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Bilinear plate bending element for thin and moderately 
thick plates using Integrated Force Method
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Abstract. Using the Mindlin-Reissner plate theory, many quadrilateral plate bending elements have been
developed so far to analyze thin and moderately thick plate problems via displacement based finite element
method. Here new formulation has been made to analyze thin and moderately thick plate problems using
force based finite element method called Integrated Force Method (IFM). The IFM is a novel matrix
formulation developed in recent years for analyzing civil, mechanical and aerospace engineering structures.
In this method all independent/internal forces are treated as unknown variables which are calculated by
simultaneously imposing equations of equilibrium and compatibility conditions. In this paper the force
based new bilinear quadrilateral plate bending element (MQP4) is proposed to analyze the thin and
moderately thick plate bending problems using Integrated Force Method. The Mindlin-Reissner plate theory
has been used in the formulation of this element which accounts the effect of shear deformation. Standard
plate bending benchmark problems are analyzed using the proposed element MQP4 via Integrated Force
Method to study its performance with respect to accuracy and convergence, and results are compared with
those of displacement based 4-node quadrilateral plate bending finite elements available in the literature.
The results are also compared with the exact solutions. The proposed element MQP4 is free from shear
locking and works satisfactorily in both thin and moderately thick plate bending situations.

Keywords: stress-resultant fields; flexibility matrix; equilibrium matrix; displacement fields; Mindlin-
Reissner theory; Integrated Force Method. 

1. Introduction

The investigations on the Mindlin-Reissner quadrilateral plate bending elements is perhaps the
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most interesting problem in finite element analysis. For the Mindlin-Reissner plate elements, only

C0 continuity is required and therefore the difficulties of C1 continuity requirement for thin plate

element are solved easily. Moreover, both thin (Kirchhoff) and moderately thick (Mindlin-Reissner)

plate analysis can be integrated into single element model. In this paper the force-based approach

called the Integrated Force Method has been extended to analyze thin and moderately thick plate

using the Mindlin-Reissner theory. 

During the pre-computer era, the force method was the most popular analyzing tool for civil,

mechanical and aerospace engineering structures. This popularity can be attributed to its ability to

determine forces/stresses in the structures with reasonable accuracy. During the formulation period

of structural analysis by matrix methods, earnest research was directed to automate the force

method, which includes computer-assisted generation of compatibility conditions. This effort, by and

large, was partially successful (Robinson and Haggenmacher 1971, Kaneko et al. 1983) because

redundant analysis in continuum structures was not possible using the conventional force method.

This was the main cause of the failure of the force method. It acted as dominating road block in the

path of the automation of force method.

The Integrated Force Method (IFM) is the new matrix formulation (Patnaik 1973) of the classical

force method of analysis. The IFM is independent of redundant forces and the basis determinate

structure and hence it is as flexible as that of displaced based finite element method as far as

automation of the method to computers is concerned. And further it retains the potential of the force

method i.e., primary importance will be on force/stress computations which is well accepted by all

design engineers. 

In any method of analysis of structural mechanics problems, in general, equilibrium equations,

compatibility conditions have to be satisfied in addition to the constitutive relations which describe

the material behavior. The IFM integrates the system equilibrium equations and the global

compatibility conditions in a fashion paralleling approaches in continuum mechanics (e.g., the

Beltrami - Michel formulation of elasticity (Love 1944)). The IFM provides a natural way of

integrating the equilibrium equations and the compatibility conditions while performing structural

analysis. The Integrated Forces Method is based on variational principles (Patnaik 1986) and its

stationary condition of the functional yields the equilibrium equations, compatibility and natural

boundary conditions. The compatibility conditions in sparse and banded form for IFM has been

given in the Nagabhushanam and Patnaik (1990). The application of the IFM on certain kind of

discrete and continuum structures for their static and dynamic behavior are cited in (Nagabhushanam

and Srinivas 1991, Patnaik and Yadagiri 1976, Krishnam Raju and Nagabhushanam 2000). The IFM

exhibits potential to eliminate certain shortcomings of the displacement method: indirect stress

calculations, shear locking, circuitous treatment of the initial deformations and stress inaccuracy in

stress concentration zones and to simplify design sensitivity analysis (Patnaik et al. 1996).

