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Abstract. In this study, an effective load increment method for multi modal adaptive non-linear static
(pushover) analysis (NSA) for building type structures is presented. In the method, lumped plastisicity
approach is adopted and geometrical non-linearties (second-order effects) are included. Non-linear yield
conditions of column elements and geometrical non-linearity effects between successive plastic sections
are linearized. Thus, load increment needed for formation of plastic sections can be determined directly
(without applying iteration or step-by-step techniques) by using linearized yield conditions. After
formation of each plastic section, the higher mode effects are considered by utilizing the essentials of
traditional response spectrum analysis at linearized regions between plastic sections. Changing dynamic
properties due to plastification in the system are used on the calculation of modal lateral loads. Thus, the
effects of stiffness changes and local mechanism at the system on lateral load distribution are included.
By using the proposed method, solution can be obtained effectively for multi-mode whereby the properties
change due to plastifications in the system. In the study, a new procedure for determination of modal
lateral loads is also proposed. In order to evaluate the proposed method, a 20 story RC frame building is
analyzed and compared with Non-linear Dynamic Analysis (NDA) results and FEMA 356 Non-linear
Static Analysis (NSA) procedures using fixed loads distributions (first mode, SRSS and uniform
distribution) in terms of different parameters. Second-order effects on response quantities and periods are
also investigated. When the NDA results are taken as reference, it is seen that proposed method yield
generally better results than all FEMA 356 procedures for all investigated response quantities. 

Keywords: earthquake response of buildings; load increment method; adaptive non-linear static analysis;
second-order effects; RC buildings.

1. Introduction

Today, seismic behavior (local and global mechanism, force and deformation demands of elements

etc.) of low-rise buildings without structural irregularities can be determined more accurately by

non-linear static analysis (NSA) procedures. In these buildings, it can be assumed that, the first

(fundamental) mode is the most effective one in the structural behavior and this effectiveness do not

change due to formation of the plastification (plastic hinging with bending and axial deformations).

Therefore, traditional non-linear static analysis (T-NSA) procedures which is based on

monotonically increasing lateral loads proportional to the first mode or similar shapes yield
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sufficiently good products. However, investigations on low-rise irregular buildings, as well as high-

rise regular or irregular buildings show that the T-NSA procedures are not sufficient in

determination of the non-linear seismic behavior (Lawson et al. 1994, Kim and D’Amore 1999,

Mwafy and Elnashai 2001, FEMA 440 2004). In these buildings, higher modes besides fundamental

modes are effective in structural behavior and/or modal properties of the buildings change extremely

due to plastification in system. Therefore, higher mode effects and/or change of dynamic properties

due to plastification in system should be considered in NSA applied to these buildings. Recently,

improved pushover procedures including multi-mode and/or effect of plastification in system on

mode shapes (adaptive procedures) have been developed by several researchers in order to

overcome the deficiencies of T-NSA procedures (Paret et al. 1996, Yang and Wang 1998,

Moghadam 1998, Gupta and Kunnath 2000, Elnashai 2001, Chopra and Goel 2001, Chopra and

Goel 2002, Antoniou et al. 2002, Ayd noglu 2003, Jan et al. 2004, Montes et al. 2004, Goel and

Chopra 2005, Aschheim and Hernandez-Montes 2006). Generally, load increment methods based on

iterative approximations or step-by-step solution approaches are used in the modal and adaptive

analysis procedures. In these procedures, determination of formation of plastic sections and change

of dynamic properties increase computation process to a large extent. Furthermore, some

mathematical stability problem can arise in application of changing load distribution along the

building height due to formation of plastic section (Rovitakis 2001, Elnashai 2001). For these

reasons, development of more effective methods is needed for non-linear analysis of buildings. In

the study, an effective load increment method is presented for multi-mode and adaptive non-linear

static analysis of buildings. In order to evaluate the proposed method, a 20 story RC frame building

is analyzed by using the method. The results are then compared with results of NSA performed for

three fixed load distributions (first mode, SRSS, uniform) in FEMA 356 (2000), and non-linear

dynamic analysis (NDA) in terms of different parameters. By using the proposed method, non-linear

seismic response of buildings affected by higher modes can be effectively determined for many

modes changing due to plastification in system. 

