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Abstract. A formula to approximate the fundamental period of a fixed-free mass-spring system with
varying mass and varying stiffness is formulated. The formula is derived mainly by taking the dominant
parts from the general form of the characteristic polynomial, and adjusting the initial approximation by a
coefficient derived from the exact solution of a uniform case. The formula is tested for a large number of
randomly generated structures, and the results show that the approximated fundamental periods are within
the error range of 4% with 90% of confidence. Also, the error is shown to be normally distributed with
zero mean, and the width of the distribution (as measured by the standard deviation) tends to decrease as
the total number of discretized elements in the system increases. Other possible extensions of the formula
are discussed, including an extension to a continuous cantilever structure with distributed mass and
stiffness. The suggested formula provides an efficient way to estimate the fundamental period of building
structures and other systems that can be modeled as mass-spring systems.
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1. Introduction

Mass-spring systems are used as idealizations in many areas of science and engineering. Although

eigenfrequency of complex systems are often calculated by using advanced methods such as matrix
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condensation (Li 2003) or a variation of Galerkin’s method (Lee and Renshaw 2002), the amount of

information obtained from such methods can be superfluous according to the purpose the analysis

serves. Furthermore, the methods usually necessitate execution of a sophisticated computer

simulation. If only an approximate bound of the frequency is needed, a method developed by

Rajendran (2002) or Chen et al. (2004) can be used. Access to highly accurate description of

complex dynamic systems through these methods may be suitable for analytical purposes, however

engineers may opt for a simpler yet representative view of the structures. Hence, dynamic systems

are often represented by a simple array of beams, springs, and attached masses. There are numerous

studies that propose methods of calculating eigenfrequencies for such systems. For simple systems,

Dunkerley’s method (Jacobsen and Ayre 1958, Thomson 1981), or Rayleigh’s method (Meirovitch

1986, Thomson 1981, Chopra 1995) can be used. However, utilization of the methods involves

assuming a suitable deflection shape, and iteration may be required to increase accuracy of the

initial calculation. Low’s study (Low 2000) illustrates how concentrated mass can be treated in

calculating approximate eigenfrequencies by virtue of a modified Dunkerley’s method, illustrating

another example of such type of research.

In more advanced cases, modern studies provide solutions. Gürgöze (1996, 2005), and Gürgöze

and Zeren (2006) propose methods to calculate eigenfrequencies in various configurations of

cantilevers with attached masses. For configurations where additional attachments are other than

masses, study of Cha (2005) provides a framework of formulating the frequency equation.

Especially, Gürgöze in a recent study (Gürgöze 2006) proposes a formula to calculate

eigenfrequencies of torsional vibration on an array of elastic bars and masses. The author tackles the

problem by directly investigating the related kernel matrices, which is similar to the method used in

this study. Strong contribution of matrix trace to eigenfrequncies is used in the study, and the trend

is originally reported by Braun (2003), and Strobach and Braun (2003). The contribution of matrix

trace is also rediscovered in this study.

In special cases, exact solutions may be available. Chen (2006) gives a theoretical solution for a

uniform circular shaft with concentrated elements such as rotary inertia or torsional springs, and

Gökda and Kopmaz (2005) give a solution for combination of a beam and a rod. However, the

range of application can be fairly limited, and computational cost may be considerable for using the

exact formulas.

An example of the practical application is determining the fundamental period of building

structures subjected to earthquake. In the field of practical engineering, a quick and easy-to-use

formula to evaluate the fundamental period is often necessary. Uniform Building Code (Structural

Engineers Association of California 1997) suggests a statistically based formula for the purpose.

However, the formula leaves room for improvement, in that the formula does not account for

structural details such as floor stiffness and mass. For future development of design codes, more

advanced approximation method may be necessary. An analysis method proposed by Kim et al.

(2006) is an effort to improve the code, and their research takes advantage of the formula suggested

in this study. 

When the total number of masses is large, the mass-spring system with varying stiffness

represents a discretization of a continuous cantilever beam or rod with varying section, and the

formula for calculating the fundamental period of the discrete system can be extended to the

continuous case. A number of such systems have been solved for exact eigenvalues, and for specific

types of stiffness distribution. Distributions including linear, quadratic, exponential, and

trigonometric were obtained by Kumar and Sujith (1997). More results about the non-uniform
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cantilever systems can be found in studies of Bapat (1995) and in Abrate (1986). The formula

presented in this study can treat not only the cases of smooth distribution of stiffness, but may be

also applied to the cases of discontinuous distributions where different materials are stacked with

jumps. Such layered structures were studied by Li et al. (2002). An example is given in this study

that extends the proposed discrete model to continuous limit, and accuracy is measured by

comparing the approximate results with the exact solution provided by Kumar and Sujith (1997).