In this paper the IFM has been extended to analyze the Mindlin-Reissner plates and a new four-

node bilinear quadrilateral plate bending element (MQP4) is proposed for analyzing the plate

bending problems using IFM. The Mindlin-Reissner theory has been employed in the formulation of

this element which accounts for the shear deformation. This element considers three degrees of

freedom namely a transverse displacement w and two rotations θx, θy at each node. Suitable

displacement and stress-resultants fields are chosen over the element and the corresponding element

equilibrium and flexibility matrices are developed. The shear correction factor (Reissner 1945) has

been considered in the formulation. Standard plate bending benchmark problems are analyzed to

study the accuracy and convergence of the proposed element (MQP4). The results obtained by the
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proposed element are compared with those of displacement based four node quadrilateral elements

available in the literature. Results are also compared with exact solutions. The proposed element

MQP4 works satisfactorily in both thin and moderately thick plate bending situations. 

 

2. Formulation of element equilibrium and flexibility matrices 

In this section formulation of equilibrium and flexibility matrices for the plate bending element is

discussed. The Mindlin-Reissner plate theory has been employed in the formulation which accounts

for the shear deformation. In the Mindlin-Reissner plate theory where a section that is straight and

normal to mid-surface of the un-deformed plate remain straight but not necessarily normal to the

mid-surface of the deformed plate (Fig. 1). This leads to the following definition of the

displacement components u, v, w in the x, y, z Cartesian coordinates system

 (1)

where 

x, y are coordinates in the reference mid-surface 

z is the coordinate through the thickness t with −t/2 <= z <= t/2 

w is the transverse (lateral) displacement 

θx, θy represent the rotations of the normal in x-z and y-z planes respectively 

Engineering strains for the Mindlin-Reissner theory can be written as

 (2)

where

u zθx x y,( )–= ; v zθy x y,( ); w w x y,( )=–=

ε{ } z k1{ }–=

ε{ } εx  εy  γxy  γyz  γzx[ ]T=

Fig. 1 Differential plate element after deformation (as per Mindlin-Reissner theory)
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The stress-strain relations for an isotropic two-dimensional plate material is given by

 
  (3)

where  = Vector of stress components

 
 = Vector of strain components 

[Ccon] = constitutive matrix = 

E = Young’s modulus; ν = Poisson’s ratio

The stress-resultants {M} can be written as

(4)

where  = Vector of stress-resultants

 

 

Eqs. (2), (3) and (4) yield the moment-curvature relations as

  (5)

Where {k} = Vector of Curvatures 

   

[C1] = matrix relating stress-resultants to curvatures

From the Eq. (5), the curvature-moment relation becomes 

 

   (6)

where [H] = 

 = matrix relating curvatures to stress-resultants 

k1{ }
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For the Mindlin-Reissner plate, the Matrix [H] can be written with Reissner’s shear correction

factor of 5/6 as 

   (7)

where 

 

 t = thickness of the plate; ν = Poisson’s ratio

The Strain energy Up of the elastic plate in bending and shear is given by 

 (8)

For a discrete plate bending element the stress-resultants {M} and curvatures {k} can be expressed

in the matrix notation in terms of assumed stress-resultant fields and displacement fields as

  (9)

 (10)

where 

 = matrix of polynomial terms for stress-resultant fields 

{Fe} = vector of force components of the discrete element 

[φ1] = matrix of polynomial terms for displacement fields 

[A] = matrix formed by substituting the coordinates of the element nodes into the polynomial of

displacement fields 

{α} = coefficients of the displacement field polynomial 

{Xe} = vector of displacements of the discrete element 

[Dop] = Differential operator matrix = 

H[ ] 1

D1
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Substituting Eqs. (9) and (10) into the Eq. (8), the strain energy for the discrete element can be

expressed as

(11)

where [Be] represents the element equilibrium matrix and is given by

 (12)

The complementary strain energy for the elastic plate in bending and shear is written as

 

where  

E = young’s modulus, t = thickness of the plate; ν = Poisson’s ratio

For the discrete plate element, complementary strain energy can be expressed as 

 (13)

where [Ge] represents the element flexibility matrix and is given by

 (14)

The Eqs. (12) and (14) can be used to obtain element equilibrium and flexibility matrices [Be] and

[Ge] respectively. These element equilibrium matrix [Be] and element flexibility matrix [Ge] of all

elements are assembled to obtain the global equilibrium matrix [B] and global flexibility matrix [G]

of the structure and they are used to setup the IFM governing equation to analyze the structure by

IFM.

