
Structural Engineering and Mechanics, Vol. 25, No. 2 (2007) 181-200 181

A decoupling FEM for simulating near-field wave 
motion in two-phase media

S. L. Chen
†

 College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics,

Nanjing 210016, China

Z. P. Liao
‡

Institute of Engineering Mechanics, China Seismological Bureau, Harbin 150080, China

J. Chen
‡

The State Key Laboratory of Vibration, Shock & Noise, Shanghai Jiao Tong University, 

Shanghai 20030, China

(Received November 16, 2004, Revised August 1, 2005, Accepted August 14, 2006)

Abstract. A decoupling technique for simulating near-field wave motions in two-phase media is
introduced in this paper. First, an equivalent but direct weighted residual method is presented in this paper
to solve boundary value problems more explicitly. We applied the Green’s theorem for integration by parts
on the equivalent integral statement of the field governing equations and then introduced the Neumann
conditions directly. Using this method and considering the precision requirement in wave motion
simulation, a lumped-mass FEM for two-phase media with clear physical concepts and convenient
implementation is derived. Then, considering the innate attenuation character of the wave in two-phase
media, an attenuation parameter is introduced into Liao’s Multi-Transmitting Formula (MTF) to simulate
the attenuating outgoing wave in two-phase media. At last, two numerical experiments are presented and
the numerical results are compared with the analytical ones demonstrating that the lumped-mass FEM and
the generalized MTF introduced in this paper have good precision.
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1. Introduction

In fields such as geophysics, civil engineering, and electromagnetics, problems of the near-field

wave motion arise if the explanation of certain kind of wave motion phenomenon in a local region

is required and if the effects of the environmental medium must be considered in this explanation.

The study of near-field wave motions in two-phase media has great importance in many practical
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problems in geomechanics, seismology, oil exploration, and earthquake engineering. Due to the

complexity of the governing differential equations, nonlinearity, and inhomogenouesity, it is difficult

to solve the problem analytically (Gajo and Mongiovi 1995, Chen 1994, Kim et al. 2002).

Therefore, many investigators have resorted to numerical solutions (Zienkiewicz and Shiomi 1984,

Prevost 1985, Yiagos and Prevost 1991, Sandhu and Hong 1987, Karim et al. 2002, Zhao et al.

2005, Li et al. 2004, Diebels et al. 1996, Huang et al. 2004). 

Theoretically, we can apply domain discretization techniques (i.e., finite element method or finite

difference method) combining appropriate artificial boundary conditions to simulate near-field wave

motions, but for many practical problems, such as the earthquake response of nuclear power plants

and large bridges, the number of spatial degrees of freedom involved in numerical computation is

often larger than 10,000, and the number of time steps is also about 10,000 considering the strong

ground motion duration and time step requirement for numerical stability. That means analyzing the

earthquake response of the large structures one time (one forward computation) by some ordinary

methods involves solving at least 10,000 orders equations set 10,000 times. Moreover, the

earthquake resistant design and inverse problems require such forward computation many times.

This time-consuming computation renders some ordinary numerical methods impractical. Thus, we

need to find a numerical method which can simulate the near-field wave motion, not only accurately

but also efficiently. Fortunately, over the past 20 years Liao et al. (1984, 1996, 1999, 2001) have

proposed and developed a decoupling technique that has been proved accurate and efficient through

a series of numerical experiments for 2- and 3-dimensional benchmark cases. 

The research done by Liao et al. focuses almost entirely on one-phase media. Thus, in this paper

we will generalize the decoupling numerical method into two-phase media. This paper is organized

as follows. In Section 2, the mathematical model for near-field wave motions in two-phase media is

described. In Section 3, an equivalent but direct weighted residual method is presented, and a

lumped-mass finite element model with clear physical meaning is obtained. In Section 4, time

integration procedures are discussed, and an explicit scheme is selected. In Section 5, the artificial

boundary for two-phase media is discussed, and an artificial boundary condition is proposed which

is local and independent of the model. In Section 6, two numerical experiments which demonstrate

the accuracy and efficiency of the proposed procedure are presented. Section 7 is devoted to

conclusion.

