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Optimal stacking sequence of laminated anisotropic 
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Abstract. This paper presents stacking sequence optimization of laminated angle-ply cylindrical panel
based on natural frequency. Finite element method (FEM) is used to obtain the vibration characteristic of
an anisotropic panel using the first order shear deformation theory(FSDT) and genetic algorithm (GA) is
used to obtain the optimal stacking sequence of the layers. Cylindrical panel has finite length and
arbitrary boundary conditions. The thicknesses of the layers are assumed constant and their angles are
specified as design variables. The effect of the number of plies and boundary conditions in the fitness
function is considered. Numerical examples are presented for four, six and eight layered anisotropic
cylindrical panels. 
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1. Introduction

Laminated cylindrical panels are widely used in industries as structural elements, and their

vibration characteristics are important in view of the current interest in designing with composite

materials. Maximum frequency problems are of practical importance in the design of laminates

against resonance due to external excitation. The frequency of an external excitation can be placed

either between zero and the fundamental frequency or in a gap between two consecutive higher-

order frequencies depending on its magnitude. In the case of a discrete set of ply angles, the optimal

stacking sequence is to be determined such that the fundamental frequency or the frequency

separation is maximized. The greatest advantage of laminated composite materials, in addition to

high strength-to- weight properties is that they provide the designer with the ability to tailor the

directional strengths and stiffnesses of a material to a given loading environment of the structure.

Therefore, laminated composite structures provide ample opportunities for engineers and designers
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to optimize structures for a particular or even multiple objectives. The problems are often

formulated as a continuous optimization problem with the thickness and orientation of plies, as

design variable (Schmit and Farshi 1979), but for most particular problems, the thickness of the

layers are fixed and orientations are limited to a set of angles, thus the design problem becomes a

stacking sequence optimization. The design space usually contains many local extremum, with a

number being singular. Moreover, many near optimum designs may exist. Thus, there is a need for

optimization techniques that can identify multiple and singular extrema. Genetic algorithms (GAs)

can be used to find the global solution of discrete optimization problems and simulate the

mechanics of natural genetics for artificial systems based on operations that are the counterparts of

the natural type (Goldberg 1993). GAs are fundamentally different from traditional search

techniques, seeking an optimal solution through random probability methods without auxiliary

information such as derivatives or an intelligently chosen starting point. In this method when a

population of biological species evolves over generations, characteristics that are useful for survival

tend to be passed on to future generations, as individuals carrying them acquire more chances to

breed. Individual characteristics in biological populations are stored in chromosomal strings

(Goldberg 1993). 

Various authors have investigated the use of GAs for optimizing composite structures. A

topological design of structural components using GA was studied by Sandgren and Jensen (1990).

In the area of composite structural design, GAs are used to optimize the stacking sequence of

laminated plates for buckling load (Riche and Haftkaa 1993). A minimum thickness design for

plates with discrete ply angles subject to strength and buckling constraints was considered by

Kogiso (1994), where a genetic algorithm search technique was used to achieve the optimal

design. Optimum designs of laminates under various boundary conditions were investigated by

Kim et al. (1997). Tabakov studied the multidimensional design optimization of laminated

structures (Tabakov 2001), while Sivakumar researched the optimum design of laminated

composite plates (Sivakumar 1998). The otimization of hybrid thick-walled cylindrical shells under

external pressures was presented by Byon (1998). Genetic algorithm was used to design stiffened

composite panels by Nagendra et al. (1996). Soremekun et al. (2002) used GAs to blend the

stacking sequence of multiple composite laminates while Park et al. (2001) investigated the

stacking sequence design of composite laminates for maximum strength using genetic algorithm.

Chen and Karunaratne (2002) optimized the stacking sequence design of composite laminates

using GAs whereas Sadagopan and Pitchumani (1998) discussed the application of GAs to the

optimal tailoring of composite materials. Recently, the authors presented the optimum design of

laminated cylindrical shell using GAs (Shakeri et al. 2005). In this investigation the maximum first

natural frequency was obtained analytically and the influence of effective parameters in

convergence was discussed. 

