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Abstract. A first endeavor is made to exploit the differential quadrature method (DQM) as a simple,
accurate, and computationally efficient numerical tool for the large deformation analysis of thin laminated
composite skew plates, which has very strong singularity at the obtuse vertex. The geometrical
nonlinearity is modeled by using Green’s strain and von Karman assumption. A recently developed DQ
methodology is used to exactly implement the multiple boundary conditions at the edges of skew plates,
which is a major draw back of conventional DQM. Using oblique coordinate system and the DQ
methodology, a mapping-DQ discretization rule is developed to simultaneously transform and discretize
the equilibrium equations and the related boundary conditions. The effects of skew angle, aspect ratio and
different types of boundary conditions on the convergence and accuracy of the presented method are
studied. Comparing the results with the available results from other numerical or analytical methods, it is
shown that accurate results are obtained even when using only small number of grid points. Finally,
numerical results for large deflection behavior of antisymmetric cross ply skew plates with different
geometrical parameters and boundary conditions are presented. 

Keywords: large deformation; thin laminated skew plates; differential quadrature method.

1. Introduction 

Differential quadrature method is a relatively new numerical technique in structural analysis which

was used successfully for different structural problems (Bert et al. 1988, Bert and Malik 1996,

Karami and Malekzadeh 2002, 2003, Malekzadeh and Karami 2003, Karami and Malekzadeh 2004,

Karami et al. 2003, Karami and Malekzadeh 2003, 2002, Kennedy and Simon 1967, Alwar and

Ramachandra Rao 1973, 1974, Buragohain and Patodi 1978, Srinivasan and Ramachandran 1975,

1976, Srinivasan and Boby 1976, Ray et al. 1992, Pica et al. 1980, Duan and Mahendran 2003).

However, most of the applications of DQM were concerned on problems with linear differential

equations. Also, a major drawback of the conventional DQM is that it cannot be used in a straight

forward manner for thin walled structural problems which have multiple boundary conditions for

each field variable at a boundary point. An especial treatment is necessary for implementing the
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multiple boundary conditions (Bert et al. 1988, Bert and Malik 1996, Karami and Malekzadeh 2002,

2003, Malekzadeh and Karami 2003, Karami and Malekzadeh 2004, Karami et al. 2003, Karami and

Malekzadeh 2003, 2002). In order to overcome this drawback, a DQ methodology was proposed by

the author and his co-workers, which was only investigated for structural problems with linear

differential equation (Karami and Malekzadeh 2002, 2003, Malekzadeh and Karami 2003, Karami

and Malekzadeh 2004, Karami et al. 2003, Karami and Malekzadeh 2003, 2002). Therefore, it is

essential to investigate its applicability for complexly nonlinear problems of thin structural elements.

One of the complexly and practically important problem in structural analysis is the nonlinear

bending of composite skew thin plates. Especially for antisymmetric composite skew plates due to

bending-extensional coupling, the equilibrium equations and the related boundary conditions become

more complicated than those of isotropic or orthotropic plates. Solving such a nonlinear problem

clears the potential of the proposed DQM as a powerful technique for the structural analysis. 

On the other hand, the research works on the nonlinear bending analysis of skew plates were

restricted to isotropic and orthotropic thin skew plates (Kennedy and Simon 1967, Alwar and

Ramachandra Rao 1973, 1974, Buragohain and Patodi 1978, Srinivasan and Ramachandran 1975,

1976, Srinivasan and Boby 1976, Ray et al. 1992). Also, skew plates with skew angle ranging from

0 to 45o with fully clamped and fully simply supported edges were considered. Nonlinear analysis of

skew plates with 60o skew angle was often ignored. Nonlinear bending analyses of skew plates based

on the first order shear deformation theory (FSDT) were also limited to plates with isotropic material

(Pica et al. 1980, Duan and Mahendran 2003). Nonlinear bending analysis of antisymmetric

laminated skew composite plates is not investigated yet. In using the conventional numerical method

such as finite element method (FEM), a special treatment is necessary to solve skew plates with large

skew angles (Duan and Mahendran 2003). The shear locking phenomenon is another drawback of

conventional FEM. Some of treatments on the subjects for small deflection analysis of skew plates

were reported in Duan and Mahendran (2003). The subject of this paper is not a simple matter that

can be handled easily using commercially available FE programs to obtain an accurate solution. 