2. Mathematical model

2.1 Governing differential equations

The two-phase models were discussed in (Chen 2002) in details. In this paper, we mainly

introduce a decoupling technique that is not limited to any specific model, so without loss of

generality, the model introduced in (Men 1982) is selected. Its equations are reformulated as

follows:

for the solid skeleton 

 (1)Ls

T
σ′ 1 n–( )Lw

T
P– b U

·
u·–( )+ 1 n–( )ρsu

··
=
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for the pore fluid

 (2)

Compatibility conditions (assuming that the initial pore pressure and initial volumetric strain are

zero):

 (3)

The isotropic linear elastic constitutive law for solid skeleton is written as

 (4)

and the relation between strain and displacement is

 (5)

nLw

T
P– b u· U

·
–( )+ nρwU

··
=

nP– Ew ne
w

1 n–( )es
+[ ]=

σ′ De=

e Lsu=

Table 1 Model in details

Model P-SV wave Three-dimensional 

u

U

L
s

L
w

D
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e

Notation Es
 is the Young’s modulus of solid skeleton, ν is the Poisson ratio, µ is Lame constant,
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 (6)

 (7)

where Ls and Lw are differential operator matrix, σ' and P are the effective stress and the fluid

pressure, respectively, U and u are the displacements of the fluid and solid skeleton, respectively, ρs
and ρw represent the densities of the solid skeleton and fluid, respectively, n is porosity, and b is

defined as b = n2/k where k is the permeability coefficient of the pore fluid, Ew is the bulk modulus

of the pore fluid, es and ew denote the volumetric strains of the solid skeleton and pore fluid,

respectively, e is the solid strain tensor and D is the matrix of material constants. The forms of the

U, u, Ls, Lw, σ', D and e for different cases are shown in Table 1.

Substituting Eqs. (3), (4), (5), (6), and (7) into Eqs. (1) and (2) respectively, one obtains

equilibrium equations in term of U and u.

 

(8)

 (9)

2.2 Boundary conditions

Three types of boundary conditions on the boundary Γ can be considered. 

A. Dirichlet boundary condition

On :

(10a)

on :

(10b)

e
s

Lwu=

e
w

LwU=

Ls

T
DLsu

1 n–( )
n

----------------Lw

T
Ew nLwU 1 n–( )Lwu+[ ] b U

·
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··
=

Lw

T
Ew nLwU 1 n–( )Lwu+[ ] b u· U

·
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··
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w
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Table 1 Continued 

Model One-dimensional P wave One-dimensional S wave SH wave

u u u u3

U U U U3

L
s

L
w

D E
s

µ

σ' σ' τ

e e γ

∂/∂ x ∂/∂ x ∂/∂ x1 ∂/∂ x2,( )
T

∂/∂ x
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where  and  are the prescribed displacements of solid and fluid phase on the boundary ΓD ,

respectively.

B. Neumann boundary condition

On :

(11a)

on :

(11b)

where  and  are the prescribed traction of the solid phase and the pore fluid pressure on the

ΓN , respectively. The vector n is the unit outward normal to the boundary ΓN ,  is a matrix with

unit outward normal components as its elements, and n and  are defined as follows:

(12a)

 (12b)

C. Artificial boundary conditions

Artificial boundary conditions are needed on the fictitious boundary ΓA of a finite computational

region to model the wave propagation towards infinity. A number of such boundary conditions have

been proposed (Degrande and Roeck 1993, Gajo et al. 1996, Akiyoshi et al. 1998), and the MTF

(Liao 1984) is adopted here for its simplicity and local characteristics. The MTF establishes a

displacement relation between the nodes on the artificial boundary and nodes in the computation

region and can be considered as Dirichlet boundary condition.

The parts  and ΓA of the boundary Γ satisfy the following conditions

(13a)

(13b)

(13c)

2.3 Initial conditions

(14a)

 (14b)

u U
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·
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·
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3. Weak form – Semi-discrete finite element equations

3.1 Weak Galerkin formulation

Given the governing differential equations and initial boundary conditions, the weighted residual

method is often used to obtain semi-discrete finite element equations. Here, we perform the method

for the above initial boundary value problem.

The satisfaction of Eqs. (8) and (9) is equivalent to the following integral statement:

 

(15)

(16)

where w1 and w2 are arbitrary weight function vectors.