2. Formulation

Configuration of the varying mass-spring system is shown in Fig. 1, where the quantity ui,

measured from the equilibrium position of mass mi, denotes the displacement relative to the fixed

base. The governing equation of the system with no external force is

(1)

where mass matrix M and stiffness matrix K are in size of n × n, and displacement vector u and

zero vector 0 are in size of n × 1. Elements Mij of the diagonal matrix M with ranges of i and j in

1, …, n can be represented by

(2)

where δij is the Kronecker delta with the property δij = 0 for i ≠ j and δij = 1 for i = j. Elements Kij

of the tri-diagonal matrix K can be expressed as

(3)

K can be decomposed by an upper triangular matrix E and a diagonal matrix k, such that

(4)

where

(5)

and

(6)

Mu·· Ku+ 0=

Mij miδij=

Kij ki ki 1++( )δi i kjδ i 1+( )j– kiδi j 1+( )–=

K EkE
T

=

k kiδi j[ ]=

E δi j δ i 1+( )j–[ ]=

Fig. 1 Configuration of the varying mass-spring system
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Note that Eq. (4) forms a Cholesky decomposition in a uniform case, such that K = kEE
T where

k = kI. Inserting Eq. (4) into Eq. (1) yields

(7)

The problem of approximating the fundamental period of this system is essentially equivalent to

approximating the largest eigenvalue of a matrix , or the smallest eigenvalue of

. Unfortunately, deriving an exact eigenvalue of the case is not feasible, and the

complexity of the problem suggests that an exact solution, if any, may be impractical.

Artin (1991) suggested that the characteristic polynomial p(λ) of a n × n matrix A has the form

(8)

where trA, the trace of A, is the sum of the diagonal entries

(9)

λ is an eigenvalue, det A is the determinant of the matrix A, and L.O.D denotes lower order terms

of λ.

In the application of the formula, the matrix A should be substituted by . Note that

the determinant of  is

(10)

since , where , and =

 (the determinant of a diagonal matrix is the product of the diagonal terms). det E and

det E
T are 1, since both are triangular matrices with diagonal entries equal to 1. Eq. (10) can be

written as

(11)

Inverse of Eq. (11) is the determinant of , and is

(12)

The value of mi/ki can be related to the period of a local oscillator such that =

 where ωi is the local radial frequency. The whole system is a chain of such local oscillators

and the fundamental period of the total structure tends to be larger than the fundamental periods of

the small scale compartments. Note that the global radial frequency ω can be related to the largest

eigenvalue of the system λ by . Hence, it can be said Ti < T, and mi/ki < λ. Thus,

 can be neglected since the contribution of the product is small compared to the leading

term λn which is the product of λ > λi. If λ is taken as the largest eigenvalue of the system, L.O.D

also can be neglected, and Eq. (8) further simplifies to

(13)
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where lower order terms and the determinant are neglected. The largest eigenvalue λ can be

evaluated by setting . It is

(14)

Hence, λ can be approximated by

(15)

Matrix A, which is , is obtained by inverting each matrix in the composition. The

resulting matrix is of the form

(16)

Trace of the matrix in Eq. (16) is

(17)

The varying masses mi can be consolidated by introducing an equivalent uniform mass-varying

stiffness system. Eq. (17) can be transformed as

(18)

 

where  is the average value of mi, and the equivalent stiffness  can be solved by

comparing each term in the summation

(19)
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where Mi is the average value of mj with j ranging from j = i to j = n, such that Mi =

. Thus, the fundamental period of this system can be calculated by substituting

ki with , and mi with Mi. Let m = M1, which is the average value of all mi. Then, it can be said

that

(20)

Although Eq. (20) gives an initial approximation of the solution, accuracy is expected to be poor,

especially by noting the fact that (Goldberg 1992)

(21)

In other words, the approximate largest eigenvalue is the totality of the eigenvalues, and eigenvalues

for higher modes are negligible. 

