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Inelastic transient analysis of piles in 
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Abstract. In this paper, a hybrid boundary element technique is implemented to analyze nonlinear
transient pile soil interaction in Gibson type nonhomeogenous soil. Inelastic modeling of soil media is
presented by introducing a rational approximation to the continuum with nonlinear interface springs along
the piles. Modified Özdemir’s nonlinear model is implemented and systems of equations are coupled at
interfaces for piles and pile groups. Linear beam column finite elements are used to model the piles and the
resulting governing equations are solved using an implicit integration scheme. By enforcing displacement
equilibrium conditions at each time step, a system of equations is generated which yields the solution. A
numerical example is performed to investigate the effects of nonlinearity on the pile soil interaction.
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1. Introduction 

Since pile soil interaction problem often has the transient loads with high degree of material
nonlinearity in the solution domain, it is necessary to implement a nonlinear transient analysis
algorithm of the physical problem. The various approaches that have been used for the transient
problem of pile soil interaction are categorized in two main types: 1) finite and/or boundary element
method formulations and 2) dynamic Winkler type formulations. 

A direct boundary element method type of formulation for the transient analysis was implemented
by Israil and Banerjee (1990) in 2-D and by Ahmad and Banerjee (1988) in 3-D, and indirect
boundary element type of formulations were introduced for pile soil interaction problem by
Mamoon and Banerjee (1992) and Guin (1997). 

The frequency domain finite element method was used for pile and pile groups in Nogami  and
Novak (1976), Nogami and Novak (1977), Nogami (1979), Gazetas and Makris (1991), Mamoon
(1990) and further developed for nonlinear interaction of a single pile by Angelides et al. (1980). A
simple method was proposed for the analysis of vertically loaded pile groups under dynamic
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conditions (Cairo et al. 2005). The method makes use of the closed-form stiffness matrices to
simulate the response of layered soils. These matrices are incorporated in a calculation procedure
that is essentially analytical.

Nogami and Konagai (1986, 1988) presented a linear transient analysis of single piles. The soil
response to the pile motion was integrated through a simplified model based on Winkler’s
assumption, the parameters of which were determined form the consideration of a plane strain wave
propagation. Nogami and Konagai (1987, 1991) extended the time domain analysis for nonlinear
effects. El Naggar and Novak (1994) studied the dynamic axial response of pile by using nonlinear
models. In view of the heterogeneity of natural soil deposits and approximations made in analysis
methods, a simplified dynamic analysis of a single pile may be back-calculated from the dynamic
response of the pile measured in the field was presented using Winkler model and finite element
methods by Anandarajah et al. (2005). These methods represent significant achievements in the
transient analysis of pile foundations even though they have many limitations, primarily resulting
from the simplified modes of wave propagation. Besides to analytical and numerical studies,
dynamic experiments in lateral mode were carried out on model aluminium single piles in a
simulated elastic half-space filled with clay soil to determine dynamic constants of the soil–pile
system and to study the bending behaviour of piles (Boominathan 2005, 2006). A hybrid boundary
element technique is implemented to get computationally most efficient results when comparing
with 3D boundary element elastodynamic formulations. Linear beam column finite elements are
used to model the piles and resulting governing equations are solved using an implicit integration
scheme. The continuum is inelastic and modeled with modified Özdemir’s nonlinear model
(Ozdemir 1976). The nonlinear springs are used to describe the soil-pile interaction, whereas the
pile-soil-pile interaction is analyzed by using the elasticity solution. An efficient step by step time
integration scheme is implemented by using an approximate half space integral formulation
(Kucukarslan 1999, 2002). By enforcing displacement equilibrium conditions at each time step, a
system of equations is generated which yields the solution. A numerical example is presented for a
single pile and a 3 × 3 pile group under statnamic type of loading. 

2. Time domain formulations 

The formulation requires the construction of a simplified integral representation for the continuum
and coupling it with the finite element system of equations for the linear elastic piles.