There exist few applications of DQM for nonlinear analysis of rectangular and circular plates,

which are limited to isotropic and orthotropic plates. The behavior of thin, circular, isotropic elastic

plates with immovable edges was investigated by Striz et al. (1988). The nonlinear analysis of thin

orthotropic rectangular plates was studied by Bert et al. (1989). Lin et al. (1994) employed the

generalized differential quadrature to solve the problem of large deformation of thin isotropic plates

under thermal loading. Chen et al. (2000) investigated the large deflection analysis of thin

orthotropic rectangular plates. Li and Cheng (2005) studied the nonlinear free vibration analysis of

orthotropic rectangular plates based on the higher order shear deformation theory of Reddy. 

This work which is an extension to some previous works by the author and his co-workers

(Karami et al. 2003, Karami and Malekzadeh 2003, 2002) is focused on geometrically nonlinear

behavior of skew composite plates. The present study provides an efficient method for nonlinear

analysis of antisymmetric composite skew plate bending problems that has many applications in

structural engineering. Due to the high accuracy of DQM, the new solutions for antisymmetric

composite skew plates can be used as benchmark. 

2. The skew plate governing equations

A composite skew plate composed of perfectly bonded orthotropic layers of length a, width b and
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total thickness h is considered (see Fig. 1). Based on the thin plate theory (TPT), the displacement

field can be expressed as Reddy (1997),

 (1)

where  are the displacement components of an arbitrary point (x, y, z) of plate in the

laminated skew plate, and (u, v, w) are the displacement projections on the mid-plane. By invoking the

von Karman large deflection assumptions and using the Green-Lagrangian strain displacement

relations, the in-plane vector of strain at an arbitrary point of the plate can be written as Reddy (1997),

(2)

where εm and κ are the membrane and bending components of strain, respectively, 
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Fig. 1 The geometry of the skew composite plates
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For the antisymmetric cross ply laminated plates, the constitutive relationship based on the TPT

can be expressed as,

(3)

where  and  are the components of the in-plane force resultants and

the moment ones, respectively. 

Using the Eqs. (2) and (3), the equilibrium equations of an arbitrary shaped antisymmetric cross

ply laminated composite plate in rectangular coordinate system and in terms of displacement

components can be derived as follows Reddy (1997), 

Equilibrium equations:
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Eqs. (4) and (5) represent the balance of in-plane forces in x-and y-direction, respectively. Eq. (6) is

resulted from the balance of transverse shear forces in z-direction and the bending equilibrium

equations about x-and y-direction, respectively. Due to anisotropic nature of the plate, these

equations are coupled. Also, the nonlinear terms that appear in the bending equilibrium equations

are due to anisotropy. These equations are to be employed at an arbitrary point of the skew plate.

If the normal and tangent to an arbitrary edge of the skew plate is denoted by n and s,

respectively (shown in Fig. 1), the boundary conditions along this edge can be classified as Reddy

(1997), 

Either  (7)

Either  (8)

Either  (9)

Either  (10)

where,

The boundary conditions at any edge of the plate can be considered as the combinations of the

conditions appeared in Eqs. (7)-(10). 

3. DQ discretization 

 

The DQM requires the computational domain to be rectangular and cannot be applied directly to

irregular domains. To apply DQM to such problems, a coordinate transformation is necessary; that

is, the irregular physical domain is transformed into a rectangular computational domain. For skew

composite plates with arbitrary laminates lay up, the material points of skew plates in physical

domain can be transformed into computational domain without any approximation, using the

following linear transformation rules 
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domain are expressed in terms of the derivatives of space variables of computational domains. In

the computational domain, the whole plate is discretized into a set of Nξ and Nη discrete grid points

in ξ-and η-direction, respectively. 

In order to implement the multiple boundary conditions of thin skew plates efficiently, which is

one of the most drawbacks of conventional DQM, in addition to displacement components some

secondary degrees of freedom along the edges of the plates should be defined. Using the

methodology proposed by Karami and Malekzadeh (2002, 2003), the degrees of freedom along the

edges ξ = 0, a and η = 0, b become (u, v, w, Kξ) and (u, v, w, Kη), respectively, in which

 and . However, at the domain grid points, the degrees of freedom are

(u, v, w). Using the presented degrees of freedom, the drawbacks of other methodologies can be

improved, i.e.: 1. The boundary conditions will be implemented exactly at boundary grid points, 2.

The equilibrium equations are satisfied at all domain grid points, and 3. The reformulations or

modifications of the weighting coefficients are not necessary.