Fortunately, accuracy of Eq. (20) can be further improved by inspection. That is comparing the

approximate solution to the exact eigenvalues for a special case. The special case can be defined by

, i.e., the uniform case. The exact solution of the eigenvalue for the uniform case can be

derived by solving the Chebyshev polynomial of the first kind that satisfies the curious determinant

equation. The solution is well known and has the form of (Elliot 1953, Gregory 1978)

(22)

The eigenvalue for the same case can be approximated by using Eq. (20), such that

(23)

Hence, the correction factor Ψ, which is only dependent on the total number of masses, can be

written as

(24)

λ in Eq. (20) should be corrected by the correction factor Ψ in Eq. (24) to give better accuracy.

Thus, the corrected formula for the largest eigenvalue λ' becomes 

  

(25)

The corresponding fundamental period T is 

   

(26)
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3. Numerical test of accuracy

To verify the accuracy of the proposed formula, a Monte-Carlo style experiment is executed.

When  is factored out from Eq. (26), it becomes

(27)

where . Hence, the fundamental period of the structure can be expressed as

(28)

where

(29)

The exact value of α can be calculated by evaluating the eigenvalues of . The relative error

of the approximation in Eq. (26), then, can be calculated as

(30)

For the numerical experiment, 3000 mass-spring systems were generated for a fixed n, with

randomly generated ηi. Note that by using the average value m, and the equivalent stiffness , the

simulated cases can cover both varying mass and stiffness. The range of ηi was set to 0.1~1 and

uniform probabilistic distribution was used, so that the maximum value of  should not exceed 10

times the minimum value of . The exact value of α was calculated by using a numerical routine

k̂max max k̂i[ ]=

T 2π
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Fig. 2 Probability density of error for n = 10, 50, and 90
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for tri-diagonal matrices (Press et al. 1992). Then, the error in Eq. (30) was calculated for each case

in the 3000 sample structures. A relative frequency histogram, using a bin size of 0.02%, was

constructed using the error results. The process was repeated for n = 3~103. Note that the case of

n = 2 is omitted since the case is trivial and the fundamental period can be calculated directly from

the characteristic polynomial without approximation. The histograms, which are estimations of the

probability density functions, are shown in Fig. 2 for the cases of n = 10, 50, and 90. It is shown that

the probability density curves resemble the shape of normal distribution, and the mean values are

located near 0%. Furthermore, the width of the distributions become smaller as n increases, implying

that the error range becomes smaller and the accuracy of the estimation increases for larger n.

Probability of exceedance  about the mean error µ can be calculated by integrating the

density function as

(31)

where p(ε) is the probability density function of the error. Fig. 3 shows the probability of exceedance

for all n (n = 3~103). Contour lines are added to help identify the 10% separation of the probability

of exceedance. Note that the mean value µ at each n is not exactly zero, and hence Fig. 3 is not

symmetric about zero axis (The chart is symmetric about µ at each n, instead). In fact the chart

shows that the location of the mean value (dark area in Fig. 3) tends to curve down to the negative

side as n decreases. The chart clearly shows a pattern of increased accuracy at larger n. With 90%

confidence (10% probability of exceedance), the error range is −3.5%~2.8% at n = 3, and −0.8%

~0.8% at n = 103. The result indicates that the formula in Eq. (26) may be adequately accurate when

the minimum value of  is bounded at a reasonable level (0.1  for the presented test).

P µ ε,( )

P µ ε,( ) 1 p ε( ) εd
µ ε–

µ ε+

∫–=

k̂i k̂max

Fig. 3 Probability of exceedance derived from error probability distribution
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4. Example 1 : Calculation of the fundamental period of shear buildings with rigid

floor beams

Fundamental periods of pre-existing buildings at Los Angeles are approximated by using the

proposed formula, to give a practical example. The sample buildings were presented in the works of

Gupta (Gupta and Krawinkler 2000). Basic configurations of the buildings are composed of 3, 9,

and 20 stories, and floor beams are assumed rigid for convenience. When the rigid floor beam is

assumed, story stiffness ki at an ith floor can be calculated as , where hi

denotes the ith story height, and the summation is over all columns. Table 1 summarizes the story

stiffnesses, and story masses of the sample buildings.

Approximated fundamental periods TKim for the buildings are tabulated in Table 2, along with the

exact values calculated by using a numerical routine for tri-diagonal matrices (Press et al. 1992).