2.1 Displacement and stress-resultant fields

The geometry of the proposed typical 4-node bilinear quadrilateral plate bending element MQP4

is shown in the Fig. 2. Three degrees of freedom namely a transverse nodal displacement w and two

rotations θx, θy are considered at each node of the element. The independent description of the

assumed displacement and stress resultant fields required for the development of element

equilibrium and flexibility matrices. The assumed polynomials for displacement fields should satisfy

the convergence requirements. Assumed displacement fields for transverse nodal displacement (w)

and two rotations (θx, θy) are given in the Eq. (15). The stress-resultant fields in terms of generalized

force parameters should satisfy the homogeneous equilibrium equations. The assumed stress-

resultant fields for this element are shown in the Eq. (16).

The displacement fields for w, θx and θy are assumed in terms of generalized coordinates α1, α2,

…, α12 as
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(15)

and the assumed stress-resultant fields in terms of polynomial terms with independent generalized

force parameters F1, F2, …, F9 are given as

(16)

The above displacement and stress-resultant fields can be written in matrix notation as 

(17)

Where 

 

 

The curvatures for the discrete element can be expressed in matrix notation as

w α1 α2x α3y α4xy+ + +=

θx α5 α6x α7y α8xy+ + +=

θy α9 α10x α11y α12xy+ + +=

Mx F1 F2x F3y F4xy+ + +=

My F5 F6x F7y F8xy+ + +=

Mxy F9=

Qy F7 F8x+=

Qx F2 F4y+=

u{ } φ2[ ] α{ }=

u{ } w  θx  θy[ ]T=

φ2[ ]
1  x  y  xy  0  0  0  0  0  0  0  0

0  0  0  0  1  x  y  xy  0  0  0  0

0  0  0  0  0  0  0  0  1  x  y  xy

=

α{ } α1  α2  α3  … α12[ ]T=

Fig. 2 Typical four node quadrilateral element
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 (18)

 

And stress-resultants can be expressed in matrix notation as 

  (19)

Where

 

 

Substituting the Eqs. (17), (18), (19) and (7) into the Eqs. (12) and (14), the element equilibrium

and flexibility matrices are obtained.

3. Numerical results and discussions 

The patch tests and convergence tests are considered to study the performance of the proposed

element MQP4. 
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3.1 Patch tests

Constant curvature (pure bending) test and constant shear test are carried out on single element

mesh and multiple elements patches (Mallikarjuna Rao and Srinivas 2001) (Figs. 3 and 4) using the

proposed element MQP4 via Integrated Force Method. Parameters of the constant curvature and

constant shear test problems are: L = B = 16, t = 1, E = 1e + 06, ν = 0.25, end moment = 100,

vertical end shear = 10.

Boundary and loading conditions for constant curvature (pure bending) test: Distributed constant

Fig. 3 Constant curvature (pure bending) test and constant shear test 

Fig. 4 Various meshes(regular A. 1 × 1, B. 3 × 3, C. irregular 3 × 3 mesh) in the plate for patch tests

Fig. 5 A typical (4 × 4) mesh in one quadrant of the rectangular plate
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edge moments along one edge, the opposite edge is clamped and all lateral boundary tangential

rotations are fixed.

Boundary and loading conditions for constant shear test: Distributed constant edge forces on one

edge, the opposite edge is clamped and all rotations fixed in order to prevent bending.

The proposed element has yielded the following results: In the constant curvature test problem the

estimated moment Mx at all nodes of the plate is 6.25 (exact = 6.25), stress σx at all nodes is 37.5

(exact = 37.5). In the constant shear test problem, the estimated shear Qx at all the nodes is 0.625

(exact = 0.625). The proposed element has also yielded the identical results for (3 × 3) regular mesh

(Fig. 5) and satisfactory results for (3 × 3) irregular mesh. Hence the proposed element MQP4 has

passed the patch tests.

