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T-stress solutions for cracks in rectangular 
plates with multiple holes
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Abstract. The elastic T-stress is increasingly being recognized as an important second parameter to the
stress intensity factor for fracture and fatigue assessments. In this paper, the mutual or M-contour integral
approach is employed in conjunction with the Boundary Element Method (BEM) to determine the
numerical T-stress solutions for cracks in plates with multiple holes. The problems investigated include
plates of infinite width with multiple holes at which single or double, symmetric cracks have grown from.
Comparisons of these results are also made with the corresponding solutions of finite plates with a single
hole. For completeness, stress intensity factor solutions for the cracked geometries analyzed are presented
as well. These results will be useful for failure assessments using the two-parameter linear elastic fracture
mechanics approach.
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1. Introduction

Incorporating the elastic T-stress, the leading non-singular term in the Williams’ (1957) series

expansion, together with the stress intensity factor (SIF), has been shown to provide a more

complete assessment of the stress field in the vicinity of a crack, e.g. Larsson and Carlsson (1973),

Rice (1974), Bilby et al. (1986) and Du and Hancock (1991). It is now well established that the

sign and magnitude of the T-stress have implications on the crack-tip stress constraint, and hence the

plastic zone size there, as well as crack growth stability and its trajectory. More specifically, positive

T-stress leads to higher crack-tip constraint resulting in smaller crack-tip plastic zone size, and vice

versa. Indeed, the works of, e.g., Du and Hancock (1991) and Betegon and Hancock (1991), have

shown the significance of the T-stress as the second parameter to the J-integral in the

characterization of the elastic-plastic crack-tip stress fields for a number of cracked geometries.

There is evidence as well that the T-stress can significantly affect the predicted rate of propagation

of fatigue cracks, Tong (2002). Roychowdhury and Dodds (2004) have also shown that this

parameter can affect the predicted extent of crack closure under cyclic loading. In recognition of its

significance, the elastic T-stress has now been incorporated into fracture assessment procedures in

design codes, Ainsworth et al. (2000, 2002). T-stress solutions for practical geometries and loading

conditions are thus useful when applying this two-parameter fracture mechanics methodology.
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Stress concentrations are commonly found in engineering components, and for cracks emanating

from them, SIF solutions for numerous geometries and loading conditions are readily available, see

e.g. Murakami (2003), Rooke and Cartwright (1976). However, T-stress solutions for such problems

remain scarce. Wang et al. (2006) have recently obtained the T-stress for small cracks in notches

and holes. Broberg (2004) has obtained T-stress solutions for an infinite plate with double-cracks

emanating from the edge of a single circular hole under uniform remote tension. T-stress solutions

for crack(s) emanating from a circular hole in a finite plate under remote tension and bending loads

have recently been obtained by Yu et al. (2006). In all of the above-mentioned references, there is

only one stress concentration in each of the geometries considered. In many practical applications,

geometric discontinuities are often in close vicinity of each other, such as the case of rivet holes in

aerospace structures. The aim of this paper is to obtain numerical T-stress solutions for cracks in

plates with multiple circular holes from the edges of which these cracks have grown. Comparisons

of these results will be made with the corresponding ones for the case when there is only one

circular hole.

2. The boundary element method for T-stress determination

The Boundary Element Method (BEM) with the quadratic, isoparametric formulation was

employed for the numerical stress analysis in this study. It involves the transformation of the

governing differential equations into an integral equation over the boundary. Thus, only the

boundary of the solution domain needs to be modelled. This feature offers significant advantages

over other numerical schemes, such as the finite element method (FEM), requiring less effort for

mesh designs, data preparation, and the computational analysis. BEM is also now widely recognized

as a very efficient numerical tool for linear elastic fracture analysis and several associated schemes

have now been commonly adopted for stress intensity factor calculations, see, e.g., Aliabadi and

Rooke (1986). For the evaluation of the elastic T-stress, Sladek et al. (1997), has developed a

mutual- or M-contour integral approach which is more suited for BEM implementation. It is based

on the Betti-Rayleigh’s reciprocal work theorem and an auxiliary field. Because the contour integral

is along a closed path sufficiently far from the crack-tip, it obviates the need to compute the stress

field near the vicinity of the crack, where large numerical errors can occur due to the crack-tip

stress singularity. 

