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Abstract. This paper presents the results of a study to show how the development of a crack alters the
structural behavior of I-shaped steel beams and how this can be used to evaluate nondestructive evaluation
techniques. The approach is based on changes in the dynamic behavior. An approximate finite element
model for a cracked beam with I-shaped cross-section is developed based on a simplified fracture model.
The model is then used to review different damage cases. Damage detection techniques are studied to
determine their ability to identify the existence of the crack and to identify its location. The techniques
studied are the coordinate modal assurance criterion, the modal flexibility, and the state and the slope
arrays. 

Keywords: coordinate modal assurance criterion; cracking; damage detection; finite element modeling;
modal flexibility; mode shapes; natural frequencies; nondestructive evaluation; state and slope arrays; steel
beams.

1. Introduction

In 1988, a crack developed in one of the primary steel I-shaped girders in a multi-girder Rhode

Island Bridge (“R.I. Shores” 1988). The crack extended through a depth larger than half of the

girder depth. In addition, subsequent inspection showed that a crack was developing in the adjacent

girder. Fortunately, a passerby happened to observe light through the crack and reported the problem

to the department of transportation. The bridge had been inspected approximately six months earlier,

with no sign of the crack. This is an example where nondestructive monitoring as a supplement to

visual inspections at the normal two-year cycle would be beneficial.

Researchers at the University of Connecticut have been exploring different approaches to conduct

nondestructive monitoring for application to bridges. This paper reports on a study of techniques

that can be used for continuous nondestructive evaluation to provide warning of significant

cracking, such as occurred in the Rhode Island bridge.
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When a crack develops in a steel beam, there are changes in the local flexibility at the location of

the crack. This results in a small change in the overall structural performance. The change is more

readily reflected in the dynamic behavior, than in the static behavior. This is because the dynamic

parameters are normally less dependent on the type, location and magnitude of the load than are the

static parameters. 

This paper reports on the development of an approximate finite element model that can be used to

study the dynamic behavior of cracked I-shaped beams. The model is used to explore the vibration

behavior and to review nondestructive techniques for damage detection. Different dynamic

diagnostic parameters are compared for use in both the detection of structural damage and the

location of the crack.

The dynamic behavior of a beam with an edge-crack has been studied by different researchers.

Papadopoulos and Dimarogonas (1987) studied the vibration of cracked shafts in bending and the

coupling of longitudinal and bending vibrational modes for a rotating shaft with surface cracks.

Gounaris and Dimarogonas (1988) studied the response in a prismatic rectangular beam subject to

harmonic point force excitation. Using finite element analysis for a rectangular beam, Qian et al.

(1990) investigated the changes in the natural frequencies and the effect of crack closure as an

identification technique in the time domain. Rizos and Aspragathos (1990) identified the crack

location and magnitude for a rectangular beam using the measured vibration amplitudes at two

points in the beam. The vibrational behavior of a rotor bearing system with a crack was analyzed by

Inagaki et al. (1982) using an iterative numerical calculation method.

Many who have proposed use of vibrational behavior for damage detection have relied on use of

the natural frequencies and/or the mode shapes (Kim and Stubbs 1995, DeWolf et al. 1995, Law et al.

1995, Alampalli et al. 1995, Lauzon and DeWolf 1996, Zhao and DeWolf 1998, 1999). Derivatives

of natural frequencies and mode shapes, involving higher order functions have also been used.

These include the modal assurance criterion (MAC), the coordinate modal assurance criterion

(COMAC) (Alampalli et al. 1995, DeWolf and Zhao 1998, Zhao and DeWolf 1999); modal

flexibility (Raghavendrachar and Aktan 1992, Shelley 1995, Toksoy and Aktan 1995, Aktan et al.

1995, Zhao 1998); and a modified modal flexibility approach (DeWolf and Zhao 1998, Zhao and

DeWolf 1999). Stubbs and Garcia (1996) studied plate girders using finite elements to simulate

damage. Silva and Gomes (1990) conducted experimental studies of cracked beams with rectangular

cross-sections.