Discretizing the computation region into nonoverlapping finite elements, the solid skeleton

displacement vector u and the fluid displacement vector U can be approximated as follows: 

(17)

(18)

where u
e and U

e are the vectors of nodal displacement and N is shape function. Here, the same

shape functions are used for both the solid and fluid phases. J is the number of nodes for one

element, I is d × d unit matrix, and d is the number of the degree of freedom for the solid phase on

one node.

Substituting Eq. (17) into Eqs. (15) and (16) and performing the integration on the domain

occupied by element e, one obtains the following:

(19)

(20)

Applying Green’s theorem for integration by parts on the first integral in both Eqs. (19) and (20)

and considering the Eqs. (3)-(7), one obtains the following:
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 (21)

(22)

where Ω e is the domain occupied by element e and Γe is the boundary of Ω e. 

Substituting Neumann boundary condition (Eq. (11)) into Eqs. (21) and (22), we obtain the

following: 

(23)

 (24)

where  and  are the interface between elements, Dirichlet boundary,

Neumann boundary, and artificial boundary parts of Γe, respectively. Eqs. (23) and (24) can also be

obtained by proceeding along standard procedures (Zienkiewicz and Taylor 1989), that is, the

boundary conditions along with the differential equations are written as an equivalent integral

formulation with different weight functions( ,  for boundary conditions and w1, w2 for

differential equations), then applying Green’s theorem for integration by parts and assuming

 and , one can obtains Eqs. (23) and (24). Although the above two methods

lead to the same results, the way proposed here is more consistent with the way of solving general

boundary value problems analytically, that is, first obtaining the general solution of the controlling

differential equation, and then combining the boundary conditions to obtain the specific solution.

Moreover, the method proposed here need not make the artificial assumption of  and

.

As the displacement conditions prescribed on  can be satisfied in the stage of solving the

obtained algebra equations and the weight functions w1 and w2 are arbitrary, we can ignore the

contributions, and then Eqs. (23) and (24) reduce to the following:

(25)
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(26)

For the Galerkin method, the weight functions are selected to be equal to shape functions:

 (27)

Substituting Eq. (27) into Eqs. (25) and (26), after algebra, one obtains the following:

(28)

(29)

where

 (30a)

 (30b)

Eqs. (28) and (29) can be expressed in the matrix form as follows 

(31)

where the element mass matrices are equal to

 (32)

 (33)

The element damping matrices, representing the viscous coupling between both phases, are given by

 (34)

From Eqs. (28), (29), and (31), we have 
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The element stiffness matrices are expressed as

 (36)

 (37)

 (38)

(39)

Finally, the external nodal forces are given by

(40)

(41)

and the mutual forces between elements, which can be canceled in the element assembly process,

are expressed as

(42)

(43)

3.2 Lumped-mass finite element method

Given the element mass matrices, element damping matrices, element stiffness matrices, and the

external nodal forces, we can obtain the system equations set for domain Ω by assembling these

element matrices according to standard procedures (Zienkiewicz and Taylor 1989). This process

results in the consistent-mass finite element model. Another finite element model is the lumped-mass

model. Although the consistent-mass model is more elegant than the lumped-mass one from a

mathematical point of view, the latter has been suggested for use since the decoupling method was

first proposed by Liao (1984). The suggestion was based on the following considerations (Liao

1999): (1) the lumped-mass model yields a spatial decoupling scheme, which is substantially more

efficient in computation than the spatial coupling scheme resulting from the consistent-mass model;

(2) the suggested model is more reasonable in the physical sense that the wave speed must remain

finite; (3) the lumped-mass model is not less accurate than the corresponding consistent-mass model

as far as the numerical simulation of wave motion in a desired frequency band is concerned; and (4)

the restrictions imposed on the time step by the stability criteria for the consistent-mass model are

often harsher than those for the lumped-mass one. For the reasons stated above, the lumped-mass

model is selected in this study. The lumped-mass model can be obtained by introducing the different

shape functions used for the mass matrix from those for the stiffness matrix or by properly selecting
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the numerical integral points to cause the element not to be on the diagonal zero. Both of them are

only from mathematical consideration and lack physical meaning. Here, following the thoughts in

Liao (1984) and considering the accuracy requirements for numerical simulation of wave motion, a

practical lumped-mass model with clear physical meaning is derived. This model combines the

simplicity advantages of the finite difference and the advantages of the finite element method in

dealing with inhomogenous medium and irregular boundary. 