Consider the cracked elastic, isotropic domain R with boundary S, as shown in Fig. 1. Inside this

domain, consider a closed integration path comprised of Γo, ΓC
+, and ΓC

−. A small circular region

bounded by Γε near the crack-tip has to be excluded because of the stress singularity there; this

region is small and will reduce to zero in a limiting process. The contour of integration Γ = Γo
 +

ΓC
+

 + ΓC
− − Γε is a closed path in the counter-clockwise direction. Using Gauss’ divergence

theorem, Hooke’s law and strain-displacement relations, the Betti-Rayleigh’s reciprocal theorem for

two sets of equilibrium states of the sub-domain can be expressed as

(1)

where ui are the displacements, ti are the tractions and Xi are the body forces. The primed and

unprimed states correspond to an auxiliary and the unknown fields, respectively. Sladek et al.

(1997) proposed an auxiliary field which also corresponds to that due to a static point force f

tiui′ ti′ui–( ) dΓ⋅
Γ
∫ Xi′ui Xiui′–( ) dΩ⋅

Ω
∫=
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applied at the crack-tip in the direction parallel to the plane of the crack, as used by Kfouri (1986)

in his FEM analysis. However the one adopted by Sladek et al. (1997) has one order higher

singularity, as it is obtained by differentiating the auxiliary field presented by Kfouri (1986).

Following the usual limiting process, an expression relating the T-stress to the M-integral can be

obtained (see Sladek et al. (1997)) to be as follows

(2)

             

where E and v are the Young’s modulus and Poisson’s ratio, respectively, and  contains

known trigonometric functions of the angular location at distance r from the crack-tip along the

integration path. The corresponding nodal displacements and tractions, ui and ti, can be computed

from the BEM analysis. Using this approach, Li et al. (2004) has obtained T-stress solutions for

pressurized thick-walled cylinders using BEM while the present authors have also determined

similar results for cracks emanating from single circular holes in finite plates. Following similar

schemes, Shah et al. (2005), in their BEM analysis, have also derived the expression for the T-stress

in terms of the M-contour integral in anisotropic elasticity in two-dimensions.

Although it has been employed (Yu et al. 2006, Li et al. 2004) to solve for T-stress solutions, a

test problem is nevertheless presented here to demonstrate the veracity of the BEM analysis.
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Fig. 1 Contour path around the crack-tip
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Consider the cracked plate with a U-notch as shown in Fig. 2. Using FEM, Lewis (2005) has

obtained numerical T-stress results for a range of ratios of the geometric parameters for the problem.

For the present purpose, only one set of geometry is considered, namely, L/W = 0.3, H/W = 3.0, R/W

= 0.025, and relative crack lengths a/R = 0.1 − 1.0. Fig. 3 shows the results obtained from the two

different numerical approaches, where it can be seen that there is excellent agreement. 

3. Numerical analysis

Three different cases of finite height plates with cracks emanating from circular holes are

analyzed in this paper. Two of them involve plates of finite height but with an infinite array of holes

from which cracks have grown; the centres of these holes are all in the same horizontal plane of the

cracks. The third case deals with the influence of two adjacent holes on the T-stress of cracks which

have developed from a circular hole in an infinitely wide plate; the centres of these holes in this

case are aligned in the same vertical plane perpendicular to the cracks. Only remote uniform tension

loading by stress σ is considered here throughout. For completeness, the stress intensity factors for

these cracks are also determined and presented. Where possible, comparisons with the numerical

results for the corresponding cases of those cracks occurring in finite plates with single circular

holes will be made.

Fig. 2 A finite plate with a crack emanating from a
U-notch under uniform remote tension

Fig. 3 Comparison of T-stress solutions obtained by
Lewis (2005) and those obtained by BEM
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3.1 Case A – A plate with an infinite array of circular holes, each with a pair of symmet-
ric double cracks at its edge

Fig. 4 shows the physical problem for this case in which R is the radius of the circular holes, a is

the effective crack length, 2H is the height of the plate and 2W is the distance between the centres

of the holes. Two values of R/W ratio are considered, namely, R/W = 0.25 and R/W = 0.50, but the

height-to-hole spacing ratio H/W is fixed at 2. The range of the relative crack lengths are a/R = 1.1

− 3.2 when R/W = 0.25 and a/R = 1.1 − 1.6 when R/W = 0.50. By virtue of periodic symmetry,

only a sector of the problem, as shown in Fig. 5 was modelled in the BEM analysis.