In practice, cracks in the flange of the I-shaped steel beam, with or without extension into the

web, are propagated by fracture due to stress concentrations at the crack tip. In this study, an

approximate finite element model is developed for a plane beam with rectangular cross-section

based on consideration of the stress intensity factors and strain energy. The model is then extended

to the beams with I-shaped cross-sections. The model for the I-shaped cross-section is then used to

study different damage cases. Of interest is the ability to verify that there has been a major crack, as

well as the determination of the crack location. The methods studied are the coordinate modal

assurance criterion, the modal flexibility, and the state and the slope arrays.

2. Finite element model for rectangular beam

Zhao and DeWolf (1999) explored use of nondestructive evaluation techniques based on

vibrations for evaluation of a spring-mass system. The research reported in this paper was carried
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out to develop a finite element model of a beam with a crack that can be used to continue the work

conducted with the spring-mass system. This section reports on the development of an approximate

finite element model to represent a crack in a I-shaped beam. The goal is to use it to explore

nondestructive evaluation techniques. A more complete derivation is given by Zhao (1998).

Derivation - The element stiffness matrix for the cracked beam, shown in Fig. 1, is derived as

follows. Using Saint-Venant’s principle as an approximation, cracking is assumed to affect the stress

field only in the small region near the crack. The beam is then divided into three components, one

from left end to node 1, one from node 2 to the right end, and one between nodes 1 and 2. The first

and third components are based on the traditional beam elements. Nodes 1 and 2 refer to the cross

section location immediately before and after the crack. The first and third components are treated

as regular beam elements without cracks, using conventional element stiffness matrices. The

stiffness matrix for the interior element containing the crack is derived from the assumed

displacements based on the reduction in the stiffness at the crack. 

The assumptions for the elements are: (1) prismatic cross-section; (2) elastic behavior; (3) small

deformations; (4) constant crack depth. In addition, the possibility of the crack closing is neglected.

In the applications of interest in this investigation, the crack forms in the tension zone. As a

consequence, the dead load will typically assure that there is continued separation at the crack.

The presence of a transverse crack in the structural member will lead to an increase in the strain

energy at the crack tip, with a corresponding increase in the flexibility. A local flexibility matrix

was introduced by Papadopoulos and Dimarogonas (1987). The matrix size depends on the number

of the degrees of freedom considered, with a maximum dimension equal to 6 by 6. This applies to a

spatial structure with a general loading case. There are three translation and three rotational degrees

of freedom at each node in the structure. The matrix is based on expressions for the stress intensity

factors and the associated expressions for the strain energy density function, as described in the

following. 

The increase in the displacements ui of a beam when a crack of depth a develops in the ith

direction (Tada 1973) is: 

(1)

In this equation, J(a) is the strain energy density function and Pi is the corresponding load in the ity

direction. The local flexibility coefficients for the general case is defined (Dimarogonas 1983) as:

ui
∂

∂ Pi

-------- J a( ) ad
0

a

∫=

Fig. 1 Beam element with crack
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(2)

The local flexibility coefficients in Eq. (2) are now used to develop element stiffness matrices for

the element with a crack with depth a, located Le from left end of the beam. Each one of the nodes

has two degrees of freedom, one in the translation direction and the other in the rotational direction.

These flexibility coefficients can be used to determine flexibility matrix, and this is then converted

to the stiffness matrix.

The strain energy density function of a plane beam due to the crack is:

(3)

where (Tada 1973) ; 

;

(4)

where s is the ratio of the crack depth to the beam depth and E’ is Young’s Modulus of Elasticity.

It can be shown that in Eq. (4) both FI (s) and FII (s) are approximately 1.122 when the depth of

the crack is small. This then results in stress intensity factors that are essentially constant. The

constant normal stress, σ, and the constant shear stress, τ, of the beam may be approximated as

σ =  and τ = , respectively. The flexibility coefficients due to the crack are then obtained as:

; and

(5)

where c11, c22, c21 and c12 represent the flexibility coefficients due to the shear force, the bending

moment, and the coupling between bending and shear forces in the beam.