For comparison with conventional approximation method, an additional column of TRayleigh is

provided. TRayleigh = 2π /λ is calculated such that

(32)

where Φ is the eigenvector of the first mode. Using Rayleigh’s quotient requires the first mode

shape Φ be known before evaluation of Eq. (32). Thus, a test Φ is often assumed and the method

ki Σ 12 EI( )i/hi

3[ ]=

λ
ΦT

kΦ

ΦT
mΦ

-----------------=

Table 1 Story stiffnesses and masses of sample buildings 

Story stiffness ki in 100 kN/m, and story mass mi in ton.

3 story building 9 story building 20 story building

Story ki mi Story ki mi Story ki mi Story ki mi

1 2482 4.79 1 2315 5.03 1 3101 2.82 11 4781 2.76

2 2482 4.79 2 5812 5.03 2 8130 2.76 12 4346 2.76

3 2482 5.18 3 5490 5.03 3 8039 2.76 13 4346 2.76

4 4771 5.03 4 8039 2.76 14 3544 2.76

5 4110 5.03 5 6554 2.76 15 2833 2.76

6 3539 5.03 6 5239 2.76 16 2833 2.76

7 3018 5.03 7 5239 2.76 17 2676 2.76

8 2839 5.03 8 5239 2.76 18 2524 2.76

9 2666 5.34 9 5239 2.76 19 2086 2.76

10 5239 2.76 20 1694 2.92

Table 2 Approximated and exact fundamental periods of sample buildings by using the method suggested in
this study TKim, and by using Rayleigh’s quotient TRayleigh 

Texact, TKim, TRayleigh, and the relative error Taprroximated /Texact – 1

Sample building Texact (sec) TKim (sec) Error (%) TRayleigh (sec) Error (%)

3 story 0.633 0.633 0.00 0.633 −0.96

9 story 1.40 1.42 1.43 1.31 −6.43

20 story 1.92 1.98 3.13 1.81 −5.24
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becomes iterative (Chopra 1995). For comparison with the suggested method, Φ is assumed as the

first mode shape of a uniform case, and calculated separately for each case. TRayleigh shown in Table 2

are results of evaluating Eq. (32) once without iteration. The overhead of Φ assumption also

highlights an advantage of using the suggested method in this study; Calculation of mode shape is

not required.

Examination of relative errors corresponding to the methods reveals that for the case of TKim, the

error is bounded within 3.13%, while for the case of TRayleigh, the error is bounded within 6.43%.

The result exemplifies the practical accuracy of the suggested method. Note that the 0% error for

the case of the 3 story building is due to the significant digit trade-off; if the full machine

representable number is used, the error evaluates as −0.1798% for TKim. For quicker and simpler

calculation, an engineer may opt for using an average value of mi, and skip the calculation of ,

since the maximum variation of the story masses are 8.14, 6.16, and 5.80% respectively for the

cases of 3, 9, and 20 story buildings. For the case of the simpler calculation of TKim using the

average mass, results show −0.840, 1.01, and 2.91% of relative error for the three cases. As is

expected, neglecting the small difference in mass hardly affects the quality of the output. In the case

of the 9, and 20 story buildings, the error actually reduces when the average mass is used. More

importantly, the method still gives more accurate result than using Rayleigh’s quotient. 

5. Example 2 : Application to buildings with a damaged or rehabilitated strory

Buildings can be modeled as mass-spring systems where the  values represent the equivalent

story stiffnesses. If local damage or rehabilitation is applied at the ith story, the equivalent stiffness

of the story is altered to  where δ is a scale factor (δ < 1 for a damaged story, and δ > 1 for a

rehabilitated story). Let T1 be the original fundamental period before damage or rehabilitation, and

T2 be the period after the alteration. Also, let , and equivalently .

For the altered story, the original term  in Eq. (26) changes to ,

while all the other terms in the summed series vanish after subtraction. Hence, the square difference

∆T2 can be calculated as

 

(33)

As a numerical example, a 10 story building with linearly varying stiffness is considered. The

linearly varying stiffness is set to be  so that . Stiffness

at each story is increased and decreased 30%, and the normalized values of Texact =

 and Tapprox =  are calculated by assuming the exact

fundamental period before the alteration is known. Then, the relative error is calculated for each

case. Table 3 shows the result from the calculation.

The results show that, for the presented case, the approximate formula in Eq. (33) can be

effectively applied to the calculation of the fundamental periods of building structures after damage
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or rehabilitation. With the maximum error at 0.56% shown in Table 3, the approximation is also

shown to be highly accurate.

