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Abstract. A novel methodology, referred to as Auxiliary Domain Method (ADM), allowing for a very
efficient solution of nonlinear reliability problems is presented. The target nonlinear failure domain is first
populated by samples generated with the help of a Markov Chain. Based on these samples an auxiliary
failure domain (AFD), corresponding to an auxiliary reliability problem, is introduced. The criteria for
selecting the AFD are discussed. The emphasis in this paper is on the selection of the auxiliary linear
failure domain in the case where the original nonlinear reliability problem involves multiple objectives
rather than a single objective. Each reliability objective is assumed to correspond to a particular response
quantity not exceeding a corresponding threshold. Once the AFD has been specified the method proceeds
with a modified subset simulation procedure where the first step involves the direct simulation of samples
in the AFD, rather than standard Monte Carlo simulation as required in standard subset simulation. While
the method is applicable to general nonlinear reliability problems herein the focus is on the calculation of
the probability of failure of nonlinear dynamical systems subjected to Gaussian random excitations. The
method is demonstrated through such a numerical example involving two reliability objectives and a very
large number of random variables. It is found that ADM is very efficient and offers drastic improvements
over standard subset simulation, especially when one deals with low probability failure events. 
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1. Introduction 

The reliability analysis of structural systems subjected to uncertain dynamic loads is of great

engineering interest and poses a challenging computational problem. The problem is the calculation

of the probability of failure of the system, where failure is defined as the event that the response

exceeds some specified thresholds. In this paper we consider nonlinear systems subjected to

Gaussian random excitation. The input, and consequently the response, can be expressed in terms of

a standard normal vector  comprised of uncorrelated standard normal variables Zm, m = 1,

2, ..., NZ (Katafygiotis and Cheung 2004a). Calculation of the probability of failure PF = P(F )

amounts to calculating the total probability volume corresponding to the failure domain F =

{Z : g(Z) < 0}, where g(Z) denotes the limit state function (LSF). 

For most practical applications involving dynamical systems approximate analytical methods such

as FORM (First Order Reliability Method) and SORM (Second Order Reliability Method) often

lead to very inaccurate results. Monte Carlo simulations (MCS) offer the most robust method for

calculating PF. However, the drawback of MCS is that when one deals with small probabilities of

failure an often prohibitively large computational effort is required. For example, if PF = 10−6 one

needs to use N = 108 samples to achieve an accuracy corresponding to 10% coefficient of variation

(C.O.V.). An excellent review on MCS can be found in (Proppe et al. 2003). Variance reduction

methods, such as importance sampling (IS), have been proposed to improve computational

efficiency. However, it is found that when dealing with high dimensional problems IS may yield

extremely inaccurate estimates of PF (Au and Beck 2002). The Controlled Monte Carlo simulation

method (Pradlwarter and Schuëller 1999), Subset Simulation (SS) (Au and Beck 2001b), Spherical

Subset Simulation (S 3) (Katafygiotis and Cheung 2002, 2003) and Line-sampling (Koutsourelakis

et al. 2004) were proposed for calculating high-dimensional reliability integrals for general non-

linear systems. A critical review of reliability estimation procedures for high dimensions can be

found in (Schuëller et al. 2004). 

It has been demonstrated that SS can offer significant improvements over MCS, especially when

considering low probability failure events. A two-stage Approach (Katafygiotis and Cheung 2004b)

was recently proposed for calculating the reliability of inelastic systems subjected to Gaussian

inputs. This latter approach proved to further increase computational efficiency in the case where

the nonlinear system exhibits significant elastic behavior. Finally, a generalization of the above two-

stage approach, referred to as Auxiliary Domain Method (ADM), has been recently proposed

(Katafygiotis and Cheung 2004c), that allows for even more drastic improvements to be realized for

general nonlinear systems subjected to Gaussian excitations. 

In the next section we review ADM. We continue by discussing the application of ADM in cases

where the failure domain is defined by multiple objectives. A methodology leading to an almost

optimal selection of auxiliary domain thresholds is outlined. Finally, a numerical example is

presented involving the reliability of a 2-DOF bilinear system subjected to Gaussian random

excitation to demonstrate the concepts and evaluate the performance of the proposed methodology. 

2 Auxiliary domain method 

Assume that the problem has been cast in a form involving an NZ-dimensional standard normal

random vector Z = {Z1, Z2, ..., ZNZ
}T. This is possible either by using a linear transformation of the

Z R
N

Z∈
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original random variables if these are Gaussian, or through other approximate transformations in the

case of most non-Gaussian random variables of practical interest (Liu and Der-Kiureghian 1986,

Grigoriu 1995). In this section we assume that the failure domain F is defined as F = {Z : maxt

|Y(t|Z)| ≥ b}, where maxt denotes the maximum over t, where the time variable t is assumed to

belong in a fixed interval [0, T]. Here we assume that the response quantity of interest Y is a scalar,

while in the next section we discuss the case where the failure is defined in terms of a vector

response quantity Y not exceeding corresponding threshold values b. 