For a prismatic element, the relationship between nodes i and j in the force and the displacement

components can be expressed as:

(6)
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where  is the element stiffness matrix and

The stiffness matrix with cracks was verified to be symmetric by Zhao (1998). Zhao also verified

that it reduces to the conventional general element stiffness matrix for the case without cracks.

Verification - The finite element analysis (FEA) was verified using a beam with a rectangular

cross-section and an edge crack. Two cases were used in the verification, a cantilevered beam with

an applied moment and a simply supported beam with shear forces (Zhao 1998). The results were

compared with an analytical solution based on the study by Gudmundson (1982). Based on this

work, the resulting cracked structural natural frequency can be shown to be:

(7)

where fn is the nth natural frequency of the beam, and Wn'  and Wn,0 are the strain energy of the

beam based on nth natural frequency with and without a crack, respectively.

The first comparison (Zhao 1998) was based on the case with constant stress intensity factors in

which FI (s) and FII (s) can be approximated as 1.122, which is correct for small cracks. This value

is based on a numerical study, reported in the above reference. The agreement was excellent. For

cases in which the variable stress intensity factors FI (s) and FII (s) are not correctly approximated as

1.122, the results are not as good as the case using constant stress intensity factors. The error

becomes significant when the crack is deeper than approximately 20% of the depth of the beam. As

noted, this comparison was made for a rectangular cross-section. 

3. Finite element model for I-shaped cross-section beam

Derivation - The difference in using the finite element analysis model for an I-shaped beam as

opposed to a rectangular beam is in the development of the flexibility coefficients. For an I-shaped

cross-section beam, two possibilities are considered in the finite element analysis model. In the first,

the crack exists only in the flange, and in the second, the crack extends through the flange into the

web. Both are shown in Fig. 2. 

When the crack exists only in the flange, the flexibility coefficients are approximately the same as

for the rectangular beam. When the crack extends into the web, the crack may be divided into two
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parts: the part in the flange and the part in the web. These two parts are treated separately as two

rectangular sections. The results are superimposed to obtain the strain energy. The strain energy of

the beam may be approximated as:

(8)

The flexibility coefficients used in finite element model are then:

 and c12 = c21 = 0

Verification - A simply supported beam with a crack in the flange only is used first to verify the

model. Based on the method for the evaluation of the changes in the natural frequencies due to an

edge crack, as presented by Gudmundson (1982), a simple beam with an I-shaped cross-section may

be expressed as: 

 

(9)

where I is the moment of inertia, µ is Poisson’s ratio, a is the crack depth, n is the number

corresponding to the natural frequency and Sr is the shape factor for shear (1.2 for rectangular

sections).

When the crack extends through the flange into the web, the changes in the ratio of the nth

natural frequency may be expressed as:

(10)

J a( ) bf
KIM

2
KIIP

2
+( )
E′

----------------------------- ad
0

tf

∫ tw
KIM

2
KIIP

2
+( )
E′

----------------------------- ad
0

aw

∫+=

c11

3.9549 1 µ
2

–( )

ES
2

------------------------------------ bf tf
2

twaw

2
+( )= , c22

0.988725 1 µ
2

–( )h2

EI
2

----------------------------------------------- bf tf
2

twaw

2
+( )=

fn cracked,

2

fn uncracked,

2
---------------------- 1

7.9098 1 µ
2

–( )Ia
2

L 1
2 1 µ+( )In

2
π

2

αr L
2

-----------------------------------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

------------------------------------------------------
h
2

4I
2

-------sin
2 nπx

L
---------⎝ ⎠

⎛ ⎞ n
2
π
2

S
2
L
2

----------cos
2 nπx

L
---------⎝ ⎠

⎛ ⎞
+

⎩ ⎭
⎨ ⎬
⎧ ⎫

–=

fn cracked,

2

fn uncracked,

2
---------------------- 1

7.9098 1 µ
2

–( )I

L 1
2 1 µ+( )In

2
π

2

αr L
2

-----------------------------------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