As we all know, a dynamic disturbance at a spatial point cannot be transmitted to another spatial

point instantaneously: it takes time to reach the next point because the wave speed in any realistic

medium is finite. In other words, the motion of a specific spatial point at the next moment is

determined completely by the motions of its neighboring points in the present and past within a

short time window. Therefore, to derive the equations that govern the wave motion of a point, a

local nodal system with this point at center is considered. The local nodal system is shown in Fig. 1;

the element in the system is quadrilateral and can also be other types. 

Assuming the local nodal system consists of L nodes, the subscript (l ) l = 1, 2, ..., L denotes the

node serial number in this system and the subscript j denotes the node serial number of a element,

there is a relationship between l and j, that is, . So, we have

(44a)

(44b)

where ul and Ul are the displacement vectors at node l for solid and fluid phase respectively,  and

Uj are those at node j for element e.

Without loss of generality, we assume that node 1 in the system, as shown in Fig. 1, has the same

serial number 1 in all elements in this system. According to the physical meaning of elements in

stiffness matrix, mass matrix, and damping matrix, i.e., the value of Kij is equal to that of force

imposed on the ith degree of freedom when unit displacement occurs on the jth degree of freedom,

the equilibrium equations of node 1 can be written as follows: 

for the solid phase

(45)
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Fig. 1 The local nodal system
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for the fluid phase

(46)

where the first term in Eqs. (45) and (46) is the contribution of inertial forces and other terms on

left side are the contribution of constitutive force. , and  are the d × d submatrix

of  and , , respectively.

To guarantee accuracy in simulating wave motion, the element sizes must be substantially smaller

than the smallest wavelength considered. Thus, the spatial variations of acceleration and mass

density can be ignored in element region, which means

 (47)

Substituting Eq. (47) into Eqs. (45) and (46) and considering that the mutual forces between

elements having the same absolute value but inverse signs, which results in = = 0,

the Eqs. (45) and (46) reduce to the following:

(48)

(49)

where,

(50)

 (51)

 and  are d × d diagonal matrices with the same diagonal elements and the diagonal

elements of them denotes the solid and fluid lumped mass on node 1 contributed by element e,

respectively.

The equilibrium equations of other nodes in the computation region (not including the nodes on

the artificial boundary) can be derived in the same way as that of node 1. Considering a local nodal

system consisting of node i and its neighboring nodes and assuming that the node with serial

number k of a element corresponds to serial number i in the system, that is, a relationship of

 exists, then the equilibrium equations governing the wave motion of node i are given as

follows:

(52)

(53)
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where,

(54)

 (55)

and it can be proven that 

(56)

 (57)

Eqs. (52) and (53) govern the wave motion of inner nodes which refer to all nodes except those

on the artificial boundary. The equations that describe the motions of nodes on the artificial will be

discussed later. 

4. Time integration

Time integration of the semi-discrete finite element Eqs. (52) and (53) can be performed by many

types of time stepping algorithms. Broadly speaking, both implicit or explicit procedures are

available. Explicit procedures are the most computationally efficient procedures since they do not

require (for a lumped-mass model) equation solving to advance the solution, while the implicit

procedure require solution of a system of equations at each time step. Although unconditional

stability can usually be achieved for implicit procedures, the time step restriction for the whole

computation system is determined by the criterion for the stable implementation of the artificial

boundary condition, which is comparative to the stability restriction of the explicit procedure.

