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Abstract. The metis element method (Hung 1978) has been applied to analyse free edge interlaminar
stresses and delamination in composite laminates, which are subjected to extension and bending. The
paper recalls Lekhnitskii’s solution for generalized plane strain state of composite laminate and Wang’s
singular solution for determination of stress singularity order and of eigen coefficients C

m
 for delamination

problem. Then the formulae of metis displacement finite element in two-dimensional problem are
established. Computation of the stress intensity factors and the energy release rates are presented in
details. The energy release rate, G, is computed by Irwin’s virtual crack technique using metis elements.
Finally, results of interlaminar stresses, the three stress intensity factors and the energy release rates for
delamination crack in composite laminates under extension and bending are illustrated and compared with
the literature to demonstrate the efficiency of the present method.

Keywords: finite element method; interlaminar stresses; composite laminate; delamination; extension;
bending.

1. Introduction

Graphite-epoxy composite materials have high strength, high stiffness and low weight. So they

have been reliably used in many applications from sport articles to aerospace structures.

A mode of degradation generally observed in laminated composite structures is delamination

between the composite layers. The delamination can develop during manufacture by the incomplete

treatment or the introduction of foreign particle; they can result from impact damages or

interlaminar stresses, which are developed from free edges or discontinuities. The extension of

delamination cracks appearing on free edges of composite laminates may lead to severe safety

problems of aerospace composite structures.

The experimental determination of the strength of realistic composite structures requires an
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important preparation time and highly cost. In order to reduce the number of these tests,

indispensable for the first phase, the accurate modelization of the local stress field leads to a

considerable reduction of structure realization cost.

The most frequently encountered fracture types in composite laminates are the high stress

concentration at free edges and the delamination. Due to its complex nature, the characterization of

the interface properties and the modelization are really difficult. It involves not only geometric and

material discontinuities but also inherently mixed fracture modes I, II and III.

The local and precise evaluation of interlaminar stresses and of Ki, Gi, Gtotal requires a very fine

mesh of finite elements near ree edges and at the crack tip of delamination. In order to appreciably

reduce the fine mesh in classical finite element types, we undertook the development of a finite

element in 2 dimensions (2D) of the mongrel type in regular and singular stress fields. That is the

metis finite element method. The metis displacement element is special case of the original hybrid

stress element, but the boundary second field (displacement field) is unisolvent. This means that the

displacement field is defined completely and continuous perfectly both within the domain, and on

the boundary in such away that it is conform in the connection between elements. The unisolvent

condition of the external displacement field of this type of element permits to transform the contour

integral respectively to the volume integral for 3D problems and the surface integral for 2D

problems (Nguyen, T.D. and Nguyen, D.H. 2004, in press, Nguyen, D.H.  et al. 1991, De Saxce

1992, Kang 1991, Fleury 1994, De Saxce and Kang 1992). So this method has the advantages of

classical pure elements and hybrid elements (Nguyen, D.H. 1978).

2. Generalized plane strain state and its solutions

Consider a rectangular multilayer laminate plate composed of orthotropic linear elastic

unidirectional plies (Fig. 1(a)). The composite laminate is subjected to a loading at the ends whose

nature will be specified later. 

The composite laminate is assumed to be sufficiently long that, in the region far from the ends,

the effects are negligible by virtue of Saint Venant’s principle. Consequently, stresses in the laminate

are independent of the z axis. This particular state of stress and strain is qualified generalized plane

strain state

Fig. 1(a) Multilayer plate in composite materials
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(1)

Lekhnitskii (1963) suggests that the normal strain distribution in the z direction is known and

imposed by the formula 

ε3 = εz = e(x, y) (2)

Where e(x, y) is the axial strain which is independent of the z axis.

Replace Eq. (2) into the Hook’s law: εi = Sij σj (i, j = 1, 2, ..., 6), σz has the form: σz = (e − σβS3β)/

S33 (α, β = 1, 2, 4, 5, 6).

Eliminate σz from the Hooke’s law, it becomes

(3)

(α, β = 1, 2, 4, 5, 6) is the reduced compliance tensor of Sij (i, j = 1, 2, ..., 6).

The integration of the compatibility equations gives a reduced form of the displacement field after

eliminate the rigid modes

(4)

Where  is the mean strain; K3 is the bending curvature in the weak inertia plan Oyz; X3 is the

same quantity in the strong inertia plan Oxz; K5 is the warping angle about z-axis.