Using the transformation rules (11) and the presented degrees of freedom, efficient transformation-

DQ discretization rules for the derivatives of displacement components can be obtained, which

simultaneously transform the partial derivatives and discretized them in computational domain. For

the in-plane components of displacement (u, v) up to the third order derivatives and for the

transverse displacement w up to second order derivatives with respect to coordinate variables x and

y, one has
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where 

Using the DQ-transformation rules (12)-(23), the DQ-analogs of the governing Eqs. (4)-(6) at

each grid point (ξi, ηj) with  and  become,

Eq. (4): 

 (24)

Eq. (5): 

C ij

ξ
Aim

ξ
Bmj

ξ

m 2=

Nξ 1–

∑= , Dij

ξ
Bim

ξ
Bmj

ξ

m 2=

Nξ 1–

∑= , C ij

η
Ain

η
Bnj

η

n 2=

Nη 1–

∑= , Di j

η
Bin

η
Bnj

η

n 2=

Nη 1–

∑=

i 1 … Nξ and j, , 1 … Nη, ,= =

i 2 … Nξ 1–, ,= j 2 … Nη 1–, ,=

A11 A66tan
2
θ+( ) Bim

ξ
umj

m 1=

Nξ

∑ sec
2
θ 2A66sinθ

n 1=

Nη

∑
m 1=

Nξ

∑ Aim

ξ
Ajn

η
umn A66

n 1=

Nη

∑ Bjn

η
uin–

⎝ ⎠
⎜ ⎟
⎛ ⎞

–

 A12 A66+( ) tanθ Bim

ξ
vmj

m 1=

Nx

∑– secθ
n 1=

Nη

∑
m 1=

Nξ

∑ Aim

ξ
Ajn

η
vmn+

⎝ ⎠
⎜ ⎟
⎛ ⎞

Aim

ξ
wmj

m 1=

Nξ

∑
⎝ ⎠
⎜ ⎟
⎛ ⎞

+ +

A11 A66tan
2
θ+( ) Bim

ξ
wmj

m 1=

Nξ

∑ sec
2
θ 2A66sinθ

n 1=

Nη

∑
m 1=

Nξ

∑ Aim

ξ
Ajn

η
wmn A66

n 1=

Nη

∑ Bjn

η
win–

⎝ ⎠
⎜ ⎟
⎛ ⎞

–

 sec
2
θ A12 A66+( ) sinθ Aim

ξ
wmj

m 1=

Nξ

∑
n 1=

Nη

∑ Ajn

η
win+–

⎝ ⎠
⎜ ⎟
⎛ ⎞

sinθ Bim

ξ
wmj

m 1=

Nξ

∑  +–

⎝
⎜
⎛

+

n 1=

Nη

∑
m 1=

Nξ

∑ Aim

ξ
Ajn

η
wmn

⎠
⎟
⎞

B11 C im

ξ
wmj

m 1=

Nξ

∑ Ai1

ξ
K1j

ξ
AiNξ

ξ
KNξ j

ξ
+ +

⎝ ⎠
⎜ ⎟
⎛ ⎞

– 0=

A12 A66+( ) tanθ Bim

ξ
umj

m 1=

Nx

∑– secθ
n 1=

Nη

∑
m 1=

Nξ

∑ Aim

ξ
Ajn

η
umn+

⎝ ⎠
⎜ ⎟
⎛ ⎞

A66 Bim

ξ
vmj

m 1=

Nξ

∑ ++

A22 tan
2
θ Bjn

ξ
vin

n 1=

Nξ

∑ 2tanθsecθ
n 1=

Nη

∑
m 1=

Nξ

∑ Aim

ξ
Ajn

η
vmn– sec

2
θ Bjn

η
vin

n 1=

Nη

∑+

⎝ ⎠
⎜ ⎟
⎛ ⎞

 +

tanθ Aim

ξ
wmj

m 1=

Nξ

∑– secθ
n 1=

Nη

∑ Ajn

η
win+

⎝ ⎠
⎜ ⎟
⎛ ⎞

A66 A22tan
2
θ+( ) Bim

ξ
wmj

m 1=

Nξ

∑  –

2A22secθ tanθ
n 1=

Nη

∑
m 1=

Nξ

∑ Aim

ξ
Ajn

η
wmn A22sec

2
θ Bjn

η
win

n 1=

Nη

∑  + +

A12 A66+( ) Aim

ξ
wmj

m 1=

Nξ

∑
⎝ ⎠
⎜ ⎟
⎛ ⎞

tanθ Bim

ξ
wmj

m 1=

Nx

∑– secθ
n 1=

Nη

∑
m 1=

Nξ

∑ Aim

ξ
Ajn

η
wmn+

⎝ ⎠
⎜ ⎟
⎛ ⎞

 +

B22tan
3
θ C im

ξ
wmj

m 1=

Nξ

∑ 3cosθcsc
2
θ

n 1=

Nη

∑
m 1=

Nξ

∑ tanθAjn

η
Bim

ξ
secθAim

ξ
Bjn

η
+( )wmn–



A DQ nonlinear bending analysis of skew composite thin plates 169

 (25)

Eq. (6): 
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,

and

In a similar manner, the DQ analogs of different types of boundary conditions can be obtained.