Consider now an auxiliary reliability problem defined in terms of the same set of random

variables . Let FA and gA(Z) denote the corresponding auxiliary failure domain (AFD) and

the corresponding auxiliary LSF, respectively. Let FI denote the intersection between F and FA, i.e.,

. Fig. 1 shows schematically the definitions of F, FA, and FI . Fig. 2 depicts the case

where FA corresponds to a union of linear failure domains, which is the case assumed here. The

target probability of failure P(F ) can be expressed as a product of three terms as follows: 

(1) 

Note that the second term corresponds to the inverse of the conditional probability P(FA|F ), while

the third term corresponds to the conditional probability P(F|FA). One of the criteria in choosing the

AFD is to be of a form that renders a very efficient calculation of the corresponding failure

probability P(FA). The second term in (1) can be estimated by simulating N points in F distributed

according to fZ |F : , where NI denotes the number of these N points belonging in

FI . Similarly, the third term in (1) can be estimated by simulating N' points in FA distributed

according to fZ|FA
: , where  denotes the number of these N' points

belonging in FI.

In the next Sections we discuss the selection of the auxiliary domain and the calculation of the

second and third term in the right hand side of Eq. (1). 

2.1 Choice of auxiliary domain 

The choice of AFD is based on the following principles: i) the failure probability P(FA) can be

Z R
N

Z∈

FI F FA∩=

P F( ) P FA( ) P F( )
P FI( )
--------------×

P FI( )
P FA( )
---------------×=

P F( )/P FI( ) N/NI≅

P FI( )/P FA( ) NI
′ /N ′≅ NI

′

Fig. 1 F, FI and FA 

Fig. 2 Linear FA



350 Lambros Katafygiotis, Torgeir Moan and Sai Hung Cheung

calculated very efficiently; ii) direct simulation of failure points in FA distributed according to the

conditional distribution  can be performed very efficiently; and iii) there is significant overlap

between the target failure domain F and the auxiliary failure domain FA . 

Conditions i) and ii) can be fulfilled if for example one chooses FA to correspond to a linear

failure domain or more generally to a union of linear failure domains. While other choices may be

possible, herein we focus in the latter case and will assume that FA corresponds to a union of linear

failure domains. In this case P(FA) can be calculated using minimal computational effort through the

method described in (Katafygiotis and Cheung 2004a), while efficient direct simulation of samples

in FA distributed according to  can be achieved through a procedure described in (Katafygiotis

and Cheung 2004b). To ensure iii), i.e., a significant overlap between F and FA, one needs to

appropriately select the corresponding auxiliary problem. Specifically, one needs to: a) select an

appropriate auxiliary linear system and b) select appropriate threshold values bA in the

corresponding auxiliary problem. Points a) and b) are addressed below. 

2.1.1 Choice of auxiliary system 

A good selection may depend on experience gained from dealing with similar nonlinear problems.

The optimal selection of the auxiliary system is currently an open question. Here we present some

preliminary ideas that can be used to select a reasonable, although not optimal, auxiliary system in

the case of nonlinear dynamic reliability problems involving a deterministic nonlinear dynamic

system subjected to stochastic gaussian excitation. 

A reasonable first choice can be to consider a “linearized” version of the nonlinear problem at

hand. For example, if one studies the reliability of a nonlinear dynamic system, a reasonable first

choice may be to consider as auxiliary system a corresponding linear system with stiffness equal to

the initial elastic stiffness of the nonlinear system. Alternatively, slightly smaller value of stiffness

may be chosen to account for stiffness degradations in the target nonlinear system. Similarly, the

damping of the linear system can be chosen to be equal to the initial damping of the nonlinear

system; larger values may also be justifiable to account for increased apparent damping due to

hysteretic behavior. To obtain such modified values of stiffness and damping one may apply the

method of equivalent linearization (Roberts and Spanos 1990). It is worth noting however that such

equivalent linear system does not correspond to the optimal auxiliary linear system since the latter

clearly must depend on the threshold level b (i.e., the larger the value of b, the “softer” the optimal

auxiliary system should be), while the former does not. 

It seems that the optimal, or almost optimal, selection of the auxiliary system is closely related to

the problem of finding the design points of the nonlinear reliability problem at hand. Specifically,

consider the case of white noise excitation where the random variable Zi denotes the discrete input

at time ti = i∆t. Let Z*
 denote the design point corresponding to failure at time T = NZ∆t. Then, it

seems intuitive that one of the best choices for auxiliary linear SISO system can be obtained by

requiring the design point  of the corresponding auxiliary reliability problem at time T to satisfy

. This is possible by selecting the impulse response function hA(t) of the auxiliary linear

SISO system to satisfy: hA(i∆t) = , where c is an arbitrary scaling constant (i.e., the discrete

impulse response function of the auxiliary linear system is chosen to be proportional to the design

point vector after inverting the ordering of its elements) (Der Kiureghian 2000). It is noted that a

SISO linear system is fully characterized by its impulse response function; seeking the form of the

differential operator corresponding to a given impulse response function hA(i∆t) is of no interest.

Furthermore, if all design points of a nonlinear problem are known then the union of hyperplanes

f
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corresponding to these design points is clearly a good AFD choice; the ADM can proceed without

having to define the auxiliary dynamic system corresponding to this AFD. While it is shown that

given Z*
 it is easy to find an almost optimal auxiliary linear system, it is stressed that finding the

design point Z*
 is a very difficult problem in itself because it involves solving a very high-

dimensional non-convex nonlinear optimization problem. Efficient methods for obtaining Z*
 (or

approximations of it) have been proposed for certain categories of nonlinear systems (Koo and Der

Kiureghian 2001, Koo et al. 2005). 