From the limited conditions, it conduits to solve the problem

Find {u, ε, σ} such that: (5)

 

Where def is the partial derivative operator of “strain”; equ is the partial derivative operator of

“equilibrium”; εo is the vector of the imposed initial strains; Ω is the section of the structure; ∂Ω is

the boundary of the section Ω.

t(σ) is the tension on the boundary ∂Ω: t(σ) = σiαnα (6)

The equilibrium plane stress field (σx, σy , τxy) is derived from the Airy’s stress function F(x, y),

the anti-plane stress field (τxz, τyz) from Prandtl function Ψ(x, y)

(7)
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The Beltami-Michell compatibility equations are reduced to the form (Lekhnitskii 1963)

L4F + L3Ψ = 0; L3F + L2Ψ = 0 (8)

Where L2, L3 and L4 are derivative operators in order 2, 3 and 4, respectively. 

Using the generalized complex variable , and its conjugated  where

m = 1, 2, 3, 4, 5 and 6; and µm are the roots of the characteristic equation associated to the ply

(Lekhnitskii 1963) 

(9)

Where  

The general solution of the equation system (8) was found by Lekhnitskii (1963)

(10)

Where −ηm = −l3(µm)/l2(µm). The prime (') denotes differentiation of the function F.

Wang (1984) proposed a particular form of the function F for delamination problem

(11)

Where the stress singularity order δ is so that −1 < Re(δ) < 0 for singular solution so that energy is

finite, where Re represents the real part of δ. The quantities Cm are arbitrary constants to be

determined. The stress field becomes

(12)

From the Hooke’s law and the compatible equations, the displacement field is calculated

(13)

with 

There exists 6 continuity conditions of stress and displacement vectors along the interface of two

adjacent plies k and k + 1 (Fig. 1(b)) and 6 other free stress conditions on the lips of the crack to

determine 12 unknowns Cm. 

zm x µmy+= zm x µmy+=

l4 µ( )l2 µ( ) l3

2
µ( )– 0=

l2 µ( ) S55

d
µ

2
2S45

d
µ– S44

d
+=

l3 µ( ) S15

d
µ

3
S14

d
S56

d
+( )µ2

– S25

d
S46

d
+( )µ S24

d
–+=

l4 µ( ) S11

d
µ

4
2S16

d
µ

3
– 2S12

d
S66

d
+( )µ2

2S26

d
µ– S22

d
+ +=

a( )

b( )

c( )

F Fm zm( ) Fm 3+
zm( )+[ ]  a( ); Ψ ηmFm

′ zm( ) ηmFm 3+
′ zm( )+[ ]  b( )

m 1=

3

∑=

m 1=

3

∑=

Fm zm( )
Cmzm

δ 2+

δ 2+( ) δ 1+( )
----------------------------------=

σ Cmrmzm
δ

Cm 3+
rmzm

δ
+[ ] where rm

T

m 1=

3

∑ µm

2
1 µm– ηm– µmηm, , , ,[ ]= =

u CmTmzm
δ 1+

Cm 3+
Tmzm

δ 1+

+[ ]/ δ 1+( ) where Tm

T

m 1=

3

∑ pm qm tm, ,[ ]= =

pm S11

d
µm

2
S12

d
S14

d
ηm– S15

d
ηmµm S16

d
µm–+ +=

qm S21

d
µm S22

d
/µm S24

d
ηm/µm– S25

d
ηm S26

d
–+ +=

tm S41

d
µm S42

d
/µm S44

d
ηm/µm– S45

d
ηm S46

d
–+ +=

  

a( )

b( )

c( )



Interlaminar stresses and delamination of composite laminates under extension and bending 737

The 6 continuity conditions of stresses and displacements

The 6 free stress conditions

The system of 12 equations may be written under the following form

(14)

Where  

Solving the equation system (14) leads to eigen value problem. The stress singular order δ (where

δT = [δ1, δ2, δ3]) and the eigen coefficients Cm obtained in solving this eigen value problem.

