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1. Introduction

There are numerous methods available such as neural networks, genetic algorithms, wavelets and

fuzzy models in the structural identification field. Support vector machine (SVR) is an exclusive

data based modeling method, and has a powerful potential to be applied for system identifications

(Vapnik 1999, Zhang et al. 2006). An efficient SVR-based structural identification approach is

developed through a component-mode synthesis (CMS) technique. The CMS technique transforms

the structural identification equation for the whole structural system in the original coordinate to

several uncoupled sub-structural formulas in the normal coordinate, which guarantees the SVR

works rapidly in a greatly reduced dimension to make structural identification.

2. Structural identification algorithm

2.1 The component-mode synthesis method

Few articles have been conducted to make structural identifications by means of the component-

mode synthesis (CMS) technique, even though it has been applied widely in the structural or
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mechanical dynamic field (Morales 2000, Takewaki and Uetani 2000). The aim of the present work

is using the CMS method to reduce the SVR work dimension, thus improve the SVR-based

method’s efficiency for structural identification. Basically, the CMS methods are classified to free

interface, fixed interface and hybrid methods, according to whether the degrees of freedom at the

interfaces are free, constrained or partially constrained. In this research, the fixed interface CMS

method is adopted which permits easy and precise computation.

A complex structural model is subdivided into a number of smaller substructures physically. The

linear dynamic behavior of each substructure is governed by the following local equilibrium

equation

(1)

where  and  are the first-order and second-order time derivative of u, the subscripts I and B

refer, respectively, to the internal and boundary degrees of freedom. For instance, for the

substructure in Fig. 1 being node  to , denoted as  for

convenience, nodes  and  are boundary DOFs, and the others are internal DOFs.

Based on the fixed boundary CMS theory, structural responses can be rewritten

(2)

where  denotes the displacement weight in each mode,  is the main mode of a substructure

obtained from , and  is the additive mode produced from ϕS = −KII
−1KIB.

The sub-structural modal shape matrix  can be assembled from the main and additive

mode matrices. The first line of Eq. (2) is , which means the sub-

structural dynamic response consists of the main vibration of the fixed boundary substructure and

the additive vibration caused by the boundary node movements. Substituting Eq. (2) to Eq. (1) and
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Fig. 1 The substructure model
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multiplying ϕ from left to make the coordinate transform, the sub-structural motion equations in the

normal coordinate are derived 

(3)

where  is a diagonal matrix, and  is a

unit matrix as the orthogonal properties of the sub-structural main mode. Note that MIB will vanish

for lumped mass structures, and the Rayligh damping  is adopted here. An

approximation is constructed by assuming the velocity-dependent part in the interface is negligible,

as the damping force is usually very smaller than the inertia force. For the 4-node substructure in

Fig. 1, the interval node motion equations are

(4)

where 

The derived uncoupled sub-structural identification formulas (Eq. (4)) can be seen as SDOF

structural motion equations, and can be rewritten in a linear form. Taking the node j as an example 

(5)

where coefficient vector  are functions of the sub-structural generalized stiffness

Λj. Eq. (5) will be solved by the novel SVR technique, which will be described later. In brief, by

using the CMS method, structural equations first are transformed to equations in the sub-structural

domain, next are uncoupled by the normal transform. The derived structural identification of the

sub-structure in the normal coordinate (Eq. (5)) only consists of several unknown parameters to

identify, thus the SVR can work in a greatly reduced low dimension efficiently.

2.2 Iterative algorithm

The modal responses of substructures are required when the SVR technique is used to solve the

unknown coefficients  in Eq. (9). It can be derived from Eq. (2)

(6)

However, it is difficult to measure the complete mode shapes of substructures in the real world. A

way to overcome that difficulty is substituting an approximated mode shape matrix for the true one,

and using an iterative strategy to guarantee the convergence. In the iterative algorithm, an initial

sub-structural element stiffness vector first is assumed, and the corresponding ϕD is produced

through Eq. (2). Next the SVR is utilized to identify . Thirdly, the sub-structural
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generalized stiffness, Λj and Λj+1 are extracted from the identified coefficient matrix. Consequently,

through , the substructure element stiffness vector, , is

recovered. Once a new substructure element stiffness vector is produced, next iteration begins until

the identified results converge to accurate enough values. 