3.2 Convergence tests

 

A square thin/thick plate with simply supported/clamped boundary conditions and cantilever plate

subjected to point load/uniform load over the full plate are considered and they are analyzed for

various mesh sizes using the proposed element MQP4 via the Integrated Force Method to estimate

moments and deflections. The results of the proposed element MQP4 with respect to accuracy and

convergence are compared with few 4-node displacement based quadrilateral plate bending elements

available in the literature (Wanji and Cheung 2000, Kikuchi and Ando 1972) and commercial finite

element software (NISA Version 9.3 and ANSYS Version 5.6). The results of the proposed element

MQP4 are also compared with the exact solutions (Timoshenko and Krieger 1959, Jane et al. 2000).

The example problems considered are 

1. A square thin/thick plate with simply supported/clamped boundary conditions subjected to

uniform load. The parameter of the problem are: size of the plate = 100 × 100, t = 1 or 20, E =

1092000, ν = 0.3, q = 1 (Wanji and Cheung 2000)

2. A square thin plate with simply supported/clamped boundary conditions subjected to central

point load. The parameter of the problem are : size of the plate = 100 × 100, t = 1, E = 109200,

ν = 0.3, P = 1 (Kikuchi and Ando 1972)

3. A long cantilever beam (strip plate) subjected to point load at the tip or uniform load over the

whole plate. The parameter of the problem are: L = 1000, B = 30, t = 5, E = 2e + 05, ν = 0.0,

P = 25, q = 0.01. Here the Poisson’s ratio is considered as zero, to compare the results with the

beam solution.

Because of the symmetry of the geometry, loading and boundary conditions of the plate in the

example problems 1 and 2 above, one quadrant of the plate is considered for the analysis. The

typical (4 × 4) mesh considered in one quadrant is as shown in the Fig. 5. 

The results obtained by proposed element MQP4 using IFM for the above example problems 1, 2

and 3 are compared with results from displacement based 4-node quadrilateral plate bending

elements given in the element groups I, II and III respectively. These element groups are formed by

selecting the elements from literature (Wanji and Cheung 2000, Kikuchi and Ando 1972) and the

commercial finite element software NISA and ANSYS and they are as given below.

Group I elements:

RDKQM the refined quadrilateral element based on Mindlin/Reissner plate theory by Wanji and

Cheung (2000) 
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Q4-R the reduced/selective integration quadrilateral element, which can not pass the patch test

and has two extra energy modes (Malkus and Hughes 1978)

Q4 non-conforming quadrilateral element presented in the paper (Zienkiewicz et al. 1971)

DKQ the discrete Kirchhoff quadrilateral element proposed by Stricklin et al. (1969), Dhatt

(1969), Batoz and Tahar (1982)

MITC4 the quadrilateral element proposed by Bathe and Dvorkin (1985)

Group II elements: R-0, R-1, R2-3, R-4 = Quadrilateral elements from Kikuchi and Ando (1972) 

Group III elements: 4-node quadrilateral elements from the commercial finite element software

NISA and ANSYS

Exact displacements and moments for the plates with various boundary conditions and loadings

are calculated from Timoshenko and Krieger (1959), Jane et al. (2000) for the example problems 1

and 2 and from the beam solutions for the example problem 3.

Tables 1-4 summarize central deflections and moments of the square thin plate (t/L = 0.01) for the

example problem 1 with various mesh sizes and the corresponding convergence trends are shown in

the Figs. 6-9. Central deflections and moments for square thick plate (t/L = 0.2) of the example

problem 1 for various mesh sizes are given in the Tables 5-8. Figs. 10-13 show the corresponding

converging trends.

 

Table 1 Central deflection for a simply supported square plate with uniform load (t/L = 0.01) 

Wc (10−5qL4/D) (Example Problem 1)

Elements Q4  Q4-R DKQ MITC4 RDKQM MQP4 

1 × 1  1.1  319.2 378.5  319.1  378.7 496.5

2 × 2  4.5  397.1 404.6  397.1  404.8 440.9

4 × 4  17.3  404.4 406.0  404.4  406.2 415.5

6 × 6  36.9  405.5 406.1  405.5  406.3 409.9

8 × 8  61.3  405.9 406.2  405.9  406.3 408.8

10 × 10  88.3  406.1 406.2  406.1  406.4 407.9

 Exact = 407

Table 2 Central moment for a simply supported square plate with uniform load (t/L = 0.01)