6. Example 3 : Extension to continuous cases

When ui(t) is taken as a sampled response of a continuous function u(x, t) in a uniform grid

spaced  in , the response vector becomes u = {u(0, t), u(h, t), ...,

u(nh, t)}T. Then, ET
u in Eq. (7) at each row in continuous sense is

(34)

Eq. (34) can be expanded in a Taylor series about h, to give

 

(35)

where ux(x, t) denotes  denotes , and O(h) is the leading error term in

order of h.

The spring constant ki in continuous sense is

 (36)

where E(x) is the Young’s modulus, and A(x) is the area of the cross section at x. Accordingly, mass

mi can be represented by , where  is the mass density at x. By noting that each row

h H/ n 1/2+( )= x 0 H,( )∈

ui t( ) ui 1– t( )– u ih t,( ) u ih h t,–( )–=
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hρ x( )A x( ) ρ x( )

Table 3 Results for the numerical example of a 10 story building with linearly varying stiffness  =
 

Comparison of Texact and Tapprox

30% increased stiffness 30% decreased stiffness

Story level Texact Tapprox Error (%) Texact Tapprox Error (%)

1 45.28 45.27 −0.02 47.57 47.55 −0.04

2 45.26 45.31 0.10 47.59 47.48 −0.23

3 45.27 45.35 0.17 47.56 47.41 −0.32

4 45.32 45.40 0.17 47.47 47.32 −0.32

5 45.40 45.45 0.11 47.32 47.22 −0.22

6 45.52 45.52 0.01 47.12 47.10 −0.04

7 45.65 45.59 −0.13 46.88 46.97 0.19

8 45.80 45.68 −0.25 46.61 46.81 0.42

9 45.93 45.79 −0.32 46.36 46.61 0.56

10 46.04 45.92 −0.26 46.16 46.38 0.47

k̂i

1 0.5 i 1–( )/ n 1–( )–[ ] k̂1⋅
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of Eu can be expanded to give , the rows of

Eq. (7) can be expanded to give a differential expression, such that

(37)

where subscripts denote partial derivatives.

As the structure described by Eq. (37) reaches a continuum , the leading error term O(h)

vanishes, and Eq. (7) transforms to a governing equation of a cantilever rod, that is

(38)

with boundary conditions imposed at x = 0 and x = H as

(39)

By applying the same technique to derive Eq. (37), Eq. (17) becomes

(40)

The correction factor Ψ when  is 

(41)

Hence, the fundamental period of the continuous cantilever rod in Eq. (38) can be approximated by

   

 (42)

For the special case of , and , Eq. (42) becomes

 

u x t,( ) u x h t,+( )– h– ∂u x t,( )/∂x⋅ h+ O h( )⋅=

hρ x( )A x( )ut t x t,( ) h
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----------------------- K x( )ux x t,( )[ ]x O h( )+– 0=⇔
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ρ x( )A x( )
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u 0 t,( ) 0=

ux 1 t,( ) 0=

λ
m1 m2 … mn+ + +
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m1 m2 … mn 1–+ + +

k̂2

--------------------------------------------------
mn
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------+ +=

1
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0
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∫
0
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π
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π
2
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-----=
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∫
0
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0

H x–

∫
0

H

∫=
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(43)

where  is the wave speed intrinsic to the material property of the structure.

The result in Eq. (43) also agrees with the result suggested by Iwan (1995).

An interesting comparison can be made between the approximate formula in Eq. (42) and the

exact solution of a special case. Kumar and Sujith (1997) derived an exact solution of the governing

equation shown in Eq. (38), where the area varies as . The solution is given

by a transcendental equation, that is

(44)

where k is defined as

(45)

For the case where  and , Eq. (42) can be written as

(46)

By setting , Eq. (46) reduces to T = βB where B is the product of  and the

square rooted integration part in Eq. (46). Note that β is in the unit of 1/velocity, and B is in the

unit of length. Hence, T can be conveniently compared in terms of β. For the case where a = 1, b = 1,

and min[A(x)]/max[A(x)] = 0.708, exact solution by Kumar and Sujith gives Texact = 4.140β sec,

while the approximate formula in Eq. (46) gives Tapprox = 4.026β sec. Relative error of the

fundamental period is . Hence, the approximate formula

exhibits high accuracy.

Another example of the comparison where a = 2 and b = 1 gives Tapprox = 4.473β sec, and

Texact = 2.924β sec. The relative error of the fundamental period calculates as ε = 52.95%. The

approximation outputs large error. The reason is suspected to be the fact that the ratio min[A(x)]/

max[A(x)] = 0.0199, which implies extreme stiffness drop. Hence, a note should be made that if the

min/max ratio of the given system is extremely low, usage of the approximation in Eq. (42) should

be avoided.