2. Description of load increment method

 

2.1 Assumptions

The scope of this study is restricted to plane frame systems. However, essentials of the proposed

method are general and it can be applied to 3D systems readily. Internal force-deformation

relationships of elements subjected to pure bending moment or bending moment combined with

axial force are assumed as elastic-perfectly plastic behavior. Lumped plasticity approach is adopted

for bending and axial deformations. Yield conditions of elements depend only on bending moment

and/or axial force and the effect of shear forces is neglected. Yield vector is assumed to be normal

to the yield curve for elements subjected to bending moment combined with axial force. Second

order effects are included for column elements and neglected for beam elements that have negligible

axial forces. 

2.2 Principals of the proposed method

The method is based on linerization of geometrical non-linearity effects between successive plastic

i
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sections and yield conditions of column elements. The effects of higher modes are considered by

utilizing the essentials of traditional response spectrum analysis in the linearized regions between

successive plastic sections. 

2.2.1 Linearization of geometrical non-linearity effects (second-order effects) 

Seismic behavior of buildings is generally determined for constant gravity loads composed of

dead and live loads since the probability of change of gravity loads is small. Therefore, second

order effects can be considered by including the axial forces resulting from gravity loads in stability

functions of elements. Thus, geometrical non-linearity effects between formations of successive

plastic sections are linearized in the solution of system. It is well known that axial force values of

columns in lower stories of high-rise buildings vary extremely due to increasing lateral loads. In this

case, the solution of system should be repeated for axial force values obtained in the last step of the

analysis. However, effect of the change of axial forces can be neglected since the sum of the axial

forces of columns at any story does not change (Irtem 1991). Therefore, repetition of the solution is

generally not required in building type structures. 

2.2.2 Yield conditions and linearization of yield conditions (interaction diagrams) 

In ductile structures, when the internal forces in any section reach to the critical values defined by

the yield (failure) condition, a plastic section forms and finite plastic deformations occur in the

direction of internal forces (Fig. 1a). Neglecting the effect of shear forces, the yield conditions for

plane frame systems can be expressed in a general form by Eq. (1). 

 K(M, N) = 0  (1)

 

Where K(M, N) is a non-linear function of bending moment M and axial forces N. 

Geometrical representation of yield condition for a typical RC section is shown Fig. 1(a). In the

proposed method, the yield curves representing the yield conditions are idealized as linear segments

in order to determine the load increment needed for formation of each plastic section directly. In

this case, yield condition is expressed by linear Eq. (2). 

 (2)

Where a1, a2 and b are the constants that depend on the material and cross-sectional characteristics. 

Geometrical representation of linearized yield condition for the same typical RC section is shown

in Fig. 1(b). Depending on desired susceptibility, idealization of yield curves can be made by line

segments in sufficient number. Yield surfaces for 3-dimensined systems can also be idealized by

using plane segments (Irtem 1991, Girgin 1996). 

In a plastic section, internal forces are not allowed to violate the yield conditions. This property

can be stated as 

 (3)

Where  and  are partial derivatives of the function K(M, N) with respect to M and

N, respectively. 

At the state of bending combined with axial force, plastic deformations that develop in the plastic

K M N,( ) a1M a2N b+ +≅ 0=

Kd
∂ K

∂ M
--------- Md

∂ K

∂ N
-------- Nd+ 0= =

∂ K/∂ M ∂ K/∂ N



56 K. Türker and E.
.
Irtem

sections are defined by the yield vector  in which θ (plastic rotation) and ∈ (plastic

shortening or elongation) are the plastic deformation components in the direction of M and N

respectively. 

It is known that the yield vector is normal to the yield curve (line) in the sections that have

elastic-perfectly plastic behavior and homogenous material (Hodge 1959, Cak roglu and Ozer

1980). Moreover, normality condition is also valid for RC sections in the effect of bending

combined with axial force under certain circumstances (Cak roglu et al. 1999). Since the yield

vector is assumed to be normal to the yield curve (line), the plastic deformation components may be

expressed in terms of a single parameter, as in the following 

    (4)

The parameter φ is called as the plastic deformation parameter. For idealized yield conditions, the

yield condition expressed by Eq. (3) becomes following as 

 ∆K = a1∆M + a2∆N = 0  (5)

Where ∆M and ∆N are the bending moment and axial force increments for the related load

increment, respectively. In this case, θ and ∈ plastic deformation components can be expressed by

Eq. (6). 

  (6)

2.3 Determination of unit modal lateral load distributions

The proposed procedure in this study is based on application of incremental response spectrum

analyses, which is based on elastic spectral acceleration, proposed by Gupta and Kunnath (2000).

