The Eq. (15) decides a set of equations that are coupled with each other. For simplicity purposes,

the equations should be transmitted into equations independent of each other. Then, Eq. (15) can be

changed into the following form

 (16)

where Mr, Cr and Kr are the diagonal mass, damping and stiffness matrices, respectively. ∆Fr and

∆Xr are the transmitted exciting force and dynamic displacement vectors, respectively. Matrices Mr,

Cr and Kr, vectors ∆Fr and ∆Xr are given as 

Here Ar is the mode matrix of the Eq. (15).

Eq. (16) can be replaced by following equation
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where , ,  is the rth regular exciting force, Mr and Kr are the

rth transmitted mass and transmitted stiffness, respectively. m is the planet number.

When initial conditions  are given, under condition that the ith phase

voltage excitation is considered, the time response of the rth regular coordinate xNr is 
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From Eq. (18), the following equation can be obtained

   (i = 1 to 3)

 (19)

Using the Laplace transformation for Eq. (16), the frequency response of the drive system is given

(20)

where 

Then, the real time and frequency responses of the drive system can be calculated as below

 (21)

 

4. Results and discussions

4.1 Time response

From Eq. (12), let damping and load equal zero, the undamped equations of free vibration for the

drive are given as
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The parameters of the numerical example are shown in Table 1. The parameters are substituted

into equations of the mass and stiffness matrix, and then the mass and stiffness matrix are

substituted into Eq. (22), the natural frequencies of mechanical system for the drive system can be

obtained as shown in Table 2.

Based on the natural frequencies, the mode matrix can be obtained as below

(23)

In matrix A, the first, third and fourth columns represent a 7-DOF vibration, respectively, in which

the last term shows rotating vibration of the rotor. So these modes are named rotational mode. The

second, fifth, sixth and seventh columns represent a 6-DOF vibration, respectively, in which the last

term is zero and the rotating vibration of the rotor does not occur. As only vibrations of the planets

occur and these modes are named planet mode. The eighth, ninth and tenth columns represent a 1-

DOF vibration, respectively, in which only one term does not equal zero. As only the xi direction

vibration of the planet occurs and these modes are named single planet mode. 

Based on free vibration analysis, the time response analysis of the drive system to electric

excitation is given by Eq. (19). The dynamic time responses are shown in Fig. 3. Here, the exciting

frequency ωe = 50 rad/s and the modal damping is 3 percent. Fig. 3(a) shows results under condition

that only the first phase exciting voltage is considered, Fig. 3(b) is for the second phase exciting

voltage, Fig. 3(c) is for the third phase exciting voltage, and Fig. 3(d) shows results under condition

that three phase exciting voltages are considered. In Fig. 3, the curves 1 and 2 show dynamic

displacements ∆ui and ∆zi of the planet, respectively, and the curve 3 shows dynamic displacement

∆ur of the rotor. From Fig. 3, it is known:

(1) Only for the three rotational modes (corresponding to ω1 = 303 rad/s, ω4 = 584 rad/s and

ω7 = 1919 rad/s), the forced responses of the system to electric excitations occur. As vibrations of

all the planets are identical for rotational mode, only the results about one planet are presented. 

A

0.0959 0.1276 1.0000– 1.0000– 1.0000– 0.5000– 0.0638 0 0 0

0 0 0 0 0 0 0 1.0000 0 0

1.0000 1.0000 0.06242 0.1685– 0.0638 0.0319 0.50000 0 0 0

0.0959 0.0638– 1.0000– 1.0000– 0.5000 1.0000 0.0638 0 0 0

0 0 0 0 0 0 0 0 1.0000 0

1.0000 0.5000– 0.6242 1.1685– 0.0319– 0.0638– 0.5000 0 0 0

0.0959 0.0638– 1.0000– 1.0000– 0.5000 0.5000– 0.1276– 0 0 0

0 0 0 0 0 0 0 0 0 1.0000

1.0000 0.5000– 0.6242 0.1685– 0.0319– 0.0319 1.000– 0 0 0

0.3728– 0.0000 0.6801 0.2555– 0.0000 0.0000 0.0000 0 0 0

=

 

Table 1 Parameters of the example system

a/R isp iwp z1 φv (
o) m nI(A) L0(H) L1(H) rΩ(Ω)

 2  0.25  8  8  80  3  45 10−3 10−3 10

Table 2 Natural frequencies of mechanical system for the drive (rad/s)

r 1 2 3 4 5 6 7 8 9 10

ωr 303 524 524 584 1686 1686 1919 2132 2132 2132
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(2) The vibrating amplitude of the displacement ∆ur is larger than those of the displacements ∆ui

and ∆zi, and the vibrating amplitude of the displacements ∆ui is near to ∆zi. It is because the

exciting frequency (ωe = 50 rad/s) is low and the rotational vibration of the rotor is principal.