3. Metis displacement model

In the technique of the hybrid elements of displacement, the Lagrangian of this problem is
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Fig. 1(b) Edge delamination between kth and (k + 1)th plies
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Where (16)

Si is an interface between two contiguous elements: t(σ) = 0 on Si (17)

Replace Eqs. (17) and (16) into Eq. (15), the Lagrangian of the element becomes 

(18)

The corresponding associated form of problem (5) is: (19)

It means that finding the maximum (Sup) of the function ∏(σ, u) with respect to the stress field σ

in which: equ σ = 0 in Ωe and the minimum (Inf) of the function ∏(σ, u) with respect to the

displacement field u.

In the metis element method, Lagrange’s multiplier field, which is interpreted physically as the

displacement field is prolonged to interior of each element in a continuous manner (unisolvent

principle). This principle permits to transform a contour integral into volume integral or into surface

integral (De Saxce 1992)

(20)

Introducing Eq. (20) into Eq. (18) in taking account of the internal equilibrium in each element

conducts to the expression following

(21)

All elements of the structure (E) are divided into the elements around the crack tip named

singular elements (S) and the rest elements named regular elements (R)

- In regular elements  

Introduce the discretized displacement field u = N(x)q (where: N(x) is the shape function matrix
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Let  called the generalized force of each element. (24)

Replacing he1 from Eq. (23) into the formula of ge in Eq. (24) gives

(25)

Where 

- In singular elements 

The displacement field has the form: u = N(x)q. (26)

The stress field in singular elements contains regular part (σR) and a singular part (σS)

(27)

Where RS(x) is the singular matrix defined from the singular stress field (Fleury et al. 1994)

With i = 1, 2, 4, 5, 6.

he2 is the vector of unknown parameters of singular part of discretisation stress field
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Numerical tests showed that the better results are obtained when we identify he2 as common nodal
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Eq. (21), it obtains
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The variational Eq. (28) with respect to he1
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Where (31)

Replace he1 from Eq. (29) into Eq. (31b), the expression of ge is following

(32)

Where 

Replacing Eqs. (25) and (32) into Eq. (30) gives

(33)

Where 

The variational Eq. (28) with respect to h2 gives

(34)

Where  

The equation systems (33) and (34) can be written in the form
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Where 

Solving of the equation system (35) will provide unknown displacements q at the nodes and the

singular stress parameters h2. After that the stress intensity factors can be obtained by the formula

(Fleury et al. 1994)
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near the crack tip with Irwin’s virtual crack closure technique as Raju et al. (1988)

(37)

ge Ge1he1   e∀ R a( )∈=

ge Ge1he1 Ge2h2     e∀ S b( )∈+=

ge Keq Ge2

*
h2 ge

o
e∀ S∈–+=

Ge2

*
Ge2 Ge1Fe1

1–
Fe12–=

Kq G2

*
h2+ g

o
=

K Ke; g
o

e E∈

∑ ge

o
; G2

*

e E∈

∑ Ge2

*

e S∈

∑= = =

G2

*T
q– F2

*
h2– v2

o*
=

F2

*
Fe12

T
Fe1

1–
Fe12 Fe2; v2

o* Fe12

T
Fe1

1–
ve1

o
ve2

o
–

e S∈

∑=–

e S∈

∑=

K̃q̃ g̃=

K̃
K  G2

*

G2

*T
  – F2

*
–

; q̃
T

q
T

h2

T,[ ]; g̃ g
o

v2

o*

= = =

Ki 2π he1 Re Cm 1, ri m,

m 1=

3

∑
⎝ ⎠
⎜ ⎟
⎛ ⎞

⎩
⎨
⎧

Im Cm 3+ 1, r i m,

m 1=

3

∑
⎝ ⎠
⎜ ⎟
⎛ ⎞

 + +=

 he2Re Cm 2, ri m,

m 1=

3

∑ Cm 3+ 2, r i m,+

⎝ ⎠
⎜ ⎟
⎛ ⎞

he3Im Cm 3, ri m,

m 1=

3

∑ Cm 3+ 3, r i m,+

⎝ ⎠
⎜ ⎟
⎛ ⎞

⎭
⎬
⎫

++

GI
1

2∆
------ Fyi t11 vm vm′–( ) t12 vk vk′–( )+{ } Fyj t21 vm vm′–( ) t22 vk vk′–( )+{ }+[ ]=



Interlaminar stresses and delamination of composite laminates under extension and bending 741

Where Fyi is the force in the y direction at node i, vm is the displacement at node m, etc. (see Fig. 2).

The values of tij are constants given in Raju et al. (1988).