7. Example 4 : Extension to higher modes

The formula for estimating the fundamental period can be extended to the evaluation of all the

natural periods. The correction factor Ψ in Eq. (24), derived from the exact solution of the uniform

case, is in fact (Kim 2003)

(47)

T 4 2
ρA

K
------- H x–( )dx

0

H

∫=

4 2
H

2

2c
2

--------
4H

c
-------==

c
2

K/ ρA( ) E/ρ= =

A x( ) A0sin
2

ax b+( )=

a/tan aH b+( )[ ]tankH k=

k
ρ

E
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2π

T
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⎛ ⎞
2

a
2

+=

E x( ) E= ρ x( ) ρ=

T 4 2
ρH

2

E
----------

1

A x( )
----------- A ξ( )dξ xd

0

1 x–

∫
0

1

∫=

β ρH
2
/E= 4 2

ε Tapprox Texact–( )/Texact 2.747%–= =

1

Ψj

------ n n 1+( ) 1 cos
2j 1–( )π

2n 1+

----------------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

=
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where j denotes the mode number. Accordingly, periods Tj of all modes can be approximated by

plugging in Eq. (47) to Eq. (26), such that

(48)

The continuous counterpart of Eq. (48) for the cantilever rod described by Eq. (38) is

  

       

(49)

As a numerical example, natural periods of the 10 story building used in Example 1 are presented.

The normalized natural periods are shown in Fig. 4 for Tj,exact, and Tj,approx by Eq. (48) at the jth mode.

In the figure, the approximate and the exact periods are shown to match closely at j = 1, and

diverge as j becomes large. Hence, the approximation is the most accurate at the lowest mode

(j = 1) as is expected. Since the formulation is based on the approximation of the fundamental

period, accuracy for the higher modes is not guaranteed. However, it is worthwhile to note that the

curve diverges and then appears to start converging again for large n. The reason behind the trend

of accuracy recovery at large n is uncertain, however.

Tj 2π
m

n n 1+( )
--------------------

n
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n 1–( )
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----+ + + 1 cos
2j 1–( )π
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⎨ ⎬
⎧ ⎫
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=

Tj 2π
8

2j 1–( )2π 2
---------------------------

1

K x( )
----------- ρ ξ( )dξdx

0

H x–

∫
0

H

∫=

4 2

2j 1–

--------------
1

K x( )
----------- ρ ξ( )dξdx

0

H x–

∫
0

H

∫=

Fig. 4 Comparison of Tj, exact and Tj, approx for the numerical example of a 10 story building
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8. Conclusions 

A one line formula to estimate the fundamental periods of mass-spring systems with varying mass

and stiffness is presented. The formula holds advantage over conventional methods in that

• it does not require calculation of mode shapes

• it is composed in a relatively simple form

• it does not require iteration

The proposed formula in numerical test (for the case of ) showed rational behavior

in error trend. The accuracy was shown to increase at larger n, and probability of exceedance from

the mean error was shown to be bounded. With the error range within ±4% at most, with

confidence level of 90%, the approximate formula may prove adequate for practical application.

The formula, in the given examples of application, is expected to carry the same level of accuracy

that was shown in the numerical test. Also, the examples suggest that the range of application may

be wide enough for general usage whenever a quick estimate of the fundamental period is

necessary. The applications may feature varying masses, continuous cases, or combination of each.

Especially, the accuracy was tested on random structures, which means that the formula may even

prove suitable for the application to random vibration analysis. Indeed, in the pool of generated

structures, there were cases where the stiffness distribution was highly irregular. The highly irregular

distribution necessarily involved jumps of stiffness, which means that the formula may also be

applied to the analysis of attached masses, or substructures that bring about discontinuity in stiffness

distribution.

In Example 3, the formula for estimating the fundamental period is extended to the evaluation of

all the periods. Although convenient, extra caution should be paid in using the formula, since the

accuracy of the formula for higher modes is not explicitly analyzed through numerical try-outs. The

formula for all modes may be used as an initial estimation, when initial approximation is required in

numerical iteration to obtain exact eigenvalues of the non-uniform systems.

In all aspects, however, the error analysis and the examples shown in this study are far from

exhaustive. Thus, more case studies involving the application of the proposed formula may be

necessary to increase the credibility.
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