While these methods are applicable to certain types of systems the authors have proposed a

methodology for finding an approximation of the design point in the case of white noise input. The

method has wide applicability, in the sense that it does not require an explicit formulation of the

nonlinear input-output relationship, and can be summarized as follows. First the nonlinear system is

subjected to an appropriately scaled impulse such that the absolute maximum of the system’s

response Y(t) over the fixed time interval [0, T ] is equal to b, i.e., maxt|Y(t)| = b. This scaling is

achieved iteratively. Next, the system is subjected to an input equal to a scaled version of the above

determined response Y(t) but time-inverted, i.e., the input at time t is equal to αY(T −  t). As before,

the scaling factor α is determined iteratively so that the new absolute maximum response is equal to

b. Consider now this input shifted to the right, such that the maximum absolute response occurs at

time T. This shifted input corresponds to an approximation of the design point Z*. Inverting the

order of the elements of this vector yields the discrete values of the impulse response function hA(t)

of the auxiliary SISO linear system. Note that generally this SISO linear system does not

correspond to a SDOF oscillator because the function hA(t) does not assume the form of the impulse

response function of a SDOF oscillator. One is cautioned that the above procedure does only yield

an approximation of Z*
 whose accuracy may not be acceptable in many cases. Thus, the resulting

auxiliary SISO system is not optimal. To obtain a better estimate of Z*
 one may use this first

approximation of Z*
 as a starting point in a follow-up optimization. Further research in developing

methodologies that yield good approximations for the design point of general nonlinear systems will

be invaluable. Such methodologies will enable an almost optimal selection of auxiliary system and,

therefore, may optimize the performance of ADM. 

2.1.2 Choice of threshold bA 

Let YA(t|Z) denote the response of the auxiliary linear system when subjected to an input specified

by Z. Note that if the auxiliary linear system corresponds to a physical model of the same

complexity as the target nonlinear model, then YA will refer to the response of the auxiliary system

at the same DOF as that corresponding to Y. However, if one chooses the auxiliary system to be the

SISO linear system described in the previous paragraph, then YA refers to the single output of this

SISO system. Given a threshold value bA one then has a well defined auxiliary reliability problem

with linear AFD FA = {Z : maxt|YA(t|Z)| ≥ bA} and corresponding LSF gA(Z) = bA − maxt|YA(t|Z)|.

As discussed earlier, the second term in (1) can be estimated by simulating N points in F

distributed according to fZ |F: , where NI denotes the number of these N points

belonging in FI . The simulation of points distributed according to fZ|F is discussed in the next

Section. Note that in order to calculate NI the values gA(Z(i)), i = 1, ..., N need to be calculated, that

is, N linear analyses need to be performed. Clearly, the accuracy in estimating the ratio P(F )/P(FI)

for a given number of samples N decreases as P(FA|F) = P(FI)/P(F ) decreases. This observation is

used as the basis for the selection of the auxiliary threshold value bA. Specifically, bA is chosen such

that NI /N is equal to a prespecified ratio p1 close to one. Note that a smaller value of p1 implies

P F( )/P FI( ) N/NI≅
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larger threshold values bA and, therefore, smaller P(FA). Although the smallest uncertainty in the

estimation of P(F )/P(FI) is obtained when choosing p1 = 1, the effect of p1 on the last term in (1) is

not obvious. In order to investigate the effect of p1 on the accuracy of P(F) in the numerical

example we consider three different values for p1 : 1, 0.8, and 0.5. 

Simulation of points according to fZ |F Here we discuss the generation of a set of points Z =

{Z
(i), i = 1, ..., N}, distributed according to the conditional distribution fZ|F. This can be achieved

through a Markov Chain having fZ|F as its stationary distribution. The starting point of this chain is

selected such as to belong in the failure domain F; however, it is usually not required to be

distributed according to fZ|F. Therefore, a certain burn-in time is needed before the generated points

follow the target stationary distribution. Assuming that the burn-in length of the chain consists of K

points, the total chain length to be generated is equal to K + N. Thus, an extended chain Ze = {Z
(i),

i = −(K − 1), ..., N} is generated; the first K points of this chain are discarded and the remaining

chain corresponds to the target set Z. Once a starting point Z
(−K+1) has been selected the chain Ze

can be generated using an appropriate algorithm, such as the modified Metropolis Hastings

algorithm presented in (Au and Beck 2001b). 

Next we discuss the selection of a starting point for the chain Ze. The only criterion used for this

selection is that the starting point Z
(−K+1) must correspond to a failure point. For this one needs to

first simulate a standard random vector Z; in the unlikely case where Z happens to be a failure

point one can readily set Z
(−K+1) = Z; in the more probable case where Z is not a failure point a

scaling factor λ > 1 is sought, based on iterations, such that Z
(−K+1) = λZ is a failure point. The

rationale for such a scaling approach is that since Z corresponds to a loading input, scaling it results

in more energy being pumped into the system causing it eventually to fail. 