------------------------------------------------------ bf tf
2

twaw

2
+( ) h

2

4I
2

-------sin
2 nπx

L
---------⎝ ⎠

⎛ ⎞ n
2
π
2

S
2
L
2

----------cos
2 nπx

L
---------⎝ ⎠

⎛ ⎞
+

⎩ ⎭
⎨ ⎬
⎧ ⎫

–=

Fig. 2 I-Shaped beam with crack possibilities
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In the following, the frequency ratios expressed in Eqs. (9) and (10) are compared with the ratios

obtained from finite element model developed in this study. For the I-shaped beams of interest in this

investigation, the bending stiffness is primarily a function of the flanges. Once the crack reaches the

web so that the full flange thickness is cracked, the loss in the beam stiffness is significant. At this

point, further cracking results in little further loss in the stiffness. Thus, the constant stress intensity

factors in which FI (s) and FII (s) can continue to be approximated as 1.122 because the overall crack

depth is small relative to the depth of the cross-section. Thus, as an approximation in this

development, the value 1.122 is used for FI (s) and FII (s) in the development of the stiffness matrix

for I-shaped cross-sections for all crack depths. In other words, the primary effect from the crack is

due to the crack in the flange, located near the edge, not due to cracking in the web.

Crack in flange only - The relative differences in the ratios of the frequency as defined in Eq. (9)

when the crack is in the flange only are shown in Table 1. These differences are based the

percentage difference in the ratios of the frequencies ( f 2
n,cracked /f 2

n,uncracked ) between the values

obtained from Eq. (9) and those obtained from the finite element analysis model. This table shows

that unless the crack extends through the full flange, or nearly through the flange, and it is away

from the support, there is only a very small percentage change in the frequency ratio. If the crack

extends through 80 percent of the flange and is in the middle half of the beam, there is a 2 percent

or greater change in the frequency ratio defined by Eq. (9) for one or both of the first and second

modes.

Table 1 Percentage difference in frequency ratio - crack in flange only

Crack depth Crack location Percentage difference in frequency ratio as defined by Eq. (9)

0.2 0.1 0.016 0.017 0.036 0.053

0.4 0.1 0.012 0.061 0.148 0.232

0.6 0.1 0.062 0.183 0.381 0.587

0.8 0.1 0.101 0.386 0.782 1.189

1 0.1 0.155 0.703 1.412 2.111

0.2 0.3 0.015 0.075 0.011 0.019

0.4 0.3 0.170 0.325 0.063 0.099

0.6 0.3 0.640 1.006 0.188 0.290

0.8 0.3 1.666 2.319 0.431 0.671

1 0.3 2.980 4.526 0.831 1.319

0.2 0.4 0.234 0.035 0.024 0.070

0.4 0.4 0.252 0.141 0.119 0.359

0.6 0.4 1.058 0.433 0.368 1.077

0.8 0.4 2.566 1.045 0.873 2.487

1 0.4 5.052 2.095 1.750 4.769

a

tf
---

Le

z
-----

f1 cracked,

f1 uncracked,

--------------------
⎝ ⎠
⎛ ⎞

2 f2 cracked,

f2 uncracked,

--------------------
⎝ ⎠
⎛ ⎞

2 f3 cracked,

f3 uncracked,

--------------------
⎝ ⎠
⎛ ⎞

2 f4 cracked,

f4 uncracked,

--------------------
⎝ ⎠
⎛ ⎞

2
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Crack extending into the web - The relative differences in the frequency ratios, as defined by

Eq. (9), for cracks that extend into the web are listed in Table 2. This table shows that if the crack

is close to the support, it will be necessary to look at the third and fourth modes to see a percentage

change above 1 percent, unless the crack extends through approximately half of the web depth. If

the crack is at other locations, the percentage differences are much greater, especially for the first

and fourth modes, even in the case where the crack has only begun to extend into the web. This

may be due to the fact that a crack is divided into two independent parts, with the flexibility

coefficients of the two parts superimposed in the determination of the strain energy. This approach

is based on use of the normal stress at the extreme fiber and the average shear stress at the crack

location. Nevertheless, it is concluded that the finite element analysis model can be applied to I-

shaped cross-sections since for most solutions, the relative error between the analytical and

calculated solution are within 5.0%.