Mc (Example Problem 1)

Elements Q4 Q4-R DKQ MITC4 RDKQM MQP4 

1 × 1 0.833 331.6 603.1 331.6 603.6 899.3

2 × 2 5.119 477.0 501.0 477.1 501.5 580.7

4 × 4 20.81 479.0 483.9 479.0 484.2 502.4

6 × 6 44.74 478.9 405.5 478.9 481.4 488.7

8 × 8 74.38 478.9 480.1 478.9 480.4 484.6

10 × 10 107.0 478.9 479.6 478.9 480.0 482.6

 Exact = 479
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Table 3 Central deflection for a clamped square plate with uniform load (t/L = 0.01)

Wc (10−5qL4/D) (Example Problem 1)

Elements Q4  Q4-R DKQ MITC4 RDKQM MQP4 

1 × 1  0.3  0.4 156.2 0.3 156.5 182.0

2 × 2  1.0  121.4 146.1 121.3 146.3 158.3

4 × 4  3.7  125.3 131.9 125.3 132.2 135.3

6 × 6  7.8  126.1 129.0 126.1 129.2 130.5

8 × 8  13.2  126.4 127.9 126.4 128.1 129.0

10 × 10  19.5  126.6 127.4 126.5 127.6 128.2

Exact = 126.6

Table 4 Central moment for a clamped square plate with uniform load (t/L = 0.01)

 Mc (Example Problem 1)

 Elements  Q4 Q4-R  DKQ MITC4 RDKQM MQP4 

1 × 1  0.0  0.0 487.5 0.0 487.6 566.8

2 × 2  1.57  251.4 287.3 251.7 287.7 324.6

4 × 4  6.90  232.9 243.3 233.1 243.6 255.7

6 × 6 15.44  230.7 235.4 230.9 235.6 240.7

8 × 8 25.62  230.0 232.6 230.1 232.9 235.7

10 × 10 37.71  229.7 231.3 229.7 231.6 233.3

Exact = 231

Fig. 6 Central deflection for a simply supported square thin plate with uniform load
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Central deflections for a square thin plate (t/L = 0.01) with central point load of the example

problem 2 for various mesh sizes are summarized in Tables 9 and 10 and the corresponding

Fig 7 Central moment for a simply supported square thin plate with uniform load

Fig 8 Central deflection for a clamped square thin plate with uniform load
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Fig 9 Central moment for a clamped square thin plate with uniform load

 
Table 5 Central deflection for a simply supported square plate with uniform load (t/L = 0.2)

Wc (10−5qL4/D) (Example Problem 1)

 Elements Q4  Q4-R DKQ MITC4 RDKQM MQP4 

1 × 1  267  461.7 378.5 426.0  468.6  612.8

2 × 2  411  492.1 404.6 485.5  485.8  541.2

4 × 4  468  490.5 406.0 489.4  488.9  506.7

6 × 6  480  490.5 406.1 490.0  489.7  497.5

8 × 8  485  490.4 406.2 490.2  490.0  495.1

10 × 10  487  490.4 406.2 490.3  490.2  493.5

Exact = 490 

Table 6 Central moment for a simply supported square plate with uniform load (t/L = 0.2)

Mc (Example Problem 1)

Elements Q4  Q4-R DKQ MITC4 RDKQM MQP4 

1 × 1  166  331.6 603.1 331.6  685.5 884.7

2 × 2  386  471.1 501.0 475.0  543.0 586.9

4 × 4  454  479.0 483.9 478.9  497.3 507.2

6 × 6  468  478.9 481.1 478.9  487.3 491.6

8 × 8  473  478.9 480.1 478.9  483.7 486.4

10 × 10  475  478.9 479.6 478.9  482.0 483.7

Exact = 479
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Table 7 Central deflection for a clamped square plate with uniform load (t/L = 0.2)

Wc (10−5qL4/D) (Example Problem 1)

 Elements Q4  Q4-R DKQ MITC4 RDKQM  MQP4 

1 × 1  107.1 147.2 156.2 107.1  260.4 289.9

2 × 2  175.7 217.7 146.1 209.4  235.0 247.5

4 × 4  204.7 217.4 131.9 215.7  221.7 224.4

6 × 6  211.4 217.3 129.0 216.6  219.2 220.4

8 × 8  213.9 217.2 127.9 216.9  218.3 219.1

10 × 10  215.1 217.2 127.4 217.0  217.9 218.4

 Exact = 217

Table 8 Central moment for a clamped square plate with uniform load (t/L = 0.2)