Figs. 6 and 7 show the BEM computed results of the normalized stress intensity factor, KI /

, and the normalized T-stress, T/σ, respectively. Also shown in the figures are the

corresponding solutions for the case of a finite plate (width 2W, height 2H; H/W = 2) with a central

circular hole as obtained by Yu et al. (2006). Although the trends are similar, it can be seen that the

normalized stress intensity factor for the same relative crack size in the present case with an infinite

array of holes is significantly reduced, when compared with the case of the plate with a single hole,

especially when R/W = 0.50. As for the computed normalized T-stress, they are negative in value

for all the geometries treated, suggesting low stress triaxiality conditions at the crack-tip. The

differences in the trends and magnitudes for the case considered here and that of the finite plate

σ π a R–( )

Fig. 4 Case A – A plate with an infinite array of
circular holes and with two symmetric cracks
emanating from each of them

Fig. 5 A typical BEM mesh for Case A; a/R = 2,
R/W = 0.25, H/W = 2
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with a single hole are clearly evident. Of interest to note is that when a/R is small, the crack-tip

stress constraint increases with increasing crack length up to a certain size of the crack for each set

of geometric parameters, as suggested by the decreasing magnitude of the negative T-stress values.

With further increase in the crack size, however, the loss of crack-tip stress constraint is relatively

small (if at all); this in stark contrast to the finite plate case. 

3.2 Case B – A plate with an infinite array of circular holes, each with a crack at its edge

Case B is similar to Case A, except that only one crack emanates from each of the holes, as

shown in Fig. 8. The relative crack lengths investigated are the same as those from Case A, for both

radii ratios, R/W = 0.25 and R/W = 0.50. A typical BEM mesh of the model is shown in Fig. 9.

The normalized SIF and T-stress solutions are shown in Figs. 10 and 11, respectively, where they

are compared to those of the problem of a finite plate with a hole, Yu et al. (2006). It is evident that

the trends are similar to those seen in Case A above, and the T-stress values are again negative. For

a given relative crack size, the deviations of the magnitudes for the normalized stress intensity

factors between Case A and Case B are immediately apparent; however, the same is not true for the

T-stress results. This is illustrated in Figs. 12 and 13, where the results of Case A and Case B are

compared. For both R/W ratios considered, the T-stress solutions begin to diverge only when a/R >

1.2, suggesting that for small relative crack lengths, the T-stress for one crack configuration is also

accurate for the other.

Fig. 6 Variations of the normalized stress intensity
factor, , with relative crack
length – Case A

KI /σ π a R–( )
Fig. 7 Variations of the normalized T-stress with

relative crack length – Case A
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Fig. 8 Case B - A plate with an infinite array of
circular holes and with a crack emanating
from each of them

Fig. 9 A typical BEM mesh for Case B; a/R = 2,
R/W = 0.25, H/W = 2

Fig. 10 Variations of normalized stress intensity
factors, , with relative
crack length – Case B

KI /σ π a R–( )
Fig. 11 Variations of the normalized T-stress with

relative crack length – Case B



564 Jackie Yu, Xin Wang and Choon-Lai Tan

3.3 Case C – An infinite plate with two symmetric cracks emanating from a circular hole

in the presence of two other adjacent holes

Fig. 14 shows the physical problem for Case C considered here, where R1 and R2 are the radii of

the central and the two adjacent holes, respectively, and d is the distance between the holes.

Relative crack lengths a/R1 of 1.1 – 10.0 were analyzed for relative hole-distance d* = d/R1 of 2.5,

4, 5, 10 and radius ratio α = R2/R1 = 0.25 − 1.0. Taking advantage of symmetry of the problem,

only a quarter of the physical domain needs to be modeled. Fig. 15 shows a typical mesh that was

used for this problem. The ratios H/a and W/a ≥ 20 are used to realize the infinite plate in the

analyses.