For the sake of brevity, the DQ analogs of the simply supported boundary condition along an

arbitrary edge of the plate are obtained. The physical conditions for immovable simply supported

condition are, 

 (27)

The DQ analogs of the first three geometrical boundary conditions appeared in Eq. (27) are as

following,
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where,

Rearranging the discretized equilibrium equations and boundary conditions, one obtains a nonlinear

system of algebraic equations which in the vector form can be written as, 

   (30)

The components of the vectors g and q are the left and right parts of the discretized equilibrium

equations, i.e., Eqs. (24)-(26) and boundary conditions, for example, (28)-(29), respectively. To

solve the nonlinear Eq. (30) in a systematic manner, the vector of degrees of freedom or generalized

displacement vector is defined as, 
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 is the total number of degrees of freedom and gi 

are the components of the vector g. At each iteration the convergence is checked using a total

residual criteria (Pica et al. 1980), i.e., 

  (34)

For each load step, the strain components, the bending moments and the in-plane stress resultants

can be obtained by using Eqs. (2), (3) and (12)-(15). 

4. Numerical results
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convergence and accuracy of the center deflection for a skew plate with θ = 30o and a load

parameter , for which the nonlinear effects are negligible, is considered. The

results are compared with those of Alwar and Ramachandra Rao (1973), Iyengar and Srinivasan

(1968) in Table 1. It seems that the dynamic relaxation method (DRM) used by Alwar and

Ramachandra Rao (1973) gives an upper bond for the deflections. Now consider skew plates with

the same material properties but with large load parameter to cause significant impact due to

geometric nonlinearity. The results for the deflection, resultant bending moments about x and y axis

and resultant normal membrane forces in the x and y directions at the center of the plates are

presented in Table 2. This table also includes the results obtained by the DRM (Alwar and

Ramachandra Rao 1973). The results are prepared for two different skew angles and for different

number of grid points. Again one can see that the center deflections obtained by DQM are slightly

less than those of the DRM, but still close agreement exists between the results of two methods for

different parameters. From this table it is obvious that excellent agreement exists between DQ-TPT

and DQ-FSDT results for central deflection and resultant bending moment and forces. 

The convergences of the method for symmetric cross play laminated skew plates with two

different skew angles are exhibited in Table 3. Skew plates under different load parameter and with

Q 1 qa
4
/D22h=( )=

Table 1 Convergence of the center deflection (Wc × 103) for orthotropic clamped skew plates with Q = 1
(θ = 30o, b/a = 1)

Nξ = Nη

7 9 13 19 FSDT
Iyengar and Srinivasan 

(1968)
Alwar and Ramachandra 

Rao (1973)

0.4301 0.4281 0.4283 0.4283 0.4283 0.4283 0.43961

Table 2 Convergence of the results for orthotropic clamped skew plates with Q = 3200 (a/b = 1) 

  θ Nξ = Nη Wc

  30o TPT-DQM 9 0.9198 116.0 56.13 47.36 17.87

13 0.9195 109.1 56.69 40.78 18.32

15 0.9195 109.1 56.71 40.96 18.32

17 0.9195 109.1 56.72 40.97 18.32

19 0.9195 109.1 56.72 40.97 18.32

FSDT-DQM 19 0.9195 109.1 56.73 40.96 18.32

Alwar and Ramachandra Rao 
(1973)a

0.94 109.0 56.8 40.9 18.2

  45o TPT-DQM 9 0.6598 63.22 47.19 35.29 21.92

13 0.6590 62.20 46.71 30.70 22.39

17 0.6590 62.27 46.71 30.73 22.43

19 0.6591 62.28 46.71 30.73 22.43

FSDT-DQM 19 0.6591 62.27 46.72 30.73 22.44

Alwar and Ramachandra Rao 
(1973)a

0.68 62.5 47.5 31.0 22.7

aData reads from graph.