Similar, the expressions for GII and GIII were used with Fy replaced by Fx and Fz and v replaced

by u and w, respectively. The total strain energy release rate, G, is calculated by the formula

 

4. Numerical results

We consider four-layer symmetric laminates [+θ/−θ ]s with the same thickness h = 1 (in) and with

the material properties as in Byron and Pagano (1970): E3 = 20 × 106 (psi), E1 = E2 = 2.1 × 106 (psi),

G12 = G23 = G31 = 0.85 × 106 (psi), ν12 = ν32 = ν31 = 0.21. The distance between the pair of free

edges is 2b = 16 h. We consider the laminates in the two cases 

- Problem of free edge interlaminar stresses (before delamination) under extension and under

bending;

- Delamination under extension and under bending.

For the case of uniform axial extension, we have: = e = constant, K3 = X3 = K5 = 0. For the

case of bending, we have: K3 = 1/h,  = X3 = K5 = 0.

G GII GII GIII+ +=

ε3
o

ε3
o

Fig 3 Mesh of the quarter of the cross section of laminate

Fig. 2 Nodes used in G calculations
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4.1 Free-edge interlaminar stresses

Condider the composite laminate [+45o/−45o]s

- For the case of uniform axial extension: In this case due to material and geometric symmetry

conditions, only a quarter of the cross section of laminate (x ≥ 0 and y ≥ 0) is considered. The

second-degree triangular element and a mesh of 236 elements and 525 nodes with the refinement

growing towards the free edge are used (Fig. 3).

- For the case of bending: In this case due to material and geometric symmetry conditions permit

that only one half of the cross section of laminate with 472 elements and 1009 nodes (2 times of

the mesh in the Fig. 3 with x ≥ 0 and −2h ≤ y ≤ 2h) be examined.

In two cases (extension and bending), since the distribution of stress components are anti-

symmetric or symmetric, we only need to discuss the stress distribution in a quarter region (x ≥ 0

and y ≥ 0).

In this paper we will only compare present results with those of other methods in the case of

bending because for the case of extension, results were compared with those of the literature. It

showed that the results of the present method in the case of extension are very good (Nguyen, T.D.

and Nguyen, D.H. in press). Now, the results in the case of extension are compared with those in

the case of bending.

The distribution of the interlaminar normal stress σy at y = h for the case of bending is presented

in the Fig. 4.

The Fig. 4 shows that the stress σy presents a compressive behavior near free edge. By the anti-

symmetry of deformation, σy is tensional in the interface y = −h near free edge. The present results

are similar with those of Ye (1990) and Cho and Kim (2000) in all region except near free edge. At

free edge, the difference between the solutions is very important. The absolute value of σy at the

corner of the interface y = h and x = b in the solution of Davì and Milazzo (1999) is very high in

comparison with the present solution and also with other solutions. The present result at this corner

is much agreement with that of Cho and Kim (2000).

Fig. 4 Normal stress σy at y = h in the case of bending

Table 1 Stresses at the corner of y = h and x = b (in 106 Psi)

Author Method used σy τxy τyz

Present Metis −0.793 1.75 × 10−6 1.91

Davì and Milazzo (1999) Boundary element −2.697 3.073

Ye (1990) Heterogeneous model −0.266 1.947

Cho and Kim (2000) Iterative method −0.966 0 2.258
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The Fig. 5 presents the distribution of the normal stress σy at y = h for the two cases (extension

and bending) calculated by present method. It is seen that σy for the case of bending is close to that

for the case of extension.

The Fig. 6 presents the distribution of the interlaminar shear stress τxy at the interface y = h for

two cases. In the case of bending, the values of τxy in the solution of Cho and Kim (2000) are

always greater than those in the present solution. The form of the two curves is similar, they

increase and have a tip near free edge then they decrease very sharply to zero at x = b. For laminate

[+45o/−45o]s, the stress τxy in the case of bending is different with that in the case of extension. The

stress τxy in the case of extension is very small in comparison with that in the case of bending. The

present results of stress τxy under extension are very close to those of Tian et al. (2004) used three-

Fig. 6(a) Interlaminar shear stress τxy at y = h in the two cases for [+45o/−45o]s

Fig. 6(b) Interlaminar shear stress τxy at y = h for [90o/0o]s and [0o/90o]s

Fig. 5 Normal stress σy at y = h in the two cases
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dimensional hybrid stress element.