2.1 Continuum equations

The elastodynamic, small displacement field in an isotropic elastic body is governed by Navier’s
equation

 (1)

where λ and µ = Lame’s constants
ρ = mass density of the deformed body

 are the accelerations and subscripts p and q ranges from 1 to 3.
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The integral form of Eq. (1) can be written as in following

 (2)

where up is the displacement of the soil; Gpq is the Green’s function for the half space, tq is the
tractions at the pile soil interface, ξ and x are the spatial positions of the receiver and the source
point, respectively. Integration of Eq. (2) is needed to be done in both time and space. It is an
implicit time domain formulation because the response of time is calculated by considering the
history of surface tractions and displacements To obtain the transient response at time t j, the time
axis is discretized into j equal time intervals as

 (3)

where ∆t is the time step. By substituting Eq. (3) into Eq. (2), one can write

 (4)

where the second integral on the right hand side is the effect of the past dynamic history. The
spatial integration in Eq. (4) is carried out by discretizing the pile-soil interface into cylindrical
elements. This integration form yields the following matrix equation where the functional variation
over the element is assumed to be linear.

(5)

The soil displacement equation at time step j can be written as

 (6)

where [G1] is the coefficient of the leading time step,  represents the effects of past time
histories on the current time node. The coefficients of the matrices G are calculated by using an
approximate fundamental solution. That is an approximate equivalent of Mindlin’s static half space
point force solution. It is superposition of two Stoke’s infinite space fundamental solutions and it
was implemented first time by Banerjee and Mamoon (1990). In order to incorporate the effects of
inhomogeneity a further approximation involving local homogeneity and a locally average speed of
wave propagation is introduced in the current work. 

To incorporate the nonlinear effects in this equation, an incremental form is introduced
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2.2 Inelastic model

A one dimensional simple model was developed by Özdemir (1976). Due to its simplicity and
requiring only a few parameters, it is very attractive to use in this analysis. Besides its simplicity, it
provides a hysteretic rule that is needed to model the cyclic behavior (Guin 1997, Kucukarslan
1999). This model is used to relate displacements and tractions. The modified Özdemir’s model is
written as

 (9)

(10)

where
t = traction and  = traction rates (increment)
K = elastic modulus of soil

 = displacement rates (increment) 
β = back stress with  = incremental back stress
Y = yield stress
α = constant controlling the slope of  curve

System nonlinearity is dominated by using the springs characterized by Eqs. (9) and (10). 
Parameters α, Y mainly control the behavior of the model. β is the function of α and Y, and is

therefore not independent parameter. The verification of the inelastic model is studied in
Küçükarslan and Banerjee (2003, 2004). The constant ‘α’ defines the post yield rate of the t − w

curve. For axially loaded piles, a relative slip occurs between pile and soil when tractions exceed a
limiting value. In this case, the value of Y assumes the value of the limiting pile soil friction. 

The purpose of this model in the lateral loading is to simulate the material nonlinearity of the soil
and to take into account of local softness in the soil around the pile. The values of α and Y are
depended on the soil deformation characteristics a particular depth. The elastic modulus, K in Eq. (9)
is a function of soil modulus at a particular depth. 

In this study following spring stiffness are used.
For lateral coefficients given by 

(11a)

and for axial coefficients given by 

(11b)

where D is the diameter of pile, Es is the Young’s modulus of soil, Gs is the shear modulus of soil.
Fa and Ft are the factors determining the level of nonlinearity existing at the pile soil interface. Fa

and Ft has the main role in allowing the continuum to dominate the initial elastic response. This is
adequately modeled by the elastic continuum equations. Since the gapping phenomenon is inelastic,
the response by considering a gap is almost linear. The role of inelastic springs is to model the soil
nonlinear behavior. Therefore, it is appropriate to use a high value of Ft so that the initial response
is dictated by the elastic continuum. For higher strain levels, the springs yield and dominate the
overall behavior. Fa anf Ft can be evaluated from the experimental results of the static tests.
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2.3 Pile equations

The governing differential equations for time harmonic beam subjected to axial and lateral
excitations are given by

 (12)

 (13)

where, Ep is the Young’s modulus of pile material; Ip is the second moment of inertia of pile; Ap is
the cross-sectional area of pile; D is the diameter of the pile  and  are the lateral and axial
displacements at time t j, respectively;  and  are the lateral and axial tractions along the pile at
time t j, respectively.