However, a new approach different from Gupta and Kunnath (2000) is proposed for the

determination of modal lateral loads. In this new approach, modal lateral loads in any load step (k)

are obtained by adding modal lateral loads comprised of modal properties of system with k plastic

sections and modal lateral loads in previous step (k − 1) (Eq. (7)). Thus, modal lateral loads at any

d θ,∈( )

i

i

θ φ
∂ K

∂ M
---------= ∈ φ

∂ K

∂ N
--------=

θ φ
∂ K

∂ M
--------- φa1= = ∈ φ

∂ K

∂ N
-------- φa2==

Fig. 1 Yield conditions and plastic deformation vector for a typical RC section 
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load increment include also the effect of modal lateral loads at the previous load increments. Modal

properties and spectral accelerations used in the determination of modal loads vary depending on

plastification in the system. Thus, the change of modal effectiveness due to earthquake properties

and period elongation can be considered in the analysis. This can be expressed as

    (7)

Where k is the number of load increment step,  is the story force i at the mode j,  is the

modal participation factor for jth mode, mi is the mass of ith story,  is the mode shape value at

ith level and jth mode,  is the spectral acceleration for jth mode.  is obtained from the

considered earthquake spectra depending on the damping ratio (ξ ) and the instantaneous period for

jth mode. 

At the begining of each load increment, modal properties of the system with plastic sections are

determined by free vibration analysis of the system and modal lateral load distribution is calculated.

In the study, massless degrees of freedoms (except for freedom of lateral displacement) are

condensed for reduction of computation processes and Jacobi iteration is used for free vibration

analysis (Bathe 1996).

2.4 Non-linear analysis of system with plastic sections for unit load increment 

In the proposed multi modal adaptive load increment method, the procedure developed by Ozer

(1987), Irtem (1991) and Girgin (1996) was utilized for non-linear analysis of system with plastic

sections due to unit load increment, and this procedure is summarized in the following. 

 

2.4.1 Equilibrium equations

After formation of each plastic section, changing stiffness of the system is expressed by adding a

new equation defining yield condition in the plastic section to the set of equations. A new unknown

in the added equation states φ plastic deformation parameters defining plastic deformations (θ and

∈) in the plastic section (see Eq. (6)). Added equations express that the internal forces in the plastic

sections remain on the yield curve (line) during the load increment. Thus, interaction between

bending and axial deformations can be considered in the plastic sections subjected to bending

combined with axial force during the analysis. Traditional Matrix Displacement (Stiffness) Methods

(McGuire et al. 2000) are utilized for constitution of equilibrium equations of system with m plastic

sections. In these methods, making necessary modifications to account for the plastic sections, the

unknowns are considered to be composed of two groups: 

a) The components of nodal point displacements, which are called as independent nodal

displacements. There are two linear and one rotational displacement at each nodal point for a

plane structure. 

b) Plastic deformation parameters (φ ) representing finite plastic deformations in the plastic

sections (See Eq. (6)). 

The equations are also considered in two groups:

a) Equilibrium equations of nodes in the direction of the independent nodal displacements. 

b) Incremental yield conditions of the plastic sections given by Eq. (5). 

Referring to system coordinates, the equilibrium equations of nodes can be expressed by Eq. (8) in

matrix form. 
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 [Sdd][d ] + [Sdφ ] [φ ] + [Po] = [q]  (8)

Where; 

[d ] is the matrix of independent nodal displacements.

[Po] is the matrix of fixed-end forces due to external load acting between nodes.

[q] is the matrix of nodal external loads.

[Sdd] is the elastic stiffness matrix of system. Obtaining this matrix is the same as given in

conventional matrix structural analysis books. However, the stability functions including the effect

of axial force in the column elements due to gravity loads are taken into account in the

determination of elements of matrix [Sdd] in order to consider the second order effects. 

[φ ] is the matrix of plastic deformation parameters representing plastic deformations in the plastic

sections. If the number of plastic section is designated by m, this matrix is expressed by Eq. (9). 