An alternative approach to scaling Z is to generate a Markov chain Z' ={Z' (i), i = 1, ..., L} such

that the corresponding sequence of LSF values {g(Z' (i)), i = 1, ..., L} is monotonically decreasing;

the chain is started at Z' (1) = Z, with g(Z) > 0, and is propagated until a point having negative LSF

value, i.e., a failure point, is reached. The rule for propagation of such chain can be chosen as

follows: given a current point Z' (i), a candidate point Z' is generated distributed according to a

chosen proposal distribution centered at Z' (i). If g(Z') < g(Z' (i)) then Z' (i+1) = Z'; otherwise, Z' (i+1) =

Z' (i). If g(Z' ) < 0, then L = i + 1 and Z(−K+1) = Z' . In the numerical example presented in this paper

this latter procedure has been followed to generate a starting point Z(−K+1) ∈ F; for the generation of

the chain Z' a standard uniform distribution centered at a current point has been used in order to

generate the next candidate point Z' . The computational effort associated with finding the starting

point Z(−K+1) is found to be relatively low (see numerical example). 

The burn-in length K is estimated by monitoring the lengths |Z(i)| of the leading points in the

chain Z e. In this regard, it is noted that the length R = |Z| of an Nz-dimensional standard normal

vector Z has the following property: R2 follows a chi-square distribution with NZ degrees of

freedom. It follows that for large NZ most of the points Z in the standard normal space belong in a

relatively narrow spherical ring: almost 99.7% of all points satisfy 

(Katafygiotis and Cheung 2002, 2003); e.g., for NZ = 1000, 29.42 ≤ R ≤ 33.68. However, the starting

point Z(−K+1), due to its construction, is located further from the origin, outside this high-probability

spherical ring. Therefore, it is reasonable to assume that the initial part of the chain, comprised of

points located outside this ring, cannot be possibly distributed according to the target stationary

distribution and, therefore, must be discarded. Therefore, the value of K is suggested to be taken at

least equal to the number of points in the leading part of the chain satisfying R > . 

It is noted that while one is able to “map” the failure domain through such a set of points, this

NZ 3 2NZ– R≤ NZ 3 2NZ+≤

NZ 3 2NZ+
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information by itself does not allow for the calculation of the probability of failure P(F). Having

said that however it is also important to note that because the samples are distributed according to

fZ|F, one is able to estimate the relative probabilities of failure corresponding to any two subsets of

F by calculating the ratio of the number of samples belonging in these two subsets. 

2.2 Calculation of P(FI )/P(FA) 

The last term to be discussed in Eq. (1) is the term P(FI)/P(FA) = P(F|FA). In order to calculate

this term, a set of points Z' = {Z' (i), i =1, ..., N'}, distributed according to  is generated. Since

 and since the points are generated according to , this term can be estimated as: 

(2)

where  denotes the total number of points in the set Z' that belong in FI , i.e., that lead the

nonlinear system to fail. Assuming a small sample size, e.g., N'  = 100, P(F|FA) can be estimated

through (2) with sufficient accuracy (e.g., C.O.V. ≤ 30%) only if it is of order 0.1 or larger. If the

estimate of P(F | FA) is found to be less than 0.1, one alternative for increasing the accuracy in the

estimation of this ratio to an acceptable level (say 30%), is to increase the number of simulated

points to a level prescribed by Monte Carlo simulations (say 10 × P−1(F | FA)). However, if P(F | FA)

is too small, the number of required simulations by such an approach may be undesirably high.

Therefore, in cases where P(F | FA) < 0.1, an alternative procedure based on the general framework

of SS (Au and Beck 2001b) is proposed as described next. 

The idea is establishing a sequence of failure domains  with  and

expressing P(F |FA) as a product of a sequence of conditional probabilities:

(3)

The LSF corresponding to F1, denoted here as LSF1, is determined so that  = p0 (e.g.,

p0 = 0.1). To establish LSF1, a number of points are simulated in FA according to the conditional

distribution  and LSF1 is determined as a scaled version of the target LSF such that the

percentage of points belonging in F1 is equal to p0. Recall that FA is comprised of a union of linear

domains. A procedure which allows for the simulation of samples in such types of domains can be

found in (Katafygiotis and Cheung 2004b). 

In the subsequent steps LSFi is determined from LSFi−1 so as to ensure = p0. For this,

a number of points are simulated through MCMC method in Fi−1 distributed according to the

conditional distribution . Then, LSFi is determined as a scaled version of the target LSF such

that the percentage of the simulated points belonging in Fi is equal to p0. If , then K = i,

FK = FI , and ; the latter is > p0 and is determined as the ratio of points

simulated in  that lie in FI . 

Summarizing, P(F ) is calculated from (1) with the first term being calculated using efficient

available algorithms, the second term being set equal to a predetermined value p1 by appropriately

selecting the threshold value bA, and the last term being calculated through (2) or, in case this term

is found to be smaller than 0.1, through the modified SS expression (3). 

fZ F
A

FI FA⊆ fZ F
A

P F FA( )
P FI( )
P FA( )
---------------

NI
′

N′
------≅=

NI
′

FA F1 F2 … FK⊃ ⊃ ⊃ ⊃ FK FI≡

P F FA( ) P F1 FA( ) P Fi Fi 1–( )
i 2=

K

∏=

P F1 FA( )

fZ F
A

P Fi Fi 1–( )

fZ F
i 1–

Fi FI⊂
P FK FK 1–( ) P FI FK 1–( )=

FK 1–
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3. Selection of AFD in multi-objective reliability problems 

Consider now the case where the failure domain F is defined as , where Fj = {Z :

maxt|Yj(t|Z)| ≥ bj}. That is, we consider the case where failure is defined as the event where the

absolute value of at least one of the response quantities Yj, j = 1, ..., M, exceeds its corresponding

threshold value bj at some time t within the time interval of interest. Based on the discussion of the

previous section, one is able to select a set of M linear auxiliary systems (one for each response

quantity Yj) with corresponding impulse response functions hjA(t), j = 1, ..., M. Let bjA, j = 1, ..., M,

denote a set of thresholds defining the AFD , where FjA = {Z : maxt|YjA(t|Z)| ≥ bjA}.