N xx M xx N yy M yy



174 P. Malekzadeh

two different skew angles are investigated. The convergence behaviors of the presented DQM for

large deformation analysis of skew composite plates with antisymmetric lay up are investigated as

another example. Antisymmetric cross-ply laminated skew plates are considered and the results are

presented in Table 4. The material properties are, , ,

, . In these examples, fast convergence of the method and excellent

agreement of the results with those of FSDT-DQ are evident. 

In the following examples, the effects of skew angle, aspect ratio and the number of layers on the

nonlinear behavior of the laminated skew plates with different boundary conditions are investigated.

The material properties used are the same as those of the last solved example. Thirty grid points in

each direction is used. 

The effects of skew angle on the behavior of the non-dimensional center deflection, bending

moment  and in-plane normal force  of symmetric composite skew plates are presented

in Figs. 2-4, respectively. The results for the same parameters for fully clamped antisymmetric

composite skew plates are shown in Figs. 5-7. From these figures one can see that in all cases the

skew angle has significant effects on the flexural behaviors of skew plates and increasing the load

parameter, the geometric nonlinearity effects are increased significantly. 

The effects of different aspect ratio (b/a) on the center deflection of the antisymmetric cross-ply

skew plates with a relatively acute corners are shown in Fig. 8. It is found from this figure that

increasing the aspect ratio (b/a), the stiffness of the plate is decreased and the degree of hardening

is increased. 

Comparisons between the DQ-TPT and DQ-FSDT results for different number of layer and

laminate lay up are shown in Fig. 9. 

E11/E22 40= G12/E22 G13/E22 0.5= =

G23/E22 0.2= υ12 0.25=

M xx( ) N xx( )

Table 3 Convergence of the results for [0/90/90/0] laminated CCSS skew plates (Q = 10000, b/a = 1) 

θ Method Nξ = Nη Wc

30o TPT-DQM 9 1.5490 279.2 90.23 365.8 17.77

13 1.5484 268.2 91.68 355.9 18.11

19 1.5476 267.9 91.91 353.4 18.15

23 1.5473 267.8 91.95 353.3 18.15

FSDT-DQM 23 1.5469 267.8 92.05 353.1 18.16

60o TPT-DQM 9 0.6910 57.76 54.52 222.3 32.38

13 0.6899 57.73 53.57 198.1 33.14

19 0.6901 57.27 53.85 193.9 33.56

23 0.6901 57.08 54.03 193.7 33.67

FSDT-DQM 23 0.6901 56.67 55.31 192.7 34.52

N xx M xx N yy M yy

Table 4 Convergence of the results for [0/90] CCCS cross ply laminated skew plates (Q = 5000, θ = 45o) 

Nξ = Nη (TPT-DQ)

11 15 17 19 FSDT-DQ

Wc 1.4726 1.4670 1.4668 1.4668 1.4682

67.08 68.16 68.12 68.11 68.10

−10.74 −11.29 −11.31 −11.32 −11.23

N xx

M xx
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From these solved examples, it is evident that an excellent agreement exists between the non-

dimensional center deflection and non-dimensional resultant stresses, i.e. bending moment and in-

plane forces, of DQ-TPT and DQ-FSDT for different skew angles, aspect ratio, and boundary

conditions, which is considerable for skew plates with acute corners, i.e. the case θ = 60o.

Fig. 4 The effects of skew angle on non-dimensional
in-plane force ( ) of [0/90/90/0] laminated
SCSC skew plates 

N xx

Fig. 5 The effects of skew angle on non-dimensional
center deflection of [0/90] antisymmetric fully
clamped skew plates 

Fig. 2 The effects of skew angle on non-dimensional
center deflection of [0/90/90/0] laminated
SCSC skew plates 

Fig. 3 The effects of skew angle on non-dimensional
bending moment ( ) of [0/90/90/0]
laminated SCSC skew plates  

M xx
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5. Conclusions

This paper explores the utility of a DQ formulation developed for the large deformation analysis

of skew composite plates based on the geometrically nonlinear thin plate theory. The convergence

behaviors of the method were shown for symmetric as well as antisymmetric laminated skew plates

Fig. 8 The effects of aspect ratio on non-dimensional
center deflection of [0/90] SCSC skew plates
(θ = 45o) 

Fig. 9 The effects of number of layer and laminate
lay up on non-dimensional center deflection
SSSS skew plates (θ = 45o)

Fig. 6 The effects of skew angle on non-dimensional
bending moment ( ) of [0/90] laminated
fully clamped skew plates 

M xx

Fig. 7 The effects of skew angle on non-dimensional
in-plane force ( ) of [0/90] laminated fully
clamped skew plates 

N xx
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with different boundary conditions and skew angle. Good convergence is presented. The numerical

results are in good agreements with those obtained by other numerical methods reported for the

isotropic and orthotropic skew plates by other researchers even when only a small number of grid

points are used. Comparisons between the present DQ-TPT and a DQ approach based on FSDT

were performed and it was shown that the results for deflections and resultant stresses are in

excellent agreements. 