 (1, ..k, ..m: numbers of plastic sections) (9)

[Sdφ] is a matrix representing the effect of unit plastic deformations in the plastic sections on the

equilibrium equations. The size of the matrix [Sdφ ] is (3n × m) for plane systems. A typical column

of this matrix consists of the sub matrices [Pφ k]ix and [Pφ k] jx as shown in Fig. 2. These sub matrices

in turn, consist of the end-forces (stiffness coefficients) which occur due to unit plastic deformation

parameter of φ k = 1 in the system reference axis. Derivation of the matrices [Pφ k]i and [Pφ k]j are

summarized in Appendix A. 

2.4.2 Incremental yield conditions in the plastic sections 

The incremental yield conditions express that the states of internal forces in the plastic sections

remain on the yield curve (line) during the load increment. The incremental yield conditions can be

expressed by Eq. (10) in the matrix form as 

[Sφd] [d ] + [Sφφ] [φ ] + [Pφo] = [0]  (10)

Here;

[Sφd] is a matrix representing the effect of internal forces, which occurred in the plastic sections

due to unit nodal displacements, on yield conditions. Size of this matrix is (m × 3n) for a system

with m plastic sections. A typical column of this matrix consists of the elements which represent the

change of internal forces (a1∆M + a2∆N) occurred in plastic sections due to unit displacement

φ[ ]
T

φ
1
…φ

k
…φ

m
[ ]=

Fig. 2 Derivation of the matrix [Sdφ] 
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component. It can be proved by the Betti’s reciprocal theorem that, as long as the plastic

deformation vector is normal to the yield curve (line), the matrix [Sφd] is equal to the transpose of

matrix [Sdφ], i.e., [Sφd] = [Sdφ]T. Therefore derivation of matrix [Sφd] is not separately needed,

considering assumptions adopted in the method. 

[Sφφ] is a matrix representing the effect of internal forces, which occurred in the plastic sections

due to unit plastic deformations, on yield conditions. Size of this matrix is (m × m) for system with

m plastic sections. A typical column of this matrix consists of the elements which represent the

change of internal forces (a1∆M + a2∆N ) occurred in plastic sections due to unit plastic

deformations. Derivations of the elements of this matrix are shown in the Appendix A. 

[Pφo] is a matrix representing effect of internal forces, which occurred in the plastic sections due

to external loads, on yield conditions. Size of this matrix is (m × 1) for system with m plastic

sections. A typical column of this matrix consists of the elements which represent the change of

internal forces (a1∆M + a2∆N ) occurred in plastic sections due to external loads acting between the

nodes. Since the lateral loads representing earthquake inertial effects are assumed to act at the nodal

points of the system, the matrix [Pφo] is zero matrix.

When Eqs. (8) and (10) are written together, set of expanded linear equations expressed by

Eq. (11) is obtained for the system with plastic sections. The size of the set of expanded equations

is (3n + m) × (3n + m) for plane frame system with m plastic sections. In addition, expanded

stiffness matrix is symmetric with respect to its main diagonal of the matrix. 

 (11)

In the method, elimination of the newly added column, row and nodal loading matrices (modal

lateral loads) are sufficient for the solution of this set of equations in any step since the set of the

expanded equations in the previous step is already eliminated. Thus, nodal displacement

components, [d ] and plastic deformation parameters, [φ ] due to unit load increment are effectively

obtained for multi-mode. 

After determination of unknowns (matrices [d ] and [φ ]) for unit load increment, end-forces

(matrices [P]ix and [P] jx) of the elements with plastic sections are obtained by Eq. (12) in matrix

form. Then, these end-forces matrices at the system reference axis are transformed to the local axis

of the elements by related transforming matrices. The terms of ([Pφ]ix [φ ]ij) and [Pφ]jx [φ ]ij) in the

Eq. (12) are omitted for the elements without any plastic sections. 

[P]ix = [k]ixix [d ]ix + [k]ixjx [d ] jx + [Po]ix + [Pφ]ix [φ ]ij

 [P] jx = [k] jxix [d ]ix + [k] jxjx [d ] jx + [Po] jx + [Pφ] jx [φ ]ij  (12)

Where [k]ixix, ..... [k] jxjx are the individual element stiffness matrices transformed to the system

(global) reference axis, [d ]ix and [d ]jx are matrices of independent nodal displacements at the nodes

i and j, [Pφ]ix and [Pφ] jx are matrices composed of the end forces due to the unit plastic deformation

(φ k = 1) of the plastic section on element ij, [φ ]ij is a column matrix consisting of plastic

deformations of the plastic section on element ij, [Po]ix and [Po] jx are matrices of fixed-end forces at

nodes i and j. 