In this section we discuss a strategy for an optimal selection of these threshold values bA = [b1A,

... bMA]T. 

It is assumed that the ratio p1 = NI /N, which serves as an estimate of the ratio P(FI)/P(F), has

been preselected. Then, for the given set of simulated points Z = {Z
(i), i = 1, ..., N} we are faced

with the task of selecting bA so that NI = p1N points out of this set belong in FA. Note that in the

case where M = 1 the selection of bA is uniquely determined. Specifically, defining = maxt

|YA(t|Z(i))|, i = 1, ..., N, the value of bA can be determined as the largest possible value such that NI

values out of the set  are larger or equal to bA. However, in the case where

M > 1 the selection of bA is non-unique. For example, one can set arbitrary M − 1 components of

bA to be equal to infinity and adjust the remaining component following the aforementioned

procedure for M = 1. The objective here is to develop a methodology that will lead to a good

choice of bA, in the sense that it minimizes P(FA) while ensuring that FA contains NI = p1N points

out of the set Z. The requirement of minimizing P(FA) is imposed in order to ensure maximum

overlap between FA and F and, consequently, a small number of steps in the modified subset

simulation procedure when calculating the conditional probability P(F |FA).

Consider first the case where p1 = 1, i.e., all points in Z are to be included in FA. A basic

algorithm for selecting bA, although clearly not optimal, is to choose the value of each threshold

component bjA, j = 1, ..., M, as follows: bjA = min , where 
 
= maxt|YjA(t|Z(i))|.

Based on this algorithm, each threshold value bjA is chosen as the maximum value such that all

points Z(i), i = 1, ..., N, belong in the corresponding auxiliary failure domain FjA. For the purpose of

comparing various alternative algorithms later in the numerical example let us denote this algorithm

as A1. 

An obvious improvement on algorithm A1, referred to later as algorithm A2, is to base the

selection of bjA on only the subset of points that belong in Fj. Specifically, A2 is based on choosing

the values of bjA, j = 1, ..., M, as follows: bjA = min , where ,

= . Since , it follows that

, i.e., the threshold values bjA obtained by A2 are

larger than or equal to the corresponding values obtained by A1. Therefore, A2 yields a better

auxiliary domain, having smaller value of P(FA) and, therefore, leading to a greater overlap between

FA and F. 

It is important to note that both of the above algorithms A1 and A2 cannot be easily generalized to

cases where . Specifically, consider an approach where one attempts to determine the

individual thresholds bjA by requiring p'N points out of the set Z (in the case of A1) or out of 

(in the case of A2) to belong in FjA. It can be easily seen that it is difficult to determine the value p'

corresponding to a prespecified value p1 (except when p1 = 1, in which case p' = p1 = 1). 

Next we describe an algorithm that further improves on A2 and leads to an optimal, or almost

F ∪j 1=

M
Fj=

FA ∪i 1=

M
FjA=

ŶA

i( )

ŶA

i( )
i 1 … N, ,=,{ }

Ŷ jA

i( )
i 1 … N, ,=,{ } Ŷ jA

i( )

Ŷ jA
j
k

( )
k 1 … Nj, ,=,{ } Z̃

j( )
Z{ j

k
( )

=

k 1 … Nj N≤, ,= } Z Fj∩ Ŷ jA
j
k

( )
k 1 … Nj, ,=,{ } Ŷ jA

i( )
i 1 … N, ,=,{ }⊆

min Ŷ jA

j
k

( )
k 1 … Nj, ,=,{ } min Ŷ jA

i( )
i 1 … N, ,=,{ }≥

p1 1≠
Z̃

j( )
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optimal, choice of bA. The proposed algorithm, referred to hereafter as AP, is applicable for any

value p1 ≤ 1 such that p1 N is an integer. 

For each response quantity of interest Yj , j = 1, ..., M, and for each input Z(i), i = 1, ..., N, we

calculate the maximum absolute response = maxt|YjA(t|Z(i))|, i = 1, ..., N. Let 

denote the ordered set comprised of the values  ordered in a descending order.

Note that the set of indices  corresponds to a permutation of the set , where

this permutation is dependent on the index j (i.e., the permutation depends on the response quantity

under consideration). Let now  denote the ordered set of failure

probabilities corresponding to the failure events = {Z : maxt|Yj (t|Z)|≥ }. Note that

since the set of thresholds  are ordered in descending order, the corresponding

set  is ordered in ascending order. Recall that each of the values

 can be calculated using efficient algorithms (e.g., Katafygiotis and

Cheung 2004a). However, since N may be of the order of hundred or more, in order to reduce the

computational effort it is sufficient to calculate these N values using an approximation of P(FjA(bjA))

as a function of the threshold level bjA. Such approximation can be obtained by selecting an

appropriate parametric expression for this function and interpolating through a set of points

 where R << N, and where the interpolation values  are selected

to belong in the range of interest . A recommended expression, involving three

parameters a0, a1 and a2, is: ln(P(FjA(bjA)) = , i.e., the logarithm of the

probability of failure is assumed to vary quadratically with respect to the threshold level. 