In the present paper, the genetic algorithms technique and finite element analysis are used to

maximize the fundamental natural frequency with several discrete design variables in laminated

angle ply cylindrical panels. In the optimization problem, the layer thickness are constant and

orientations are changed in a set of angles. A laminated cylindrical panel is considered anisotropic

with a finite length. Different combinations of free (F), simply supported (S) and clamped (C)

boundary conditions are implemented at the four edges of the panel. Free vibration analysis is based

on the first order shear deformation theory.
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2. Free vibration analysis

Vibration characteristic of multi-layered cylindrical panel (Fig. 1) such as fundamental frequency

was investigated through the use of the finite element method. For this, the first order shear

deformation theory (FSDT) is used. According to the FSDT, in-plane and transverse displacements

for the Kth layer are assumed as follows (Ganapathi et al. 2004)

(1)

 

where u0, v0, w0 are the displacements of points on the reference surface and θx, θy are the rotations

of normal to the reference surface about the x- and y-axes, respectively. 

The strain vector in terms of middle-surface deformation and rotations of normal for Kth layer are 
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Fig. 1 Geometry and coordinate system of laminated panel
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where

 (4)

The stress-strain relations for the Kth layer is expressed as

(5)

The governing equations for the shell structures are obtained by applying Lagrangian equations of

motion given by

(6)

where  is the vector of generalized displacements with δ i

independent. A dot over the variables represents the partial derivative with respect to time. The

kinetic energy of the panel is given by

 (7)
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where

 

The strain energy functional U is given by

 (9)

Using Eqs. (3) and (5), Eq. (9) can be written as 

 (10)

A Lagrange shell element with nine second-order nodes is used, in which there are five degrees of

freedom  per node. The interpolation function of displacement field is

defined as

 (11)

where 

The kinetic and strain energy expressions, using Eq. (11), are given respectively as
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The elemental governing equations, obtained by substituting Eqs. (12) and (13) in Eq. (6), are
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After assembling the elemental mass and stiffness matrices in a general matrix, Eq. (14) is

converted to the following general governing equation

 (16a)

or

 (16b)

Solving Eq. (16b) which is the eigenvalue problem, the natural frequencies ‘ω’ are obtained.

3. Optimization by genetic algorithm

Genetic algorithm is a search algorithm based on the mechanism of natural selection and natural

genetics (Jianqlao and Soldatos 1994). In this approach, one starts with a set of designs

(population). From this set, new and better designs are reproduced using the fittest members of the

set. Each design must be represented by a finite length string (chromosome). Usually, binary strings

have been used for this purpose. In this paper binary decoding is used to increase the convergence

rate. In the genetic algorithm the reproduction, crossover and mutation operations are used. The

primary objective of the reproduction is to make duplicates of good solutions and eliminate bad

solutions in a population. The roulette wheel method is widely used for the implementation of

reproduction; for this purpose, the wheel is divided into M (population size) slices, where the size

of each is marked in proportion to the fitness of each population member. When the wheel is spun

(simulated by using a random number generator between 0 and 1, where the circumference of the

wheel is normalized to be 1), those solutions that occupy larger slices of the wheel have a better

chance to be chosen as parent designs (Walker and Smith 2003). The tournament method is an

alternative for reproduction. In this way string populations are compared with each other, and the

string with the high fitness value is chosen and inserted into the parent population instead of the

worst one. After reproducing the parent, a cross over operation is used to produce the new

population. In almost all crossover operators, two strings are chosen from the population at random

and some portions of the strings are exchanged between the strings to create two new strings. In a

single-point crossover operator, this is performed by randomly choosing a crossing site along the

string and by exchanging all bits on the right side of the crossing site, In two points crossover, two

point along the string are selected and the other portions of these two points are replaced with each

other. In uniform crossover, some portion along the string is selected randomly and the gens of

these two points are replaced with each other. As shown in Fig. 2, in this paper uniform crossover

is used. The crossover takes place with probability between 0.7-1.

The need for mutation is to maintain diversity in the population, and prevent the existing

population from seeking local maxima. Without mutation operation it is not possible to generate a
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Fig. 2 One point crossover
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new population. Mutation operation selects a position along the string randomly and replaces it with

a randomly selected number. The algorithm genetic process is described by the flowchart shown in

Fig. 3. 

The aim of this study is to maximize the fundamental frequency ‘ω’ of the laminated composite

panel by altering the ply orientation for a given thickness of a layer. The ply orientation angles of

the laminates are taken as design variables. 