For laminate [90o/0o]s, there is a difference of the stress τxy between the case of bending and that

of extension (see Fig. 6b). For laminate [0o/90o]s, the stress τxy in the case of bending is similar to

that in the case of extension. In the case bending, the present results are agreement with those of Ye

(Ye 1990) except near free edge. Near free edge, the peak stress values of τxy of Ye (1990) are more

important than those of present method. In the case of extension, the present result of τxy is

excellent agreement with that of Tahani and Nosier (2003) used layerwise theory. These results are

higher than those of Tian et al. (2004). In general, it is noticed that the stress τxy in the case of

bending is different with that in the case of extension.

The distribution of the interlaminar stress τyz along the interface y = h for the case of bending is

shown in the Fig. 7. The stress τyz increases rapidly near free edge. This indicates that τyz has a

significant stress concentration near free edge. The present results are quite good agreement with

those of Davì and Milazzo (1999) and of Ye (1990) with some discrepancies in the region near free

edge. These results are greater than those of Cho and Kim (2000). At free edge, the value of τyz in

present method is close to that of Ye (1990) (see Table 1), it is very important in the solution of

Davì and Milazzo (1999).

The Fig. 8 shows the distribution of the interlaminar shear stress τyz at the interface y = h for the

cases of extension and of bending. It is found that the stress τyz in the two cases is similar.

The Fig. 9 is the through-thickness distribution of the shear stress τyz in the two cases. The values

of shear stress τyz in the both cases attain the maximum at the interface y = h. Shear stresses τyz in

the two cases increase from the upper surface and mid-plane. Particularity, neighborhood of the

interface y = h, they increase very suddenly. In the case of bending, the present result is much

closed to that of Ye (1990).

Fig. 7 Interlaminar shear stress τyz at y = h in the case of bending

Fig. 8 Interlaminar shear stress τyz at y = h in the two cases
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4.2 Delamination in composite laminates

In this section, we consider a composite laminate [+θ/−θ ]s with the material and geometric

properties as the previous example. The crack length is a = 1 in. 

4.2.1 Delamination under uniform axial extension

The laminate subjects to a uniform axial extension  = e = constant. Second-degree triangular

elements and a mesh of 56 elements for a quarter of the cross section of laminate are used (Fig. 10). 

The results of stress intensity factors Ki (I = I, II, III) for various fiber orientations of ±θ degrees

are presented in the Fig. 11. 

It is seen that the KIII is always clearly dominant. This tearing mode corresponds to a shearing out

of plan, due to the interlaminar shear stress τyz. The KI is also significant. It is due to the

interlaminar normal stress σy. The KII, due to the interlaminar shear stress τxy, is always very weak.

We also note that when the angles of the fibers  are grater than 60 degrees, the three modes are

simultaneously cancelled.

The Figs. 12, 13 and 14 indicate that present results and those of Wang (1984) and of Qian and

Sun (1997) are identical in KIII. There are substantial different in KI and KII between present results

and those of Wang (1984) and of Qian and Sun (1997) and also between the results of Wang (1984)

and those of Qian and Sun (1997), in the magnitude and in the sign. Qian and Sun (1997) explained

that this difference is caused by the difference of the near-tip crack surface relative displacement

ε3
o

θ±

 

Fig. 9 Through-thickness distribution of shear stress τyz in the two cases

Fig. 10 Delamination of laminates under extension
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Fig. 11 Stress intensity factor Ki of laminates under extension

Fig. 12 Stress intensity factor KI of laminates under extension

Fig. 13 Stress intensity factor KII of laminates under extension

Fig. 14 Stress intensity factor KIII of laminates under extension
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between these methods.

In the present result, KI is always negative when . There is a tendency of crack closing

in this mode when . When we change the direction of load, it means that the structure is

subjected to axial compression (εz = −e), we found that KI, KII and KIII have the same magnitudes

with the case εz = e but their sign is changed. KI becomes positive when . So in the case

of εz < 0 and , the propagation of three modes simultaneously exist.

The maximum value of the KIII is about six and thirty times higher than that of KI and KII,

respectively. Therefore the difference of KI and of KII in the present solution with the solution of

Wang and of Qian may not significantly influence the structural analysis.

The total strain energy release rate G for various fiber orientations of ±θ degrees is shown in Fig. 15.