Mc (Example Problem 1)

 Elements Q4  Q4-R DKQ MITC4 RDKQM MQP4 

1 × 1  0.00  0.00  487.5 0.00  524.7 555.8

2 × 2  158.2  213.8  287.3 220.1  316.7 326.7

4 × 4  215.9  235.4  243.3 235.1  256.5 258.0

6 × 6  226.8  235.7  235.4 235.5  245.0 245.3

8 × 8  230.7  235.7  232.6 235.6  241.0 241.2

10 × 10  235.7  235.7  231.3 235.7  239.1 239.3

Exact = 231

Fig. 10 Central deflection for a simply supported square thick plate with uniform load
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convergence trends are shown in the Figs. 14 and 15. 

In the Tables 1-10, the central deflections and moments for both thin and thick square plates with

Fig. 11 Central moment for a simply supported square thick plate with uniform load

Fig. 12 Central deflection for a clamped square thick plate with uniform load
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simply supported and clamped boundary conditions computed by the proposed element MQP4 via

Integrated Force Method are comparable with those of other elements considered. Further the results

are fast approaching with monotonic convergence towards the exact solutions as shown in the

Figs. 6-15.

Fig. 13 Central moment for a clamped square thick plate with uniform load

Table 9 Central deflection for a simply supported square plate with central point load (t/L = 0.01)

Wc (10−2) (Example Problem 2)

Elements R-0 R-1 R2-3 R-4 MQP4 

1 × 1  1.378 1.045 1.119 1.945  1.986

2 × 2  1.233 1.138 1.167 1.374  1.393

4 × 4  1.183 1.155 1.164 1.223  1.228

10 × 10  1.165 1.159 1.161 1.172  1.172

Table 10 Central deflection for a clamped square plate with central point load (t/L = 0.01)

Wc (10−3) (Example Problem 2)

Elements R-0 R-1 R2-3 R-4 MQP4

1 × 1  5.919 5.348 5.388  8.446 7.278

2 × 2 6.134 5.350 5.530  7.261 7.079

4 × 4 5.803 5.550 5.625  6.154 6.133

10 × 10 5.653 5.603 5.619  5.721 5.722

Exact = 5.60
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Tip deflections and bending moments at the clamped edge for long cantilever beam (strip plate) of

the example problem 3 for various mesh sizes are given in the Tables 11-14 and the corresponding

convergence trends are shown in the Figs. 16-19. 

Fig. 14 Central deflection for a simply supported square thin plate with central point load

Fig. 15 Central deflection for a clamped square thin plate with the central point load
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Table 11 Tip deflection for a cantilever strip plate with point load at the tip (t/L = 0.005)

W (Example Problem 3)

Elements NISA ANSYS MQP4

2 × 1 125.15  130.92 133.34 
4 × 1 131.27  132.70 133.34
8 × 1 132.83  133.18 133.34
16 × 1 133.22  133.31 133.34
32 × 1 133.31  133.33 133.34
64 × 1 133.33  133.34 133.34 
128 × 1 133.33  133.34 133.34

Exact = 133.33

Table 12 Moment at the clamped edge for a cantilever strip plate with point load at the tip 

M (Example Problem 3) (t/L = 0.005)

Elements  NISA ANSYS MQP4

2 × 1 625.00 763.00 833.33
4 × 1 729.17 798.96 833.33
8 × 1 781.25 816.63 833.33
16 × 1 807.29 825.79 833.33
32 × 1 820.29 830.63 833.33
64 × 1 826.83 832.71 833.33
128 × 1 830.10 833.25 833.33

Exact = 833.33

Table 13 Tip deflection for a cantilever strip plate with uniform load (t/L = 0.005)

W (Example Problem 3)

Elements  NISA ANSYS MQP4

2 × 1 600.09  584.35 650.01
4 × 1 600.09  595.99 612.51
8 × 1 600.08  599.06 603.11
16 × 1 600.07  599.83 600.79
32 × 1 600.05  600.01 600.21
64 × 1 600.03  600.01 600.21