(3) When only the second phase exciting voltage is considered, the vibrating magnitudes of the

displacements ∆ur, ∆ui and ∆zi are all large. And when only the third phase exciting voltage is

considered, the vibrating magnitudes of the displacements ∆ur, ∆ui and ∆zi are all small. It is

because three phase coils on the worm are arranged asymmetrically.

(4) When three phase exciting voltages are all considered, the vibrating magnitudes of the

displacements ∆ur, ∆ui and ∆zi are all larger than those when only one phase exciting voltage is

considered. The total dynamic responses are decided by three phase exciting voltages, exciting

frequency and natural frequencies of the drive system.

(5) Electric excitations cause the initial vibrations and the forced vibrations. The initial vibrations

vanish quickly and only the forced responses are remained.

The changes of the time responses along with main parameters of the drive system are shown in

Fig. 4. From Fig. 4, the following observations are worth noticing:

Fig. 3 Time response of the drive system to electric excitations; (a) The first phase electric excitation, (b) The
second phase electric excitation, (c) The third phase electric excitation, (d) Three phase electric
excitations
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(1) As the ratio a/R increases, the displacement ∆ui increases obviously. It is because mesh

stiffness of the drive system decreases obviously with increasing the ratio a/R.

(2) As the ratio iwp increases, the displacement ∆ui increases. It is because mesh stiffness of the

drive system decreases with increasing the ratio iwp as well.

(3) As the current parameter nIs increases (here n is turn number of coils), the displacement ∆ui

decreases obviously. It is because mesh stiffness of the drive system increases with increasing the

ratio parameter nIs.

(4) Changes of displacements ∆ur and ∆zi along with above parameters are similar to ones of

displacement ∆ui. Here, they are not presented.

Fig. 4 Changes of the time response along with drive parameters
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4.2 Frequency response

Eqs. (20) and (21) are used for the frequency response analysis of the drive system to electric

excitation. The dynamic frequency responses are shown in Fig. 5. In Fig. 5, the curve 1 is for

Fig. 5 Influences of parameters on frequency response of the system to load excitations
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vibrating amplitude of the dynamic displacement ∆ui, the curve 2 for the dynamic displacement ∆zi,

and the curve 3 for the dynamic displacement ∆ur. From Fig. 5, the following observations are

worth noticing:

(1) As the ratio a/R increases, the natural frequencies decrease and the resonance peaks drop at

first, they reach their minimum at a/R = 2, and then grow at lower frequency (below 380 rad/s). At

higher frequency (above 380 rad/s and below 700 rad/s), as the ratio a/R increases, the natural

frequencies increase, and the resonance peaks grow at first, they reach their maximum at a/R = 2,

and then drop. These results are mainly decided by changes of the mesh stiffness and the equivalent

exciting force along with ratio a/R. At lower frequency (below 380 rad/s), the mesh stiffness

decreases with increasing the ratio a/R and the natural frequencies decrease. However, the

equivalent exciting force also decreases with increasing the ratio a/R. At a/R = 2, the decrease of

the exciting force is principal and the vibrating amplitudes decrease. At a/R = 2.5, the decrease of

the mesh stiffness is principal and the vibrating amplitudes increase obviously. At higher frequency

(above 380 rad/s and below 700 rad/s), the mesh stiffness and the natural frequencies increases with

increasing the ratio a/R. Changes of the vibrating amplitudes along with the ratio a/R are also

influenced by changes of the mesh stiffness and the equivalent exciting force.

(2) As the ratio iwp increases, the natural frequencies decrease and the resonance peaks drop at

first, they reach their minimum at iwp = 8, and then grow at lower frequency (below 380 rad/s). At

higher frequency (above 380 rad/s and below 700 rad/s), as the ratio iwp increases, the natural

frequencies decrease slightly and the resonance peaks grow obviously. These results are decided by

changes of the mesh stiffness and the equivalent exciting force along with ratio iwp as well. 

The parameter iwp is the speed ratio between the worm and the planet. It equals ratio of the planet

tooth number to the pole pair number of the worm coils. As the pole pair number of the worm coils

is generally taken as 1 or 2, and the planet tooth number is generally taken 6-12 (it is limited by the

size of the planet), the general value of the speed ratio iwp ranges 3-12. Hence, three different ratios

4, 8 and 12 of the parameter iwp are used.

The change of the ratio iwp will influence magnetic mesh stiffness between the worm and the

planet and the equivalent exciting force caused by the voltage fluctuation. As the ratio iwp increases,

both magnetic mesh stiffness between the worm and the planet and the equivalent exciting force

decrease. The results in Fig. 5(b) are caused by the changes of the mesh stiffness and the equivalent

exciting force. 