The BEM results for the normalized SIF, KI / , and the T-stress, T/σ, are listed in

Tables 1-4. The qualitative trends of these normalized quantities with increasing crack length are

similar to those seen in Case A and Case B as presented in Figs. 12 and 13 above. As noted earlier,

for the situation when there are no adjacent holes, α = 0, (when R2 = 0), the solutions for both the

normalized SIF and T-stress have been presented by Broberg (2004) for all d* ratios treated here. It

is perhaps worth mentioning that when α = 0.25, the deviations of the normalized stress intensity

factors and the T-stress from those given by Broberg (2004) when α = 0, are very small indeed

(generally less than 2%) for the range of crack sizes and relative hole-distance considered. This is

especially true for a/R1 < 3, as the numerical values of both T-stress and KI are, for all practical

purposes, identical. 

σ π a R1–( )

Fig. 12 Comparison of SIF solutions, ,
between Case A and Case B

KI /σ π a R–( ) Fig. 13 Comparison of T-stress solutions between
Case A and Case B
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Fig. 14 Case C – A plate with twp symmetric cracks
emanating from a circular hole under the
influence of adjacent holes

Fig. 15 A typical BEM mesh for Case C; a/R1 = 3,
d/R1 = 4, R2/R1 = 0.5

Table 1 Normalized stress intensity factors, , and normalized T-stress, T/σ, for Case C: α =
R2/R1; d* = d/R1 = 2.5

a/R1

T/σ

α = 0.25 α = 0.50 α = 0.75 α = 1.0 α = 0.25 α = 0.50 α = 0.75 α = 1.0

1.1 2.8362 2.7081 2.4700 2.0694 −1.0512 −1.0051 −0.9204 −0.7788

1.2 2.4229 2.3168 2.1258 1.8258 −0.7635 −0.7389 −0.6945 −0.6204

1.4 1.9840 1.9160 1.7882 1.5749 −0.5678 −0.5759 −0.5866 −0.5878

1.6 1.7352 1.6811 1.5963 1.4634 −0.5369 −0.5562 −0.5851 −0.6177

2.0 1.4892 1.4718 1.4249 1.3605 −0.6018 −0.6251 −0.6621 −0.7066

3.0 1.2955 1.2941 1.2905 1.2844 −0.7859 −0.7942 −0.8078 −0.8241

4.0 1.2357 1.2372 1.2400 1.2453 −0.8905 −0.8902 −0.8890 −0.8835

10.0 1.1129 1.1137 1.1157 1.1181 −1.0067 −1.0010 −0.9904 −0.9722

KI/σ π a R1–( )

KI/σ π a R1–( )
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It is also evident from the results shown in the tables that as the hole radii ratio α increases, its

effects on the stress intensity factor as well as the T-stress are most pronounced when the hole-

distance ratio d* is the smallest, particularly for shorter cracks. For example, when d* = 2.5 and

 
Table 2 Normalized stress intensity factors, , and normalized T-stress, T/σ, for Case C: α =

R2/R1; d* = d/R1 = 4.0

a/R1

T/σ

α = 0.25 α = 0.50 α = 0.75 α = 1.0 α = 0.25 α = 0.50 α = 0.75 α = 1.0

1.1 2.8396 2.7324 2.5552 2.3149 −1.0541 −1.0159 −0.9509 −0.8636

1.2 2.4280 2.3430 2.2026 2.0125 −0.7649 −0.7421 −0.7043 −0.6526

1.4 1.9828 1.9188 1.8122 1.6655 −0.5647 −0.5605 −0.5528 −0.5391

1.6 1.7505 1.7023 1.6227 1.5118 −0.5383 −0.5415 −0.5455 −0.5486

2.0 1.5055 1.4760 1.4267 1.3568 −0.6109 −0.6223 −0.6393 −0.6595

3.0 1.2924 1.2838 1.2679 1.2443 −0.7881 −0.8001 −0.8188 −0.8422

4.0 1.2340 1.2316 1.2262 1.2186 −0.8935 −0.9007 −0.9126 −0.9287

10.0 1.1126 1.1129 1.1137 1.1147 −1.0214 −1.0076 −1.0049 −1.0022

Table 3 Normalized stress intensity factors, , and normalized T-stress, T/σ, for Case C: α =
R2/R1; d* = d/R1 = 5.0