The piles are modeled with linear beam column elements. The dynamic equilibrium equations of
motion at time t j are written as follow

 (14)

where [M] and [K] are the inertia and stiffness matrices.  are the displacement and rotations
of the beam element.  are the externally applied loads and moments, respectively.

In the equilibrium equation, degrees of freedom corresponding to rotations at the pile nodes need
to be eliminated since boundary element formulations contain translation degrees of freedom only.
The rotational degree of freedom of the pile top is left in the system of equation, since it will form
a part of unknowns to be solved. The Guyan reduction technique was used to eliminate the degrees
of freedom corresponding to rotations at the pie node since BEM formulation includes only
displacements and tractions. By using Guyan reduction technique (Bathe 1993), the Eq. (14) yield
to following equation in incremental form 
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For given values of δ = 0.5 and γ = 0.25, the suggested method is unconditionally stable (Bathe
1993). Eq. (15a) needs to be cast in a form so that it can be coupled with the boundary element
equations by enforcing displacement compatibility. By keeping the pile soil degrees of freedom as
unknowns, one can write the following 
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(16)

where [D] is inversion of  with the equivalent areas of the pile nodes absorbed in it, [bp] is a
boundary condition matrix for a unit pile head displacements and rotations,  is the vector of
pile head displacements and rotations and the subscript ‘p’ represents the displacements and
tractions obtained by pile domain only.

2.4 Global equilibrium equations

Eqs. (7) and (16) can be coupled only by imposing a constraint on the incremental traction vector,
, i.e., . This constraint arises from a consideration of global equilibrium of

the entire system, which can be written in incremental form as

 (17)

where  and  are coefficient matrices obtained from area and mass properties of pile
segment respectively.  is a diagonal matrix constituting of the inertial properties of the pile cap.

 is the externally applied incremental transient load on the pile head. By substituting current
acceleration and Eq. (16) into Eq. (17), one can write 

 (18)

where  (19a)

(19b)

(19c)

(19d)

2.5 Assembly of pile and soil equations

The developed equations for the pile and soil domain are assembled by imposing a displacement
compatibility conditions at the pile-soil interface. Nonlinear behavior is incorporated by relating pile
and soil displacements through a spring. The incremental displacements in the spring is expressed
as 

(20)

The traction in the spring is same as that at the interface but signs are opposite. Eqs. (7) and (8)
are coupled using compatibility relations with Eqs. (17) and (18). The resulting form is as follow 
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where Kozd is the equivalent nonlinear stiffness given by Özdemir’s model and can be represented as

 (22)

2.6 Formulation for a pile group

For a two pile group, the equilibrium equation is given by using same procedure applied in single
pile formulation, one can write the following

(23)

In Eq. (23), the indices ‘1’ and ‘2’ resembles to piles in the group. The pile cap is rigid and its
contact with the ground is assumed to be ineffective.

2.7 Extension to multiple groups

Extension to multiple groups is useful for coupling a superstructure with multiple supports to the
entire foundation system. An assembled equation for two independent groups of piles is presented as

 (24)

In this equation, the indices ‘1’ and ‘2’ refer to the two independent groups. It shows that between
the two groups only a weak coupling exits through the terms G12 and G21. For groups that are very
far to each other, these coupling terms are close to zero and the behavior of the groups are uncoupled. 