In the higher frequency range, changes of the equivalent exciting force along with the ratio iwp are

not obvious and the vibrating amplitudes are mainly influenced by stiffness changes. Therefore, as

the ratio iwp increases the vibrating amplitudes increases. However, in the lower frequency range, the

changes of the equivalent exciting force along with the ratio iwp are obvious and the vibrating

amplitudes are decided by stiffness and exciting force changes. The influence of the exciting force

changes is larger than that of the stiffness changes. Therefore, as the ratio iwp increases the vibrating

amplitudes decreases. After iwp ≥ 8, the decrease of the exciting force along with increasing ratio iwp

becomes slow. So, the amplitude at iwp = 12 is smaller than that at iwp = 4, but larger than that at

iwp = 8.

(3) As the parameter nIs increases, the natural frequencies increase and the resonance peaks

decrease at lower frequency (below 380 rad/s). At higher frequency (above 380 rad/s and below 700

rad/s), as nIs increases, the natural frequencies nearly do not changes and the resonance peaks grow

obviously. These results are decided by changes of the mesh stiffness and the equivalent exciting

force along with the parameter nIs as well. At lower frequency (below 380 rad/s), the mesh stiffness
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and the equivalent exciting force increase along with increasing nIs, but the increase of the stiffness

is principal. At higher frequency (above 380 rad/s and below 700 rad/s), the mesh stiffness is not

nearly influenced by nIs and the equivalent exciting force increase along with increasing nIs.

5. Conclusions

In this paper, the equivalent exciting force caused by electric excitation is derived. The analytical

equations of the time responses for the drive system to electric excitations are obtained. The transfer

function of the drive system is given. These equations are used for analysis of the time and

frequency response for the drive system to the electric excitation. It is known that electric

excitations can cause forced response of the drive system, and the total responses are decided by

three phase exciting voltages, exciting frequency and natural frequencies of the drive system, the

drive parameters have obvious influence on the time and frequency responses.
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Notation  

ui : rotating displacement of the planet i
ur : rotating displacement of the rotor
ri  : rolling circle radius for planet i
rr : radius of the circle passing through planet centers for the rotor
θi : rotation of planet i
θr : rotation of rotor
m  : planet number
qj : displacement vector for planet j
mj : mass matrix for planet j
Jj :  polar mass moment of inertia for planet j
Jr : polar mass moment of inertia for rotor
mj : mass of planet j
Mr : equivalent mass of rotor
γwpi : lead angle at contact point between planet-i and worm
γspi : lead angle at contact point between planet-i and stator
a : center distance between worm and planet
R : reference circle radius of planet 
iwp : speed ratio between planet and worm
isp : speed ratio between planet and stator
X : displacement vector
F : load vector
M : mass matrix
C : damp matrix
K : stiffness matrix
φv : face width angle of the worm
φi : phase angle of the phase-i voltage
np : phase number of the worm coils
p : number of the pole-pairs
z1 : tooth number of planet
Lii : self-inductance of the coils
Lij : mutual-inductance of the coils
L0 : average inductance
L1 : the first order harmonic component of the inductance
λi  : magnetic linkage of the coils
Ii : current of the ith phase worm coils
W  : magnetic energy storage of the electric system
F  : electromagnetic force between magnet poles
dζ : relative displacement between magnet poles
dθ : relative rotating angle between magnet poles
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Fwp : electromechanical coupled force between a tooth of the planet-i and worm
θ0 : static relative rotating angle between planet and worm
δIi : current increment of the ith phase coils 
Fe(t) : equivalent electric exciting force 
∆Fwp : electromechanical force increment between a tooth of the planet-i and worm
δθ : dynamic relative rotating angle between planet and worm

 : static load vector
∆F : dynamic load vector

 : static displacement vector
∆X : dynamic displacement vector
∆v(t) : electric voltage excitation vector
v : amplitude of the exciting voltage 
ωe : exciting frequency 
rΩ : resistance of each phase worm coils
I : effective value of the current
Fe1(t) : equivalent exciting force under the first phase voltage excitation
Fe2(t) : equivalent exciting force under the second phase voltage excitation 
Fe1(t) : equivalent exciting force under the third phase voltage excitation 
Mr : diagonal mass matrix
Cr : diagonal damping matrix
Kr : diagonal stiffness matrix
∆Fr : transmitted exciting force vector 
∆Xr : transmitted dynamic displacement vector 
Ar  : mode matrix
ωr : the rth natural frequency of mechanical system
γr : the rth relative damping coefficient
Mr : the rth transmitted mass
Kr : the rth transmitted stiffness
xNr : time response of the rth regular coordinate
∆FNr(t) : the rth regular exciting force
∆FNr : magnitude of the rth regular exciting force
n : turn number of coils
A : mode matrix

F

X