2.3 Support vector regression

Eq. (5) will be solved by the novel SVR technique, due to its excellent robustness. The novel

SVR make data processing by using the ‘Max-Margin’ idea and the ε-insensitive loss function

(Vapnik 1999). The function to be estimated is defined by 

(7)

where < · , · > denotes the dot product,  is constructed by kernel functions. When the objective

function is linear,  equals to x. The SVR produce the regression results (Eq. (7)) by solving an

optimization problem with inequality constraints 

Minimize (8)

Subject to   (9)

where  and ε are pre-determined coefficients,  and  are training errors in two subsets

defined by 

(10)

The SVR technique is closely related to the classic regularization theory. The first term of Eq. (2)

can be seen as a regularization term to produce stable solutions, and parameter  to be the

regularization parameter. This feature equips the SVR with a greater potential to make better

predictions than the classic least squares method. It is seen that Eq. (5) has the same form as Eq. (7),

thus can be transformed to the optimization problem (Eq. (8)) with the constraints (Eq. (9)), and be

solved by the SVR procedure robustly. 

3. Structural identification examples

3.1 10-DOF structural identification

To test the performance and efficiency of the SVR-CMS structural identification approach, a 10-
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DOF lumped mass structure first is investigated. The mass lumped to each floor is denoted by

. The stiffness of each floor is .

The Rayleigh damping with A = 0.005 and B = 0.0015 is adopted. The Kobe (NS 1995) earthquake

is added in the tenth floor of the structure model. The structural vibration data are simulated by the

Newmark method. To test the applicability of the proposed method in presence of noise, both 5%

and 10% standard Gaussian white noises without frequency band limitation are added as

observation noise, where 5% (10%) means the standard deviation of noise is 5% (10%) of that of

the simulated observed data. 

The 10-DOF structure is divided into three substructures. The first substructure being node from 7

to 10, denoted as S1 = [7 10], which is utilized to identify k8 to k10. The second is S2 = [4 7] and

the third S3 = [1 4]. k = {300000 200000 500000}N/m is assumed as the initial element stiffness

vector for each substructure. The choice of SVR parameters can be found in Cherkassky and Ma

(2004). Identified results in the presence of 5% and 10% noises are shown in Table 1. Because the

velocity-dependent part is assumed to be negligible in Eq. (5), the damping coefficients are not

identified in this example.

3.2 Thirty-floor structural identification

Structural identification becomes more difficult when the DOF of the structure studied increases.

A 30-DOF lumped mass structure is investigated to verify the SVR-CMS method for large-scale

structural identifications. All the mass, the stiffness and the damping values are the same as those in

the first example. The 30-DOF structure is divided to 10 substructures, S1 = [1 4], S2 = [4 7], …,

S9 = [25  28] and S10 = [27  30]. The input motion is the Kobe earthquake data added in all the sub-

structural interface nodes. Both 5% and 10% standard Gaussian white noises are added as

observation noise. As the same sub-structures are divided, the SVR-CMS procedure for the sub-

structural identification is same as that in the first example. For conciseness, the identified structural

stiffness values are plotted in Fig. 2. The absolute mean identified errors under 5% and 10% noises

respectively are 5.07% and 10.32%. Note that in this example, the displacements in all the nodes of

mi 1253.3 kg i 1 … 10, ,=( )= ki 720000 N/m i 1 … 10, ,=( )=

Table 1 10-DOF structural stiffness identified results

Number Exact
5% noise 10% noise

Estimated (Error) Estimated (Error)

1 7.2E+05 6.95E+05 (3.47%) 7.66E+05 (6.34%)

2 7.2E+05 7.11E+05 (1.26%) 7.21E+05 (0.08%)

3 7.2E+05 6.88E+05 (4.45%) 6.22E+05 (13.57%)

4 7.2E+05 7.19E+05 (0.10%) 6.95E+05 (3.53%)

5 7.2E+05 7.75E+05 (7.57%) 6.14E+05 (14.68%)

6 7.2E+05 6.83E+05 (5.20%) 6.55E+05 (8.99%)

7 7.2E+05 6.79E+05 (5.65%) 6.80E+05 (5.59%)

8 7.2E+05 6.79E+05 (5.71%) 6.30E+05 (12.46%)

9 7.2E+05 6.98E+05 (3.10%) 6.67E+05 (7.31%)

10 7.2E+05 6.84E+05 (4.97%) 6.24E+05 (13.41%)

Mean absolute error 4.15% 8.60%
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the substructure and the acceleration in boundary nodes are needed for structural identification. In

the proposed SVR-CMS identification approach, the input force need not be measured when the

substructure interval nodes are not suffered by the input excitation, because the effect of the input

force can be expressed in terms of the interface node responses.

4. Conclusions 

This research investigated support vector regression for structural identification through the

component-mode synthesis technique. The novel data processing method, SVR, work robustly for

structural parameter identification, and the CMS method reduced the number of unknown

parameters comprised in the identification equation, thus guarantee the SVR work efficiently in a

low dimension. 
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Fig. 2 Thirty-floor structural stiffness identification results ( 5% noise,  10% noise)  