Note that . Rather than minimizing P(FA) here we propose to minimize its

upper bound corresponding to the right hand side of the latter expression. The proposed algorithm

AP involves a sequence of N1 = p1N steps. In the description of the algorithm that follows below we

adopt the following notation: 
 
denotes the value of bA at the end of the lth step; 

denotes the corresponding auxiliary failure domain, and  denotes the set of

those points in Z� that belong in , i.e., Z
(l ) = ; and  denotes the set of those

points in Z that belong in , i.e. Z
( j, l) = . Clearly,  while the sets

, l = 1, ..., M, are generally not mutually exclusive. 

The algorithm is initialized by assigning a threshold value , where , j = 1, ..., M

(with corresponding failure probabilities , j = 1, ..., M). The corresponding AFD 

is, therefore, guaranteed to not contain any of the points in Z, i.e., Z
(0) is an empty set. The basic

idea of the algorithm is to successively build up the set of failure points from an empty set at the

very beginning to a set containing N1 points at the end. During each step, the threshold values are

modified in a way such that the corresponding set of failure points includes all previous points plus

one, i.e., the set Z
(l ) is chosen to include all elements in Z

(l−1) plus one additional point. Thus, the

set Z
(l ) contains exactly l points, and also satisfies: , l = 1, ..., N1. The question asked

during the lth step of the proposed algorithm AP is how to adjust the threshold from its current

value 
 
to some new value 

 
such that: 1) the resulting Z

(l ) satisfies the above conditions

(i.e., Z
(l) contains exactly l points and satisfies: ), and 2) this adjustment is optimal in

the sense of minimizing the target function .

The answer to the above question is obtained by considering M different alternative values for

. Once these alternatives are determined, the one with the smallest corresponding value

 is selected as the final choice for . Thus, the only issue that remains to be

discussed is the selection of the M alternative values for . Next, the procedure for selecting the

j-th such alternative value for , given , is discussed. 
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Ŷ jA

j
1

( ),[ ]
aj2bjA

2
aj1bjA aj0+ +

P FA( ) P FjA( )M
j 1=∑≤

bA

l( )
FA

l( )
FA bA

l( )( )=

FjA
l( )

FjA bjA

l( )( );Z
l( )

=

FA
l( )

Z FA
l( )∩ Z

j l,( )

FjA

l( )
Z F jA

l( )∩ ∪j 1=

M
Z

j l,( )
Z

l( )
=

Z
j l,( )

bA

0( )
bjA

0( ) ∞=

P FjA

0( )( ) 0= FA

0( )

Z
l−1( )

Z
l( )⊂

bA

l−1( )
bA

l( )

Z
l−1( )

Z
l( )⊂

P F jA

l( )( )M

j 1=∑

bA

l( )

P F jA

l( )( )M

j 1=∑ bA

l( )

bA

l( )

bA

l( )
bA

l 1–( )



356 Lambros Katafygiotis, Torgeir Moan and Sai Hung Cheung

First, the value of the j-th threshold is “forward” adjusted from its current value  to a new

smaller value , while keeping the remaining values , , fixed. Here “forward”

adjustment refers to a reduction of threshold value and is chosen such as to ensure that one

additional point fails. For this we consider the ordered (descending order) set { , k =1, ..., N}.

The value  is then selected to be equal to , where s = mink .

Another way of expressing the same thing is that  is selected as the largest value , i = 1,

..., N, when considering only the points that do not belong in , i.e., i = 1, ...,

. Clearly, simply adjusting the value of  in the above manner, while keeping all

other values fixed, ensures that the set Z
(l ) will contain one more failure point than , as

desired. Note that . Also, note that . However, note that the difference in

the number of elements in the latter two sets may be larger than one. This is because the threshold

 corresponds to a value  and  corresponds to a value , where k2 > k1, but where

not necessarily k2 = k1 + 1. For example, if Z
( j(k

1
+1)) , one clearly needs to jump more than

one space in the sequence { , k =1, ..., N} in order to produce an overall additional failure point.

As a consequence, in such case the number of elements in Z
( j, l) will increase by more than one.

Whenever this happens, the possibility for “backward” adjustment of the remaining thresholds

arises. Here, “backward” refers to increasing, rather than decreasing, a threshold value. Specifically,

each of the remaining thresholds  is adjusted to the value: i = 1, ...,

}. This completes the description of the procedure for generating the

j-th alternative value for . As mentioned earlier the alternative with the smallest corresponding

value  is selected as the final choice for . 

4. Illustrative example 

Consider a two-story shear building (Fig. 3) with equation of motion: 

 

(4)

where the response vector y(t) is comprised of the first-floor displacement Y1(t) and roof

displacement Y2(t) and U(t) denotes the horizontal ground acceleration; the mass matrix M is

bjA

l 1–( )

bjA

l( )
bmA

l 1–( ) m j≠
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Fig. 3 Two-story shear building model 
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diagonal with elements m1 = m2 = 10000 kg; the damping matrix C is: 

(5)

and the stiffness force vector Fs(y(t)) is given as follows: 

Fs(y(t)) = (6)

where the first and second inter-story restoring forces F1 and F2, respectively, are bilinear functions

of the corresponding inter-story drifts: 

(7)

(8)

where sgn(x) is equal to 1 if x > 0, −1 if x < 0, and 0 if x = 0;  and the

stiffness parameters are  = 40000 π
2N/m and , with stiffness

reduction factor r0 = 0.25. For small vibration amplitudes the system behaves linearly having two

modes of vibration with modal frequencies f1 = 0.618 Hz and f2 =1.618 Hz and corresponding

modal damping ratios both equal to 2%. 