The results demonstrate that the modified finite element stiffness element for cracked beams with

I-shaped cross-sections developed in this investigation may be used to study how the development

of cracks influences the overall beam behavior. This is based on the comparisons between the

reference material and that based on the finite element model in this investigation for cases with

small cracks and the study of I-shaped beams in which the bending stiffness is primarily a function

of the flanges. The modified finite element is used in the following to simulate damage for use with

structural damage identification techniques based on structural dynamic parameters. 

4. Damage detection of cracked beams

The finite element analysis model for a cracked plane beam with an I-shape cross-section and an

edge crack is used to stimulate damage states and to review different damage identification techniques. 

Table 2 Percentage difference of frequency ratio -  crack in flange and web

Crack depth Crack location Percentage difference in frequency ratio as defined by Eq. (9)

2 0.1 0.010 0.730 1.483 2.224

3 0.1 0.216 0.822 1.666 2.485

4 0.1 0.461 0.981 1.984 2.937

5 0.1 0.182 1.212 2.454 3.599

2 0.3 3.241 4.731 0.873 1.393

3 0.3 3.836 5.374 0.988 1.584

4 0.3 4.646 6.460 1.186 1.919

5 0.3 6.261 8.080 1.473 2.418

2 0.4 5.238 2.198 1.839 5.006

3 0.4 6.215 2.508 2.099 5.639

4 0.4 7.291 3.030 2.545 6.712

5 0.4 9.456 3.819 3.214 8.231

a

tf
---

Le

L
-----

f1 cracked,

f1 uncracked,

--------------------
⎝ ⎠
⎛ ⎞

2 f2 cracked,

f2 uncracked,

--------------------
⎝ ⎠
⎛ ⎞

2 f3 cracked,

f3 uncracked,

--------------------
⎝ ⎠
⎛ ⎞

2 f4 cracked,

f4 uncracked,

--------------------
⎝ ⎠
⎛ ⎞

2
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The basic modal parameters used for damage detection are the natural frequencies and mode shapes.

In addition to these traditional parameters, diagnostic parameters may be derived from the mode

shapes and frequencies. These include the modal flexibility, coordinate modal assurance criterion, state

arrays and slope arrays. The third and fourth are the parameters obtained from the frequencies and/or

mode shapes, and are defined in the following. The approaches selected for this study are based on the

results of a previous study by Zhao and DeWolf (1999) that evaluated different approaches for damage

detection.

Coordinate Modal Assurance Criterion (COMAC) - The COMAC represents the correlation

between two measured mode shapes at a specific natural frequency from two different tests. The

COMAC considers the values all mode shapes at a specific point on the structure. The COMAC

identifies where the mode shapes agree or do not agree, indicating potential damage. The COMAC

is defined (Lieven and Ewins 1988) as: 

(11)

where  is the ith term of lth mode shape in the A set of mode shapes,  is the ith term of

lth mode shape in the B set of mode shapes, and n is the number of the mode shapes.

Modal flexibility - The modal flexibility is based on both the mode shapes and the frequencies. It

is defined as the accumulation of the contributions from the measurable modal vectors and

corresponding natural frequencies. The modal flexibility matrix [F ]n•m is defined (Hoyos and Aktan

1987) as:

(12)

where [F ]n•m is the modal flexibility matrix of a structure, [φ ] is an unit-mass scaled mode shape

matrix, n is the number of measurement points, m is the number of modes, and [1/ω2] is a diagonal

matrix of ascending natural frequencies. This definition requires knowledge of the unit-mass scaled

mode shape matrix. In many applications, the mass information is not available. In these cases,

DeWolf and Zhao (1998) have shown that normalized mode shapes can be used in place of the unit-

mass mode shapes. 