The results show that the energy release rate is highest for a composite laminate [±θ ]s with θ = 16o

and has the small value with θ ≥ 45o. The total strain energy release rate of present method is very

close to that of Wang (1984) and of Qian and Sun (1997).

4.2.2 Delamination of composite laminates under bending

The laminate subjects to a bending K3 = 1/h. The second-degree triangular elements and a mesh

of 56 elements for one half of the cross section of laminate are considered (Fig. 16). 

The stress intensity factors Ki (i = I, II, III) for the two cracks are presented in Figs. 17 and 18.

As the case of delamination under extension, in this case of KIII is dominant; KI is significant; KII is

θ± 60
o≤

θ± 60
o≤

θ± 60
o≤

θ± 60
o≤

Fig. 15 Total strain energy release rate G of laminates under extension

Fig. 16 Delamination of laminates under bending
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very weak. When θ is ±60 degrees, the three modes are simultaneously cancelled. For the crack 1,

KI is positive when |θ | < 60o, so the delamination propagation in the mode I can happen. For the crack

2, KI is negative when |θ | < 60o, so the delamination propagation in the mode I doesn’t happen.

We find that in the case of bending, the stress intensity factors Ki of the crack 2 in the part of the

laminate subjected to axial extension are similar to those for the axial extension (see Figs. 11 and 18).

The total strain energy release rate G for various fiber orientations of ±θ degrees of composite

laminates under bending is shown in Fig. 19. As laminates under extension, the energy release rate

is highest for a composite laminate [±θ ]s with θ = 16o and has the small value with |θ | ≥ 45o. The

total strain energy release rate of the two cracks (crack 1 and crack 2) is similar.

Fig. 18 Stress intensity factor Ki of the crack 2 under bending

Fig. 17 Stress intensity factor Ki of the crack 1 under bending

Fig. 19 Total strain energy release rate G under bending
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5. Conclusions

For the problem of free edge interlaminar stresses: The distribution of interlaminar stresses under

bending in the part of laminate subjected to extension has the characteristics similar to those in the

laminate under uniform axial extension except for the interlaminar shear stress τxy.

For the problem of delamination of composite laminates: The stress intensity factor and the strain

energy release rate under bending in the part of the laminate under extension are similar to those in

the laminate under uniform axial extension.

After some numerical tests for laminates under extension and under bending, it appears that the

metis element method constitutes a very effective tool to calculate the interlaminar stresses for the

problem of free edge composite laminates, the stress intensity factors and the strain energy release

rate for the problem of delamination in composite laminates.
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Notation

Cm : Eigen coefficients
def : Partial derivative operator of “strain”
e(x, y) : Axial strain which is independent of the z axis
equ : Partial derivative operator of “equilibrium”
F(x, y) : Airy’s stress function
ge : Generalized force of each element
he1 : Vector of unknown parameters of regular part of discretisation stress field
he2 : The vector of unknown parameters of singular part of discretisation stress field
Inf : Minimum of the function ∏(σ, u)
K3 : Bending curvature in the weak inertia plan Oyz
K5 : Warping angle about z-axis
L2, L3 et L4 : Derivative operators in order 2, 3 and 4, respectively
N(x) : Shape function matrix of the displacement field
q : Nodal displacement vector
Re(δ ) : Real part of δ
RR(x) : Polygonal interpolation matrix of regular part of discretisation stress field
RS(x) : Singular matrix of singular part of discretisation stress field
Si : Interface between two contiguous elements
Sij : Compliance tensor (i, j = 1, 2, 3, 4, 5, 6)

: Reduced compliance tensor of Sij (α, β = 1, 2, 4, 5, 6)
Sup ∏(σ, u) : Maximum of the function ∏(σ, u) 
t(σ) : Tension on the boundary Ω
u3D : Displacement field in 3 dimensions
u3D, v3D, w3D : Components of displacement field in 3 dimensions
W(σ) : Complementary strain energy density
X3 : Bending curvature in the strong inertia plan Oxz
zm : Generalized complex variable
δ : Stress singularity order
ε : Strain field
σ : Stress field
Π : Total complementary strain energy 

Sαβ

d
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Πe : Complementary strain energy of the element e
µm : Roots of the characteristic equation
Ω : Section of the structure
Ωe : Section of the element
ε

o : Vector of the imposed initial strains
 : Boundary of the section Ω

Ψ(x, y) : Prandtl’s stress function
: Mean strain

∂Ω

ε3
o