4. Numerical results

An optimum design of a symmetric laminated anisotropic cylindrical panel with simply supported

edges using GA was performed. The GA parameters are given in Table 1. The material properties

and geometric dimensions of the panel are 

E11 132.5 GPa  E22 E33 10.8 GPa G12 G13 5.7 GPa= = G23 3.4 GPa== ==

ν12 ν13 0.24  ρ 1540 kg·m
3–

 R 1 θm
π

3
--- Lb

L

R θm×
---------------- 1= = = = = = =

Fig. 3 Genetic algorithm flowchart
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Governing differential equations are solved using FEM and the first natural frequency is obtained

as needed in the GA process. The fundamental frequency and ply angle are the objective function

and design variable, respectively. A discrete set of ply angles is specified between −90 and 90 deg.

with an increment of five degrees. Therefore, 37 different chances are available for each layer and

each lamina is coded with two digits from 01 up to 37. Thus, there are  possible

design conditions in the optimum design of a multi-layered panel with N symmetric layers. The

optimum stacking sequence will be achieved after 100 iterations of the GA process without any

change in the objective function quantity. 

Table 2 shows the first natural frequency parameter, , which is obtained by

using the FEM. According to this table, as the thickness-to-length ratio increases, the stiffness of the

panel will increase and consequently cause an increase in the fundamental frequency. Increasing the

span angle of the panel alone causes a slight increase in the natural frequency. The results of the

present discussion are also compared with the analytical results obtained in Uemura and Fukunaga

90 90–( )/5–( )N /2

ω* ωh ρ/π
2
C66( )

1/2
=

Table 1 GA parameters

Population size: 8 Mutation probability : 0.5 Swap probability: 0.8

Selection strategy: Rolette 
Wheel (elitist)

Crossover strategy: Uniform 
crossover with 0.5 probability

Table 2 First natural frequency parameter

h/L θm

[0/90/90/0] [90/0/0/90]

 Present 
Jianqlao and Soldatos 

(1994)
Present 

Jianqlao and Soldatos 
(1994)

0.1

 30 0.0630 0.0625 0.0615 0.0609

60 0.0648 0.0646 0.0599 0.0591

90 0.0680 0.0678 0.0597 0.0589

0.2

30 0.1770 0.1740 0.1744 0.1706

60 0.1728 0.1708 0.1637 0.1588

90 0.1692 0.1685 0.1525 0.1472

 0.3

30 0.2985 0.2933 0.2985 0.2890

60 0.2862 0.2837 0.2793 0.2682

90 0.2706 0.2741 0.2576 0.2455

Table 3 Initial population and the optimum stacking sequence for four-layered panel

 Group initial population Best angles Best fitness

 First  
[80/40]s, [−20/60]s, [−70/−10]s, [25/−20]s
[15/−80]s, [−30/5]s, [−25/−90]s, [−20/45]s

 4252.1

 Second  
[20/45]s, [85/−20]s, [35/−15]s, [−90/30]s

[−85/30]s, [55/20]s, [−70/−45]s, [−90/−50]s
 4252.1

 Third 
[55/5]s, [−35/−15]s, [5/−45]s, [0/−15]s

[40/−30]s, [−55/−35]s, [0/−60]s, [−65/90]s
 4252.1
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(1981). According to this table, the results are nearly identical, and the results with FEM differ from

the analytical results about five percent.

Table 3 and Fig. 4 show the influence of the initial selected population on the optimal design of

the panel. According to the figure, after 100 generations the frequency as the fitness function ,

4252.1 Hz, does not change, and the related optimum stacking sequence is [−40, 40]s. The number

and type of initial population can only changes the number of the local maximum and consequently

the time of convergence for the objective function but does not change its magnitude. The influence

of the number of layers in the optimum design is shown in Figs. 5-7. According to these figures,

increasing the number of layers with a constant thickness and with S = 10, causes an increase in the

stiffness of the panel and consequently increases the natural frequencies. In addition, when the

number of layers in an individual lay-up increases, the local maximum also increases and causes an

increase in the number of iterations for convergence of the fitness function. 

Fig. 4 Influence of initial population in optimum design for a four-layered simply supported panel

Fig. 5 Convergence of fitness function for four layers
[40/−40]s 

Fig. 6 Convergence of fitness function for six layers
[−40/40/45]s 
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The influence of the mid radius-to-thickness ratio, S = R/h, in the optimal stacking sequence for a

panel with simply supported edges is shown in Table 4. To demonstrate the validity of the method

used in this paper, the worst solutions are evaluated as well as the optimum solutions. This table

shows that increasing S causes a decrease in the stiffness of the panel, consequently decreasing the

best fitness function. In this table, the best and worst stacking sequences for four-, six- and eight-

layered panel are shown for various values of S. According to this table, best to worst frequency

ratios in a moderately thick pane ‘S = 20’, are greater than those of a thin panel ‘S = 100’. As the

table shows, the optimum stacking sequence can increase the fundamental frequency by

approximately 1.84 times greater than the worst selection in a thick four-layered panel. The process

of obtaining the result of Table 4 for a symmetric six-layered panel is presented in Figs. 8(a)-(d).