State Array (ST) - A state array is also based on the mode shapes. It represents the difference in

nodal values between two mode shapes and is defined (Zhao and DeWolf 1998) as:

 (13)

where VST i, j is jth term of ith state array,  is jth term of ith mode shape without damage,  is

jth term of ith mode shape with damage on some members, i is the number of mode shapes, and j

is the number of terms in the state array. 
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Slope Array (SL) - A slope array is based on the mode shapes. It represents the changes in the

slope between two adjacent points in a mode shape and is defined (Zhao and DeWolf 1998) as:

(14)

where VSL i, j is jth term of ith slope array, Si, j+1 is ( j + 1)th term of ith mode shape, Si, j is jth term of

ith mode shape, Lel is the length of elements, i is the number of mode shapes, and j is the number

of the terms in the slope array. 

Application to beams - The finite element model is now used to study the cantilever beam shown

in Fig. 3. The beam has an I-shaped cross-section and a length of L. There is a crack at the top with

the depth of a, located Lel from the fixed end. The beam is divided into 19 elements. The nodes

include the translation and the rotational displacements, so that there are a total of 40 degrees of

freedom.

The finite element stiffness matrix derived in this study has been used in a free-vibration analysis

to model beams with cracks. The resulting frequencies and mode shapes are used in the following

to evaluate their effectiveness for use with different approaches to evaluate changes due to cracking.

Also of interest is the ability of these diagnostic parameters to determine the location of the crack.

Different damage states are considered, involving both the crack depth and the location. The

damage cases are listed in Table 3. 

Coordinate Modal Assurance Criterion (COMAC) – Nineteen nodes, from 2 to 20, were used for

the calculation of the COMAC, involving either the translation or the rotational displacements. This

is based on the assumption that measurement sensors would be used either in the translation

VSL i j, Si j 1+,
Si j,–( )/Lel=

Fig. 3 Cantilever beam with elements

Table 3 Damage cases

Case No. Crack locations

1 0.15 0.48 Between 10 & 11, near 10

2 0.15 0.75 Between 14 & 15, near 14

3 0.35 0.22 Between 5 & 6,    near   5

4 0.35 0.48 Between 10 & 11, near 10

5 0.35 0.75 Between 14 & 15, near 14

a

h
---

Lel

L
------
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direction or in the rotational direction. It was found that use of the absolute value for each term in

the summation of  in the numerator produces better results than use of normalized mode

shapes based on normalization with respect to the maximum absolute modal displacement.

The COMAC was determined using the lowest 5, 10, and 15 mode shapes for the translational

and rotational directions. The results are improved when a greater number of mode shapes are used.

The results based on use of 15 mode shapes are shown in Fig. 4 for the two separate directions.

This figure shows the percentage differences in the COMAC between the uncracked and cracked

beams. The larger differences occur for damage cases 3, 4, and 5, those with larger cracks (a/h =

0.35). The COMAC based on mode shapes in the rotational direction produced slightly better

results. The maximum percentage difference is 13.3% (case 5) based on the mode shapes in

translation direction, and it is 17.4% (case 5) based on the mode shapes in rotation direction. 

As expected, the COMAC is more successful in identifying cracking than the use of the natural

frequencies and mode shapes. The COMAC was also shown to give better results than the Modal

Assurance Criterion (Zhao 1998). The plots in Fig. 4 show that the COMAC based on the

translation mode shapes indicates damage for damages cases 3, 4 and 5, the cases where the crack

has extended through 35 percent of the depth. The translation mode shapes do not correspond to the

location of the damage. However, the COMAC based on rotational mode shapes indicates that

damage has occurred, and it corresponds to the location of the damage for all but the first damage

case. 

Modal flexibility - The mode shapes used for the modal flexibility were based on three different

comparisons, using mode shapes for: (1) both translation directions or the rotational directions; (2)

translation directions only; (3) rotational directions. The results for the first 15 mode shapes are