The ground acceleration U(t) is assumed to be stationary Gaussian white noise with spectral

density S = 10−4m2/s3. A discrete input signal of duration T = 10 sec with sampling interval ∆t

= 0.01 sec is considered. The discrete data U(tk)= U(k), k = 0, 1, ..., NT, (NT = 1000) are simulated

with the help of a standard normal vector , where NZ = NT + 1, as follows: =

, k = 0, 1, ..., NT . The target failure event F is defined as the event where either the

first floor displacement Y1(t) or the roof displacement Y2(t) exceeds the threshold level b1 = 4 cm

and b2 = 6.5 cm, respectively, at any discrete time instant during the 10 sec duration of the ground

shaking, i.e.: 

(9)

where Ymax(Z) = [max]i[max]k . The system is assumed to start with zero initial

conditions, i.e., . Eq. (9) states that the target failure domain is given by the union

of 4000 nonlinear LSF, where each such LSF is defined in the 1001-dimensional Z parameter space.

MCS yields the value P(F) = 1.60 × 10−5 with an accuracy of 17% C.O.V. 

The ADM is employed assuming a linear auxiliary system corresponding to the small amplitude

linear system. The mass and damping matrix of the auxiliary system are chosen to be the same as in

the corresponding nonlinear system. The stiffness force vector of the auxiliary system is given by: 

Fs (y(t)) = Ky(t) (10)

where the stiffness matrix K is: 
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(11)

Let Y1A(t|Z) and Y2A(t|Z) denote the displacements of the first and second floor, respectively, of

the auxiliary system subjected to the same ground acceleration U(t|Z), and let b1A and b2A denote

the threshold values of the corresponding auxiliary reliability problem. The auxiliary failure domain

FA is defined analogously to (9) as follows: 

(12)

where YA, max(Z) = [max]i[max]k .

In order to choose b1A and b2A a set Z = {Z
(i), i = 1, ..., N = 500} comprised of samples distributed

according to fZ|F is generated. This is achieved by first finding a failure point and then using this as

the starting point generating a Markov Chain that has fZ|F as its stationary distribution. The modified

Metropolis Hastings algorithm presented in (Au and Beck 2001b) using a standard normal proposal

distribution for each component has been chosen to generate such chain. To account for the burn-in

time of the chain, the chain is run for six hundred points:  and the first

K = 100 points are discarded. The starting failure point is obtained using the procedure described in

section 2.1.2, namely by running a chain with monotonically decreasing corresponding LSF values.

Fig. 4 shows the computational effort associated with finding the starting point in twenty different

runs. It can be seen that the required computational effort ranges from 5 to 23 dynamic analyses.

The burn-in length K is estimated by monitoring the lengths |Z(i)| of the leading points in the chain

Z
e. Fig. 5 depicts these lengths as a function of the sample number in the chain for twenty different

runs. It can be seen that in most of the runs the first approximately K = 100 points in the chain are

located outside the spherical ring with inner radius 29.42 and outer radius 33.68 where 99.7% of the

samples are expected to be distributed. This implies that the samples in this leading part of the

chain are clearly not distributed according to fZ|F and, therefore, should be discarded. Based on the

above discussion the computational effort associated with the generation of the set Z� amounts to a

total of 605-623 nonlinear dynamic analyses. 
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Next, for each sample point , i = 1, ..., N = 500, the corresponding maximum linear

responses , are calculated. This step involves a

total of 500 linear dynamic analyses. Based on these sample points and for the chosen auxiliary

linear system, the next task is to define the threshold values b1A and b2A needed to fully define the

auxiliary reliability problem. 

In Fig. 6, the circular dots give the values of , k = 1, 2, ..., N, j = 1, 2 obtained

using the simulation method presented in (Katafygiotis and Cheung 2004a); the solid curve gives

the corresponding values when using an approximation of P(FjA(bjA)) as a function of the threshold

level bjA based on the parametric expression suggested in Section 3, i.e., assuming ln(P(FjA(bjA))) to

be a quadratic function of bA, and interpolating through 10 data points between 
 
and .

From this figure it can be seen that the approximation works well requiring only a few data points.

Note that the determination of each data point  involves only one linear dynamic

analysis. 

Table 1 gives b1A, b2A and P(FA) obtained using algorithms A1, A2 and AP (described in Section 3)

for the case p1 = 1 making use of MCMC samples from one simulation run. It can be seen that for

this MCMC sample set, b1A obtained using the three algorithms are the same; the proposed

algorithm AP gives the largest value for b2A while the algorithm A1 gives the smallest such value.

As a result, the proposed algorithm AP gives the smallest P(FA) while the algorithm A1 gives the
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Table 1 b1A, b2A and P(FA) using algorithms A1, A2 and AP 

A1 A2 AP 

b1A (m) 0.03228 0.03228 0.03228 

b2A (m) 0.05053 0.05349 ∞

P(FA) 2.466 × 10−4 1.531 × 10−4 1.428 × 10−4 
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largest P(FA). This shows that the proposed algorithm AP is the best algorithm for selecting the

thresholds defining the AFD because it leads to the largest P(F |FA), and therefore its estimation,

assuming fixed accuracy, requires the smallest number of simulations. Although due to space

limitations this fact is illustrated here using only one simulation run, it is obvious that AP is by

construction always the best algorithm for selecting the thresholds defining the AFD. 