According to these figures, changing S can cause a change in the number of iterations for

Fig. 7 Convergence of fitness function for eight layers [40/−40/−45/40]s

Table 4 Influence of mid radius to thickness ‘S’ in the fitness function (simply supported)

Layer S
Best  

frequency
Best 
angle

Worst 
frequency

Worst 
angle

Best to worst
requency ratio

4

10 4252.1 [40/−40]s 2597 [90/90]s 1.64

20 3532.7 [45/−45]s 1922 [90/90]s 1.84

50 1998.3 [−90/30]s 1240 [0/0]s 1.61

100 1429.5 [40/−15]s 964.8 [0/0]s 1.48

6

10 4309 [40/−40/45]s 2597 [90/90/90]s 166

20 3618.4 [45/−45/40]s 1922 [90/90/90]s 1.88

50 2109.4 [85/−40/25]s 1240 [0/0/0]s 1.70

100 1520 [45/−35/10]s 964.8 [0/0/0]s 1.58

8

10 4382.9 [40/−40/−45/45]s 2597 [90/90/90/90]s 1.69

20 3676.7 [−40/45/−45/40]s 1922 [90/90/90/90]s 1.91

50 2123.6 [80/−60/35/−10]s 1240 [0/0/0/0]s 1.71

100 1524.1 [−50/40/−20/10]s 964.8 [0/0/0/0]s 1.58
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Fig. 8 Influence of S in the convergence of fitness function for six-layered panel (simply supported)

 
Table 5 Influence of mid radius to thickness ‘S’ in the fitness function (clamped)

Layer S
Best  

frequency
Best 
angle

Worst 
frequency

Worst 
angle

Best to worst
requency ratio

4

10 4685 [55/−65]s 2962 [0/0]s 1.59

20 3709.8 [55/−65]s 2772 [0/0]s 1.34

50 2879.3 [60/−65]s 1758 [0/0]s 1.64

100 2058.4 [55/−50]s 1174 [0/0]s 1.75

6

10 4851.2 [30/−60/65]s 2962 [0/0/0]s 1.64

20 3782.6 [40/−55/75]s 2772 [0/0/0]s 1.40

50 2888 [−55/90/55]s 1758 [0/0/0]s 1.64

100 2125.4 [85/−45/40]s 1174 [0/0/0]s 1.81

8

10 4873.6 [30/−50/−85/50]s 2962 [0/0/0/0]s 1.65

20 3797.4 [45/−45/70/−70]s 2772 [0/0/0/0]s 1.37

50 2915.9 [70/−40/45/−70]s 1758 [0/0/0/0]s 1.66

100 2128.3 [70/−55/40/−40]s 1174 [0/0/0/0]s 1.81
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convergence as well as the type of ply. The optimization process in a thin panel converges much

quicker than in a thick panel. 

The results of optimum stacking sequence for four-, six- and eight-layered panels with clamped

edge boundary conditions are presented in Table 5. In this case the optimized laminate has a

maximum first natural frequency of 1.81 and is 1.37 times greater than the worst designed laminate

of the eight thin- and thick- layered panels, respectively, with a related optimum stacking sequence

of [75/−55/40/−40]s and [45/−45/70/−70]s. As the table shows in contrast to the simply supported

panel, in the panel with clamped end boundary condition the best-to-worst frequency ratio in the

thin panel ‘S = 100’ is greater than that of thick panel ‘S = 20’. Furthermore, according to this

table, the optimum sequence layup in the thin panel with the clamped boundary is more efficient

compared to the simply supported panel. The influence of the mid radius-to-thickness ratio ‘S’ with

clamped boundary conditions in the optimal behavior of multi-layered panel is shown in Figs. 9(a)-(d).