Exact = 600.00

Table 14 Moments at the clamped edge for a cantilever strip plate with uniform load

M (Example Problem 3) (t/L = 0.005) 

Elements  NISA  ANSYS  MQP4

 2 × 1 2500.00 4217.50 5000.00
 4 × 1 3906.00 4599.17 5000.00
 8 × 1 4414.04 4802.08 5000.00
 16 × 1 4697.25 4910.42 5000.00
 32 × 1 4846.25 4967.92 5000.00
 64 × 1 4920.00 4992.50 5000.00

 Exact = 5000.00
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In the Tables 11-14, the tip deflections and moments at clamped edge of a cantilever beam (strip

plate) with different loading conditions and for various mesh sizes computed by the proposed

element MQP4 are superior when compared with the results of the other elements considered.

Fig 16 Tip deflection for a cantilever strip plate with the point load at tip

Fig. 17 Moment at clamped edge for a cantilever strip plate with the point load at tip
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Further the results are fast approached, in general, to the exact solutions with even just for two

elements as shown in the Figs. 16-19.

In order to study the shear locking behavior of the proposed element MQP4, a simply supported

Fig. 18 Tip deflection for a cantilever strip plate with uniform load

Fig. 19 Moment at clamped edge for a cantilever strip plate with uniform load
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square plate subjected to uniform load is analyzed for various thickness-span ratios using the

proposed element MQP4 via the Integrated Force Method for the mesh size 10 × 10 in one quadrant

Fig. 21 Normalized central moments for simply supported plate with uniform load 
(t/L = 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001)

Fig. 20 Normalized central deflections for simply supported plate with uniform load 
(t/L = 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001)
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of the plate to estimate the central deflections and moments. The parameters of the problem

considered are: L = 50, B = 50, t = 5, 0.5, 0.05, 0.005, 0.0005 and 0.00005, E = 200000, n = 0.3,

q = 1. The exact central displacements and moments are calculated from the Kirchhoff theory

(Timoshenko and Krieger 1959) and the Mindlin plate theory (Jane et al. 2000) solutions for thin

and moderately thick plate problems respectively. These results are shown in the Figs. 20 and 21.

These Figs. indicate that the proposed element MQP4 works excellent for both thin and moderately

thick plate bending problems.

4. Conclusions

The Integrated Force Method has been extended for the analysis of thin and moderately thick

plates. The Mindlin-Reissner theory based new four-node bilinear quadrilateral plate bending

element (MQP4) has been proposed for the analysis of plate bending problems using the Integrated

Force Method. This element considers three degrees of freedom namely a transverse nodal

displacement w and two rotations θx, θy at each node. The proposed element MQP4 is free from

spurious energy modes. Further this proposed element (MQP4) is free from shear locking, i.e., this

element does not lock under thin plate bending situations. Hence the same element can be used to

analyze both thin and moderately thick plate bending problems. Various standard plate bending

benchmark problems are analyzed using this proposed element (MQP4) via Integrated Force

Method. This element, in general, works satisfactorily in all the example problems considered.

Therefore this element becomes an alternative force based four-node quadrilateral element compared

to displacement based similar four-node quadrilateral elements considered. 
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Appendix: Basic theory of IFM

In the Integrated Force Method of analysis, a structure idealized by finite elements is designated as
“structure (n, m)”. Where (n, m) are force and displacement degrees of freedom of the discrete model,
respectively. The structure (n, m) has m equilibrium equations and r = (n − m) compatibility conditions.
Equilibrium equations (EE) represent the vectorial summation of the internal forces {F} to the external loads
{P} at the nodes of the finite element discritization. It can be written in symbolized matrix notation as 

Equilibrium Equations[EE]:  (1)

Where [B] = global equilibrium matrix 
{F} = Vector of internal forces of the structure 
{P} = vector of external loads on the structure 

The Compatibility Conditions(CC) are constraints on strains, and for finite element models they are also
constraints on member deformations.