In the following analysis, the threshold values b1A and b2A are selected using the proposed

algorithm AP. For a chosen combination of b1A and b2A, P(FA) can then be determined using

minimal computational effort following the method presented in (Katafygiotis and Cheung 2004a).

Here we consider three choices for p1 : 1, 0.8, 0.5. 

Twenty simulation runs are implemented to study the statistical performance of the proposed

ADM method. Fig. 7 shows b1A (solid curve) and b2A (dotted curve) for each simulation run. It can

be seen that the choice of b1A and b2A varies for different runs. Specifically, note that for some of

the simulation runs the auxiliary domain is essentially defined using only one of the two constraints,

Fig. 7 b1A and b2A for p1 = 1 Fig. 8 P(FA) for 20 simulation runs 

Fig. 9 P(F |FA) for 20 simulation runs Fig. 10 P(F) for 20 simulation runs 
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i.e., in certain cases b1A is very large, implying only the second constraint is active, while in other

cases the opposite happens. On the other hand there are cases where both constraints seem to be

active. In each simulation run the proposed algorithm selects the best combination of threshold

values that lead to an auxiliary domain that contains all simulated sample points and at the same

time has the smallest value of P(FA) possible. 

Figs. 8, 9 and 10 show the values of P(FA), P(F |FA) and P(F), respectively, corresponding to the

earlier three p1 values for different simulation runs. From Fig. 8 it can be seen that larger p1 values

result in larger P(FA) values, as expected. Fig. 9 shows that a larger p1 gives a smaller P(F |FA) as

also expected. In all three cases of p1, P(F |FA) is found to be between 0.54 and 0.03. Therefore,

P(F |FA) is calculated using either one step (Eq. (2)) or two steps (Eq. (3) with K = 2). 

The statistical variability of the estimates  for P(F) is assessed using 20 simulation runs.

The statistical results corresponding to ADM using three different p1 values (columns 2-4), standard

SS (column 5), and MCS (column 6), are summarized in Table 2. The mean , the

coefficient of variation C.O.V  and the average total number of computations required to

calculate  by each method are given in the second, third and fourth rows of this table,

respectively. Here each structural nonlinear dynamic analysis is counted as one computation. By

comparing the values of  obtained by the different methods, we conclude that all methods

yield practically unbiased results. It is observed that ADM gives best results (smallest C.O.V.) when

p1 = 0.8. Using only about 1359 nonlinear dynamic analyses, the C.O.V obtained by ADM is

already within high levels of accuracy (less than 17.23%). Note that in addition to these nonlinear

dynamic analyses another 500 linear dynamic analyses are required when calculating the linear

responses of the points . The computational effort associated with these linear analyses is

not reflected in Table 2. 

Table 2 shows that for the same accuracy, ADM outperforms MCS and standard SS by over 1591

times and 20 times, respectively. If one includes the computational effort associated with the linear

dynamic analyses required by the ADM these performance ratios are expected to be somewhat

smaller. It is worth stressing here that while ADM requires calculation of the conditional probability

P(F |FA), standard SS proceeds with the direct calculation of P(F). In a case such as in this example

where P(F) is of the order of 10−5, standard SS would, therefore, require about five steps to

converge. Because the uncertainties introduced in each step accumulate, standard SS requires a

much larger number of simulations in each step in order to achieve the same final accuracy as

ADM which requires modified SS with a maximum of two steps. 

5. Conclusions 

This paper presents a novel methodology referred to as Auxiliary Domain Method (ADM) for

solving dynamic reliability problems for nonlinear structures. Specifically, deterministic nonlinear
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Table 2 Statistical results using: ADM; SS; MCS 

ADM-p1 = 1 p1 = 0.8 p1 = 0.5 SS MCS 

1.53 × 10−5 1.47 × 10−5 1.62 × 10−5 1.70 × 10−5 1.60 × 10−5 

C.O.V 17.23% 16.74% 29.99% 17.85% 17.01% 

Computations 1359 1112 1112 27600 2.1626 × 106 

E P̃ F( )[ ]
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structures subjected to stochastic dynamic loads are considered herein. The ADM is based on the

introduction of an auxiliary failure domain (AFD) that significantly intersects the target failure

domain. The AFD is chosen to have a linear structure facilitating a very efficient calculation of its

failure probability as well as a very efficient simulation of its failure points. Assuming that an

auxiliary domain is appropriately chosen ADM can benefit through a modified SS procedure

involving less steps and, therefore, being more efficient than standard SS. The methodology and

issues related to the selection of an appropriate auxiliary domain for reliability problems involving

single or multiple failure conditions have been presented. 

It has been demonstrated with a numerical example that the method can offer significant

computational savings compared to other existing methods when dealing with reliability problems

involving weakly nonlinear systems. The optimal selection of an AFD and an appropriate selection

in the case of strongly nonlinear systems needs further investigation. It is worth noting that there is

a trade-off between efficiency and generality, namely, while the ADM provides improved

computational efficiency in solving the particular type of reliability problems it lacks the generality

of standard SS which allows for uncertainties in the system to also be considered. 
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