Moreover, the explicit procedure combining the lumped-mass model causes the motion of a specific

spatial point at the next moment to be determined completely by the motions of its neighboring

points at present and past times within a short time window, which is the character of the wave

motion, i.e., local in space and time. Therefore, an explicit procedure is suggested in this study and

we select a explicit procedure which results from the combination of the center difference scheme

and Newmark scheme (Li et al. 1992). After implementation of this explicit scheme in Eqs. (52)

and (53), the motions of inner nodes can be expressed as follows:

For displacemen

 (58a)

Msi Msk i( )

e

e
∑ Mssk i( ) j

e

j 1=

J

∑
e
∑= =

Mwi Mwk i( )

e

e
∑ Mwwk i( ) j

e

j 1=

J

∑
e
∑= =

Msk

e
1 n–( )ρsNk Vd

Ω
e∫=

Mwk

e
nρsNk Vd

Ω
e∫=

k 1 … J, ,=( )

ui

p 1+ t
2∆

2
-------Msi

1–
Cssk i( ) j

e
u· j

ep
Cswk i( ) j

e
U
·
j

ep
– Kssk i( ) j

e
uj

ep
Kswk i( ) j

e
Uj

ep
+ +( )

j 1=

J

∑
e
∑–=

 ui

p
tu· i

p∆ t
2∆

2
-------Msi

1–
Fsi

ep

e
∑+ + +



A decoupling FEM for simulating near-field wave motion in two-phase media 193

(58b)

for velocity

 

(59a)

 (59b)

where ∆t is the time step,  and  are the displacement vectors of node i at time  for solid

and fluid phase, respectively,  and  are those of node j for element e at time .

5. Artificial boundary condition

Some investigators, such as Degrande (1993), Gajo (1996), and Akiyoshi (1998), have studied the

artificial boundary for two-phase media. However, the boundary conditions proposed there are

almost model dependent or global in time and/or space. Due to their ease of implementation and

their local character in space and time domain, local artificial boundary conditions are frequently

used for dry elastic media. Among the local artificial boundary conditions, the MTF developed by

Liao and his co-workers (Liao 1984) is based solely on a general description of wave propagation

and is not geared to any specific system of differential equations that render it general and easy to

implement. Considering the attenuation character of wave motion in two-phase media, we have

generalized the MTF into the case of two-phase media. For a more detailed derivation, one can

refer to (Chen and Liao 2003), and only the final formulas are given below:
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(62)

(63a)

(63b)

(63c)

(64)

Where ∆x is the spatial step,  and  are the displacement vectors of the artificial boundary

point at time  for solid and fluid phase respectively, H is the order of the generalized

MTF, cαm and βαm are the mth artificial speed and artificial attenuation coefficient, respectively, and

 is a backward operator with

(65)

where  and  are the displacement vectors at  on the x-axis, which coincides with

the outward normal to the artificial boundary at boundary point 0, with the boundary point 0 as its

origin. The formulae (60a) and (60b) are the generalized MTF for attenuation waves in two-phase

media, and they can be reduced to the MTF when the attenuation coefficients are zero. Moreover,

the generalized MTF is independent of any specific model and local in time and space. 

6. Numerical examples

Based on the formulae above, we programmed the corresponding finite element codes. Numerical

experiments for both two- and three-dimensional cases are presented to verify the accuracy and

efficiency of the decoupling procedure. 
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Fig. 2 Two-dimensional point source model in whole
space

Fig. 3 Three-dimensional point source model in
whole space
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6.1 The point source problem in two-dimensional infinite space

Consider a plain strain problem in a two-dimensional infinite domain, as shown in Fig. 2.

Suppose that a point force  acts on the solid skeleton at point (1,1) along y direction. The

function  is defined as 

(66)

The non-dimensional parameters used in computation are as follows, λ = 0.12 µ = 0.24, Q = 0.479,

k = 1.0, ρ = 1, ρw = 0.4, m = 2.25, and α = 1.0. Given these parameters, we can obtain the following:

, and , where, cp, cd, and cs are non-

dimensional wave speeds of the fast compressional wave P1, the slow compressional wave P2, and

the shear wave S, respectively. ηp, ηd and ηs are the dissipation factors of the above three types of

wave, respectively. 

The artificial boundaries are placed around the computation region, the dimensions of the model

are 2 × 2, and the computation region is discretized using 20 × 20 four-node square elements, with

the nondimensional size . The time integration scheme suggested in Section 4 is

used with the nondimensional time step . 