It can be concluded that the presented method is a convenient and efficient method for obtaining

deflections as well as resultant stresses in nonlinear analysis of composite skew plates. 
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Appendix A. DQ weighting coefficients

The basic idea of the differential quadrature method is that the derivative of a function, with respect to a
space variable at a given sampling point, is approximated as a weighted linear sum of the sampling points in
the domain of that variable. In order to illustrate the DQ approximation, consider a function  having
its field on a rectangular domain  and . Let, in the given domain, the function values be
known or desired on a grid of sampling points. According to DQ method, the rth derivative of a function

 can be approximated as

 (A.1)

for i = 1, 2, …, Nξ and r = 1, 2, …, Nξ − 1

From this equation one can deduce that the important components of DQ approximations are weighting
coefficients and the choice of sampling points. In order to determine the weighting coefficients a set of test
functions should be used in Eq. (A.1). For polynomial basis functions DQ, a set of Lagrange polynomials are
employed as the test functions. The weighting coefficients for the first-order derivatives in ξ-direction are thus
determined as Bert and  Malik (1996)

(A.2)

where, 

The weighting coefficients of the second- and third-order derivatives can be obtained as Bert and  Malik
(1996), respectively,
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In a similar manner, the weighting coefficients for η-direction can be obtained. 
In numerical computations, Chebyshev-Gauss-Lobatto quadrature points are used, that is Bert and  Malik

(1996), 

(A.4)

for i = 1, 2, …, Nξ and j = 1, 2, …, Nη

Appendix B. Nomenclature

a : plate dimension in ξ-direction
Aij : component of extensional stiffness of laminate

: weighting coefficient of the r-th order derivative in ξ-direction

: weighting coefficients of the first order derivative in ξ-and η-direction, respectively

: weighting coefficients of the second order derivative in ξ and η-direction, respectively 

Bij : bending-extensional stiffness of laminate
b : plate dimension in η-direction
Dij : bending stiffness of laminate
Eij : Young’s modulus of lamina
Gij : shear modulus of lamina
g : residual forces
h : total thickness of laminate
f : load vector
fi : load vector at load step i

: tangent stiffness matrix defined in Eq. (34) 
Mxx, Myy, Mxy : bending moment about y and x-axis and twisting moment, respectively 

: non-dimensional bending moment about y and x-axis (=Mxxa
2/D22h, Myya

2/D22h) respectively
Nξ, Nη : number of grid points in ξ and η-directions
Nxx, Nyy : in-plane normal force resultant in x and y-directions

: discretized in-plane normal force resultant in x and y-directions
Nxy : in-plane shear force resultant

: discretized in-plane shear force resultant
: non-dimensional in-plane normal force resultant in x and y-directions (=Nxxa

2/D22, Nyya
2/

D22), respectively
nx, ny : the x and y-component of unit normal vector to an arbitrary edge of the plate
q : intensity of distributed transverse load
Q : non-dimensional transverse load parameter (= qa4/D22h

4)
R : residual forces
U : the degrees of freedom vector or the generalized displacement vector 

 : the degrees of freedom vector or the generalized displacement vector at iteration r of the
load step i 

u, v, w : displacement component in the x, y and transverse direction of a point on mid-plane of
plate, respectively

: displacement component in the x, y and transverse direction of an arbitrary point of plate,
respectively

Vn : effective shear force on edge with unit normal 
x, y, z the Cartesian coordinate variables
Wc : non-dimensional center deflection (= )
β : fiber orientation angle
ε : the residual to applied force ratio
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εo : convergence tolerance
εij : strain components
εm : membrane strain vector
γij : shear strain components
η : oblique coordinate variable 
κ : bending strain vector 
Kξ : secondary degree of freedom along ξ = 0, a edges 
Kη : secondary degree of freedom along η = 0, b edges 
θ : skew angle
υij : Poisson’s ratio of laminate
υ : Poisson’s ratio of isotropic material
ξ : oblique coordinate variable 

∂
2
w/∂ξ

2
=( )

∂
2
w/∂η

2
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