As all of the figures show, the local maximum decreases as the value of S increases; consequently

Fig. 9 Influence of S in the convergence of fitness function (clamped)
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Table 6 Influence of S on the behavior of the panel with arbitrary boundary condition

Boundry
condition

S
Best 

frequency
Best 
angle

Worst 
frequency

Worst 
angle

Best to worst 
frequency ratio                 

              
SSFF       

             
             

10    3031.6 [5/−45/60]s 1563.8 [90/90/90]s 2.12

20   1942.9 [10/−30/40]s 914.47 [90/90/90]s 2.12

50     1051.5 [35/−35/0]s 513.51 [90/90/90]s 2.05

100    687.14 [45/−40/5]s 415.18 [90/−85/90]s 1.66

             10 7409.4 [75/−60/65]s 3822.2 [5/5/5]s 1.94

SSCC      20     5869.9 [80/−55/40]s 2958.6 [10/10/10]s 1.98

             50      3521.1 [85/−50/45]s 1691.8 [0/0/0]s 2.08

            100      2585.7 [85/−45/40]s 1195.1 [0/0/0]s 2.16

             
 CCFF     

             
             

10       3664.3 [10/−40/75]s 2042 [90/90/90]s 1.80

20       2510.8 [5/−25/40]s 1164 [90/90/90]s 2.16

50       1325.5 [10/−30/35]s 658.4 [90/90/90]s 2.01

100      827.02 [35/40/0]s 524.8 [90/90/90]s 1.58

Fig. 10 Influence of edge boundary conditions on GAs convergence
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decreasing the time of convergence. Optimum designs of laminates under various boundary

conditions are presented in Table 6. For the SSCC boundary condition, the optimal stacking

sequence of 6-ply thick laminate with the maximum first natural frequency 1942.9 Hz, is [10/−30/

40]s. The maximum first natural frequency for this ply is between the one for the clamped and

simply supported panels. The optimum design for the SSFF and CCFF boundary conditions are [80/

−55/40]s and [5/−25/40]s respectively. According to this table clamping two opposite edges of panel,

in comparison with the all edges simply supported, causes an increase in the stiffness of the panel

leading to an increase in the natural frequency. In addition if the two opposite edges of the panel are

free, with respect to the simply supported panel, the stiffness will be decreased, leading to a

decrease in the fundamental frequency. The process of GAs for obtaining the optimum stacking

sequence versus the end boundary conditions is shown in Figs. 10(a)-(c). According to these figures,

the optimum design and time of convergence depends on the end boundary condition. As the

figures show, the number of generations in the SSFF boundary condition is greater than that of the

SSSS and smaller than that of the SSCC boundary condition. 

5. Conclusions

A combination of genetic algorithms and FEM to maximize the fundamental frequency of fiber

reinforced panel with the orientation of fiber as the design variable is described in this paper.

Formulation used is based on first order shear deformation theory. Results are presented for

different ‘S’ and various combinations of clamped, simply supported and free boundary conditions.

In this study the acceptable final result is defined as the result which is repeated for one hundred

generations. From the numerical results the following can be concluded

- The optimum frequency ratio in a clamped thin panel is greater than that of a thick panel,

whereas in the simply supported boundary condition, the best-to-worst frequency ratio in a thick

panel is greater than in a thin panel. 

- The total iterated number of generations depends on the number and type of the initial selected

population. A suitable selection can reduce the number of generations.

- The maximum natural frequency for the optimal design in a clamped boundary condition is

higher than that of other arbitrary boundary conditions.

- The mid radius-to-thickness ratios and different types of edges boundary conditions, influence

the optimal behavior of multi-layered panel. 
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Notation

: elastic constants
h : thickness of the panel
[H], [B] : interpolation and strain displacement matrices

: general stiffness matrix
: general force matrix

L : axial length of the panel 
Lb : aspect ratio 

: general mass matrix
R : mid radius 
S = R/h : radius to thickness ratio
T : kinetic energy
U : strain energy
u, v, w : displacements in x, y, z directions respectively
u0, v0, w0 : displacements of a point on the reference surface 
{δ }G : general nodal displacement 
θx, θy : rotations of normal to the reference surface about the x- and y-axes

: shear strains 
: normal stresses
: shear stresses

Cij i j, 1 2 … 6, , ,=( )

K[ ]45 45×

G

F[ ]45 1×

G

M[ ]45 1×

G

γzy γxz γxy, ,
σi i x y z, ,=( )
τzy τxz τxy, ,
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: normal strains 
θm : span angle of panel
ρk : mass density of Kth layer

εi i x y z, ,=( )