a/R1

T/σ

α = 0.25 α = 0.50 α = 0.75 α = 1.0 α = 0.25 α = 0.50 α = 0.75 α = 1.0

1.1 2.8458 2.7640 2.6291 2.4452 −1.0575 −1.0274 −0.9782 −0.9109

1.2 2.4323 2.3687 2.2642 2.1200 −0.7667 −0.7488 −0.7191 −0.6784

1.4 1.9859 1.9346 1.8503 1.7343 −0.5647 −0.5581 −0.5468 −0.5304

1.6 1.7528 1.7142 1.6501 1.5611 −0.5375 −0.5355 −0.5320 −0.5263

2.0 1.5059 1.4797 1.4361 1.3750 −0.6096 −0.6132 −0.6187 −0.6251

3.0 1.2922 1.2810 1.2624 1.2365 −0.7879 −0.7960 −0.8086 −0.8249

4.0 1.2331 1.2288 1.2213 1.2106 −0.8944 −0.9015 −0.9131 −0.9284

10.0 1.1118 1.1134 1.1142 1.1142 −1.0079 −1.0080 −1.0087 −1.0086

Table 4 Normalized stress intensity factors, , and normalized T-stress, T/σ, for Case C: α =
R2/R1; d* = d/R1 = 10.0

a/R1

T/σ

α = 0.25 α = 0.50 α = 0.75 α = 1.0 α = 0.25 α = 0.50 α = 0.75 α = 1.0

1.1 2.8508 2.8229 2.7655 2.7104 −1.0577 −1.0479 −1.0421 −1.0117

1.2 2.4352 2.4147 2.3690 2.3284 −0.7655 −0.7597 −0.7582 −0.7379

1.4 1.9827 1.9644 1.9285 1.8898 −0.5615 −0.5572 −0.5561 −0.5422

1.6 1.7466 1.7325 1.7025 1.6747 −0.5307 −0.5274 −0.5289 −0.5171

2.0 1.4918 1.4807 1.4572 1.4324 −0.5959 −0.5928 −0.5963 −0.5796

3.0 1.2686 1.2611 1.2464 1.2308 −0.7700 −0.7678 −0.7735 −0.7628

4.0 1.1942 1.1889 1.1791 1.1677 −0.8672 −0.8665 −0.8727 −0.8667

10.0 1.0805 1.0801 1.0809 1.0790 −0.9822 −0.9834 −0.9867 −0.9882

KI/σ π a R1–( )

KI/σ π a R1–( )

KI/σ π a R1–( )

KI/σ π a R1–( )

KI/σ π a R1–( )

KI/σ π a R1–( )
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relative crack length a/R1 = 1.1, a reduction by 37% and 35% in the magnitudes of the normalized

SIF and the T-stress, respectively, are noted when the hole radius ratio α is increased from 0.25 to

1.0. As d* is increased to 10.0, the corresponding decreases of the magnitudes of these normalized

fracture parameters for the same crack size are only about 5%. As the crack gets progressively

longer, as expected, the influence of the adjacent holes becomes also less significant; indeed, when

a/R1 > 4, the effects of the adjacent holes are minimal for all the geometries analyzed in this Case C.

It is important to note that in all the three cases analyzed here, the T-stress decreases as the crack

becomes smaller and smaller. It is expected since the stress field is controlled by the stress

concentration when the crack is small. As discussed by Wang et al. (2006), the normalized T-stress

at the limit (a − R)/R → 0 equals −0.526Kt (Kt is the stress concentration factor of the hole). As the

crack size increases, the effect of the local stress concentration becomes less and the T-stress

solutions converge to the long crack solutions.

4. Conclusions

The Boundary Element Method has been employed to determine T-stress solutions for cracks

emanating from circular holes in infinitely wide plates under remote uniform tension. This fracture

parameter is increasing being recognized as an important additional quantity to the stress intensity

factor in order to provide better failure assessments of cracked components. In this study, three

geometric cases of the cracked plate with multiple circular holes have been considered. For the sake

of completeness, stress intensity factor solutions have also been obtained for these geometries.

Numerical values of the T-stress obtained are all negative for all the cases treated, signifying low

stress triaxiality conditions at the crack-tips. However, their magnitudes are smaller than the

corresponding ones for cracks of the same size in plates of finite width with just a circular hole

which have the same effective net un-cracked ligament. One of the problems investigated involved

the presence of two adjacent holes to the one from which cracks have emanated; the centres of

these holes lie in a plane perpendicular to the cracks. It is found in this case, these adjacent holes

only have significant influence on the T-stress when the crack sizes are relatively small. 
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