In IFM, St. Venant’s approach has been extended for discrete mechanics to develop the compatibility
conditions. Development of CC is briefly explained below 

The Deformation-Displacement Relationship (DDR) for discrete mechanics is equivalent to the strain-
displacement relationship in elasticity. The DDR for discrete analysis was obtained during the development of
the variational energy formulation for the IFM (Patnaik 1986)

According to work energy conservation theorem, the internal energy stored in the body in the structure is
equal to the work done by the external load, that is 

B[ ] F{ } P{ }=
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 (2)

where {X } represents nodal displacements. Eq. (2) can be rewritten by eliminating the load {P} in favor of
forces {F}, by using the Eq. (1) to obtain the following relation 

(3)

Eq. (3) can be simplified as 

 (4)

Since {F} is not a null vector, its coefficient must be equal to zero, which yields the DDR as 

 (5)

Where {β} are member deformations.
This equation represents the Deformation-Displacement Relations (DDR) for the discrete structure. The

elimination of m displacements from n deformations displacement relations given by the above equation
yields r = (n − m) compatibility conditions and the associated matrix [C]. It can be symbolized in matrix
notations as

(6)

Substituting Eq. (5) into the Eq. (6), we obtain

 

Since the displacement vector {X} is not a null vector, we have

 (7)
 

where [C] is the (r × n) compatibility matrix. It is a kinematic relationship, and it is independent of design
parameters, material properties and external loads. This matrix is rectangular and banded. The deformation
{β} in the compatibility conditions (CC) given by the Eq. (6) represents the total deformation consisting of
an elastic component {βe} and the initial component {βo} as

(8)

The CC in terms of elastic deformation can be written as 

(9)

Where

(10)

Using the flexibility characteristics, Eq. (6) with initial deformations can be rewritten as

1

2
--- F{ }T

β{ } 1

2
--- P{ }T

X{ }=

1

2
--- F{ }T

B[ ]T X{ } 1

2
--- F{ }T

β{ }=

1

2
--- F{ }T

B[ ]T X{ } β{ }–[ ] 0=

β{ } B[ ]T X{ }=

C[ ] β{ } 0=

C[ ] β{ } C[ ] B[ ]T X{ } 0= =

X{ }T

B[ ] C[ ]T( ) 0{ }=

B[ ] C[ ]T 0=

β{ } β e{ } β 0{ }+=

C[ ] β{ } C[ ] β e{ } C[ ] β 0{ }+ 0= =

C[ ] β e{ } δR{ }=

δR{ } C[ ] β 0{ }–=



68 H. R. Dhananjaya, J. Nagabhushanam and P. C. Pandey

(11)

Clubbing Eqs. (1) and (11), we lead to the IFM governing equation as 

 

 
(12)

Notation

[A] : matrix relating nodal degrees of freedom and coefficients of the polynomial
[B] : global equilibrium matrix (m × n)
[Be] : element equilibrium matrix (me × ne)
[C] : compatibility matrix (r × n)
[Dop] : differential operator matrix
E : Young’s modulus
{F} : vector of internal forces of the structure (n × 1)
{Fe} : vector of internal forces of the discrete element (ne × 1)
[G] : global flexibility matrix (n × n)
[Ge] : element flexibility matrix (ne × ne)
[H] : matrix relating the curvatures to stress resultants
[J] : deformation coefficient matrix (m × n)
L, B : Length and breadth of the plate
Mc : central moment of the plate
{M} : vector of stress resultants
P : point load at the center or tip of the plate
{P} : vector of external loads (m × 1)
q : uniform load over the plate
[S] : IFM governing matrix (n × n)
Wc : Central deflection of the plate
{X} : vector of displacements of the structure (m × 1)
{Xe} : vector of displacements of the discrete element (me × 1)
a, b : length and breadth of the plate bending element
{k} : vector of curvatures
n, m : force and displacement degrees of freedom of the structures respectively
ne, me : element force and displacement degrees of freedom respectively
t : thickness of the plate
{α} : generalized coordinates of the polynomial in the displacement field
{β} : vector of elastic deformations
{βo} : vector of initial deformations
ν : Poisson’s ratio
[Φ1] : matrix of polynomial terms for displacement fields
[ψ] : matrix of polynomial terms for stress-resultants fields

C[ ] G[ ] F{ } δR{ }=

B[ ]

C[ ] G[ ]( )
F{ }

P

δR⎩ ⎭
⎨ ⎬
⎧ ⎫

=

S[ ] F{ } P*{ }=
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