Figs. 4 and 5 depict the solid nondimensional displacements at B(1.5,1.5) in x and y directions,

respectively, and Figs. 6 and 7 for C (2.0,2.0), with a solid line denoting the analytical solution

(Chen 1994), a dash line representing the numerically exact solutions, and a dotted line for the

results using generalized MTF. The numerically exact solution means the numerical results with the

artificial boundaries placed far enough away that the dynamic behaviors of the regions we were

concerned with during the computation time were not affected by the reflected waves from the

artificial boundaries. In Figs. 4-7, excellent agreement of the analytical solution and the numerically

exact result is seen, which demonstrates that the decoupling technique in this paper has high

accuracy. The results using generalized MTF also agree well with the analytical solutions, which

tests the accuracy and efficiency of the generalized MTF in simulating the attenuating waves in

two-phase media.

F t( )
F t( )

F t( )
sint 0 t 1≤ ≤,

0 t, 1>⎩
⎨
⎧

=

cp 1.0= cd 0.54= cs 0.36= ηp 0.0≈ ηd=0.12, , , , ηs 0.013=

x∆ y∆ 0.1= =

t∆ 0.01=

Fig. 4 The displacement of solid phase in x direction
at point (1.5,1.5)

Fig. 5 The displacement of solid phase in y direction
at point (1.5,1.5)
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6.2 The point source problem in three-dimensional infinite space

Consider a three-dimensional model, as shown in Fig. 3, with artificial boundaries placed on all

six surfaces. Suppose that the point force  (see Eq. (66)) acts on the solid skeleton at point

(1,1,1) along z direction. The nondimensional parameters are the same as those in the two-

dimensional case. The dimensions of the model are  and the computation region is

discretized using  eight-node cubic elements, with the nondimensional size .

The time integration scheme suggested in Section 4 is used, with the nondimensional time step

. 

Figs. 8 and 9 depict the solid nondimensional displacements at B(1.0,1.0,1.0) in x and z directions,

respectively, and Figs. 10 and 11 for C(1.5,1.5,1.5), with a solid line denoting analytical solution

(Chen 1994), a dash line representing the results using generalized MTF. The displacements in y

direction are the same as those in x direction for symmetry. The results at boundary node are not as

good as those in the two-dimensional case because the boundaries are not far enough away from the

source. It is proved in Liao (2001) that the accuracy of the MTF in transmitting more general one-

way wave motions may be consistent with that of the finite elements or finite differences in the

F t( )

1.5 1.5× 1.5×
x∆ y∆ z∆ 0.1= = =

t∆ 0.01=

Fig. 6 The displacement of solid phase in x direction
at point (2.0,2.0)

Fig. 7 The displacement of solid phase in y direction
at point (2.0,2.0)

Fig. 8 The displacement of solid phase in x direction
at point (1.0,1.0,1.0)

Fig. 9 The displacement of solid phase in z direction
at point (1.0,1.0,1.0)
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Fig. 10 The displacement of solid phase in x direction
at point (1.5,1.5,1.5)

Fig. 11 The displacement of solid phase in z direction
at point (1.5,1.5,1.5)

Fig. 12  The snapshot of the solid phase displacement in x direction at z = 1.0
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numerical simulation of wave motion if only the MTF order and the distance between the artificial

boundary and the source region are appropriately selected. Figs. 12-14 are the snapshots of solid

nondimensional displacements in x, y, and z directions in transverse section z = 1.0, respectively. 

7. Conclusions

The computation is very time-consuming when the problems of near-field wave motion in two-

phase media are solved by some ordinary numerical methods, and this renders these methods

impractical for engineering. An efficient decoupling technique is presented in this study that consists

of the lumped-mass finite element model, explicit time integration procedure, and generalized MTF.

Fig. 13 The snapshot of the solid phase displacement in y direction at z = 1.0



A decoupling FEM for simulating near-field wave motion in two-phase media 199

Meanwhile, an equivalent but direct weighted residual method is presented to solve boundary value

problems. Finally, two- and three-dimensional numerical experiments are presented, which test the

accuracy and efficiency of the proposed method by comparison with the analytical solutions. We

also find the numerical instability in the three-dimensional case. The reason for and the measures to

avoid this instability should be studied further. 
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Fig. 14 The snapshot of the solid phase displacement in z direction at z = 1.0
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