φAj i,

T
φBk i,

Fig. 4 Results using the coordinate modal assurance criterion
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shown in Fig. 5 for each of these comparisons, respectively. The maximum percentage differences

are substantially larger than those for the COMAC. The damage cases with larger cracks have larger

percentage differences. The maximum percentage difference using general mode shapes is 4.9% for

case 1, 7.9% for case 2, 26.8% for case 3, 9.6% for case 4, and 17.9% for case 5. The maximum

percentage difference using translation mode shapes is 7.1% for case 1, 7.9% for case 2, 22.2% for

case 3, 17.0% for case 4, and 17.4% for case 5. The maximum percentage difference using rotation

mode shapes is 8.8% for case 1, 6.3% for case 2, 23.0% for case 3, 19.5% for case 4, and 14.6%

for case 5. The modal flexibility approach clearly shows when damage has occurred using either the

translation or the rotational mode shapes separately, or using both sets together. Unlike the approach

based on use of the COMAC, the modal flexibility approach does not indicate the crack location,

i.e. peaks in the plots do not generally correspond to crack locations.

Fig. 5 Results using the modal flexibility approach
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State Arrays - The State and Slope Arrays are based on use of normalized translation

displacement mode shapes. The difference between the baseline and damaged state arrays in the

lowest three translation mode shapes is calculated and plotted in Fig. 6. The state array for the first

mode shape produces the greatest values, and thus it provides the best indication that cracking has

occurred. There are smaller changes in the second and third state arrays for the second and third

mode shapes, though they do show changes as a result of the cracks. In the first mode shape, the

peaks in the graphs correspond to the damage location. The second and third mode shapes, while

having peaks in the vicinity of the damage, do not appear to be reliable indications of the damage

location.

Slope Array – Fig. 7 shows the percentage differences for the slope arrays, based on the lowest

three mode shapes in the translational direction. The percentages differences for this comparison are

much larger than those for the other comparisons. This is consistent with method that is based on

using slopes for the mode shapes. A small change in the mode shape displacements will result in a

much larger change in the adjacent slopes. Fig. 7 also shows that the higher slope arrays produce

larger differences than the lower ones. The figure also shows that the crack locations are not

consistently identified for the different damage cases. Nevertheless, while the slope arrays magnify

Fig. 6 Results using state arrays
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the changes due to cracking, it is not clear that they would be that useful for monitoring purposes.

The authors feel that the variations in the filed data would reduce, or even obscure, the effectiveness

of these changes.

The previous theoretical comparisons are based on using up to 15 modes, which is typically more

than can be determined in practice. The number of modes available in real applications depends on

the resolution of the system used and the amount of noise in the data. The authors do feel that the

results can be extended nevertheless to practical applications. This is an area for future study.

5. Conclusions

An approximate finite element model has been developed to study the dynamic behavior of beams

with cracks. The beam is modeled with a modified element stiffness matrix based on use of

approximate stress intensity factors and a strain energy density function that is based on the crack

behavior. The model has been used to review nondestructive evaluation techniques.

Four different damage detection techniques have been explored for a beam in which the crack

depths and crack locations are varied. The techniques were evaluated based on how well they were

Fig. 7 Results using slope arrays
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able to determine if the beam had cracked and how successful they were at locating the crack. The

main conclusions for each of these methods are:

(1) The coordinate modal assurance criterion magnified the changes due to cracking, indicating

that cracking had occurred. It also produced the best estimates for the crack locations.

(2) The modal flexibility method produced consistent indications that there was a crack, with

greater magnifications in the data than there are with the coordinate modal assurance criterion.

However, it was not successful for locating the crack. 

(3) The state arrays, based on comparison of the modal displacements, successfully showed that

cracking had occurred. The changes were numerically similar to those from the coordinate

modal assurance criterion. The method had mixed results in determining crack locations. The

location is clearly shown for the mode shape or shapes that have a peak value in the vicinity

of the crack. Unfortunately, this would not work as well in a real application since it would

not be clear which mode shape shows the crack location. 

(4) The slope array gave the greatest magnification in the variables used to determine if cracking

had happened. However, since it is based on slopes of the mode shapes, it is not clear that in

actual practice with real numerical data that this method would be successful in showing that

cracking has occurred.

In summation, the modal flexibility method gave the best indication that cracking has occurred,

assuming that the approach based on the slope array would not be successful in real-life

applications. The modal assurance criterion produced the best estimations of the actual crack

location.
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