3. Numerical example

A statnamic type of loading typically shown in Fig. 1 is applied to a single pile and 3 × 3 pile
group (Fig. 2) under axial and lateral directions for Gibson soils (Fig. 3). Following parameters are
used for analysis.

Pile length, L = 20. meter
Pile diameter, D = 1. meter
Number of elements, N = 20
Pile to pile spacing for groups, S = 3D
Pile modulus, Ep = 25.5 GPa 
Density of pile, ρp = 2400 kg/m3
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Density of soil, ρs = 1800 kg/m3

Poisson’s ratio of soil, υs = 0.4
For Gibson soil (Es = Eo + mz), Eo = 12.75 MPa and m = 1.9125 MPa/meter and z is the depth.

The reason to choose these parameters is to attempt to simulate a realistic problem. In other words,
L/D = 20, and Ep /Es = 400 resembles a concrete pile embedded in Gibson soil. Nonlinear analyses
in time domain, the post yield parameter was used as 0.02 in axial and lateral modes of deformation
and F factors as 2 in all modes.

In all plots, the x-axis is used for nondimensional time τ, and given by 

for Gibson soil, 

where, t is total duration of impact loading

τ
t

R
---

Gs o,

ρs

---------=

Fig. 1 Statnamic loads applied to pile head 

Fig. 2 A 3 × 3 pile goup used in analysis Fig. 3 Gibson soil and pile domain
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 R is radius of pile
 is shear modulus of Gibson soil at the top (z = 0)

ρs is mass density of soil.
The linear and nonlinear behavior of single pile for lateral and axial modes are presented for

Gs o,

Fig. 4 Axial response of single pile

Fig. 5 Lateral response of single pile
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Gibson soil in Figs. 4 and 5 for axial and lateral cases respectively. For nonlinear case, it can be
seen that there is a non-recoverable plastic displacements.

Peak pile axial response of single pile is about 1% of the pile diameter at which level
considerable pile soil slippage occurs. It can be seen from the figures that the behavior of the
nonlinear case is different from that of the linear case due to this slipping effect. And another
observation is that the nonlinear effect does not seen to produce additional phase lag in the
response. This is probably not surprising because the wave speeds are not significantly altered by
nonlinearities. 

The behavior of a single pile under lateral load is similar to that of the axial case, but this time
the nonlinear effects increase due to material near the ground surface yielding significantly. Beside a
single pile, a 3 × 3 pile group is also analyzed under the same type of loading for Gibson soils. Pile
group is rigidly capped with a concrete block of two pile diameter thickness. Analysis is done with
cap and without cap inertia effects and the results are presented in Figs. 6 and 7, respectively for
Gibson soil. 

For lateral loading, the group shows a higher stiffness in linear case because of the push pull
action on a per pile basis. Cap inertia affect the behavior of group by increasing in peak
displacement magnitude and delaying in the response. Increasing levels of nonlinearity can be
observed at higher load levels.

For axial loading case, the pile head displacement response is double that of a single pile on a per
pile basis comparison. This is caused by interaction among the piles in the group. Cap inertia has
little effect on the behavior unlike the lateral case. The reason for this is that a larger soil is exited
in axial mode and in lateral mode only near ground surface is playing the dominant role. The cap
inertia therefore can have bigger effect under the lateral loading. 

Fig. 6 Lateral response of 3 × 3 pile group
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4. Conclusions

 Nonlinear transient dynamic analysis of pile soil interaction in Gibson soil was presented. The
hybrid method employed a time stepping BEM algorithm together with an implicit time integration
FEM scheme used for modeling the piles. Nonlinear effects were accommodated by modified
Özdemirs’s model. A single pile and 3 × 3 pile group was analyzed to investigate the effects
nonlinear media on the pile soil interaction. The proposed model is the computationally most
efficient and most accurate algorithm since it uses a simple nonlinear model and couples finite and
boundary element methods.
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