Sdd[ ]  Sdφ[ ]

Sφd[ ]  Sφφ[ ]

d[ ]

φ[ ]

Po[ ]

Pφo[ ]
+

q[ ]

0[ ]
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2.5 Determination of the response quantities for unit load increment

In the proposed method, modal response quantities ( ), which are obtained independently for

each modal distribution, are combined by an appropriate combination rule, as in the traditional

response spectrum analysis. Thus, combined response quantities ( ) occurred due to unit load

increment, which include the interaction of all modes, are obtained. When combining the response

quantities, either the rules of Square Root of Sum of Squares (SRSS) or the rules of Complete

Quadratic Combination (CQC) are used depending on the nearness of modal periods (Chopra 2001).

Signs of the combined response quantities are always positive at the end of the combination.

However, sign of the internal forces (bending moments and axial forces) should be considered in

determination of plastic sections by using yield conditions. Therefore, using of sign of the effective

mode in the related load increment step was adopted for sign of combined quantities in this study.

2.6 Determination of plastic section and related response quantities

Location of any plastic section called (k) and related lateral load increment are determined by

using the yield conditions of potential (critical) plastic sections. Therefore, Eq. (13) is used in the

sections subjected to bending moment only (i.e., beam element), while Eq. (14) is used in the

sections subjected to bending moment combined with axial force (i.e., column element). 

 

 (13)

(14)

Where k is number of load increment step,  is load increment factor for the related section, Mp

is the bending moment capacity of the related section, M k−1 and N k−1 are, respectively, the bending

moment and axial force in the related section in previous step. M k−1 and N k−1 state the bending

moment and the axial force due to the gravity loads in the first load increment step.  and 

are, respectively, the combined bending moment and combined axial force in the related section due

to unit load increment. 

∆Pk load increment factors for all potential plastic sections in the system are calculated and then

the minimum load increment factor  is determined. Thus, location of plastic sections in the

load increment step k and the corresponding load increment factor are determined. Then, required

response quantities (Rk) (nodal displacement, story drift, plastic rotation etc.) belonging to the load

increment step k are obtained by Eq. (15). 

(15)

2.7 Summary of analysis steps of the method

Analysis steps of the proposed method are summarized below. 

1) Determine the moment-curvature relationships of all elements and actual yield conditions of

columns by using the material and cross-section properties of the elements. Idealize the moment-

curvature relationships as elastic-perfectly plastic. Idealize the yield conditions by using line

segments in sufficient numbers for the required accuracy level. 
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2) Determine the response quantities (internal forces, nodal displacements etc.) for gravity loads.

Considering the effects of the axial forces on element stability functions, obtain the system stiffness

matrix including the second order effects. Check whether any plastic section occurs in the system

due to gravity loads or not. Repeat the processes explained in steps 6 and 7 for gravity load

increments until required gravity load level is reached in case any plastic section occurs. Then start

the processes for modal lateral load increment. 

3) Condense the system stiffness matrix for required degree of freedoms and obtain dynamic

stiffness matrix. Perform free vibration analysis, determine the modal properties of the system with

plastic sections and then determine modal lateral load distribution using Eq. (7) for considered modes. 

4) Obtain unit modal response quantities ([d ], [φ ] etc.) for each modal load distribution

independently. For this purpose, utilize from the eliminated system stiffness matrix in the previous step.

5) Determine the combined response quantities ( ) due to unit load increment by using

appropriate modal combination rule. Assign the sign of effective mode in the current step to the

combined response quantities for usage at the yield conditions. 

6) Determine the location of plastic section and related load increment factor ( ) in the

current step by using yield conditions in all potential plastic sections. Then obtain the response

quantities in the current step by using Eq. (15). 

7) Add the φ k plastic deformation parameter representing plastic deformations in the plastic

section to the current unknowns as a new unknown. Obtain the set of expanded equations, by

adding the matrices of [Sdφ], [Sφd], [Sφφ] and [Pφo] to the current set of equations. 

8) Repeat the process (starting from step 3) until the limit state of instability of the system. When

the system reaches this limit state, the determinant of the expanded stiffness matrix of the system is

negative or zero, that is, the expanded stiffness matrix loses its positive definite attribute. 

3. Evaluation of the proposed method 

The proposed method was evaluated by taking the results of Non-linear Dynamic Analysis (NDA)

as reference (accurate solution). In addition, the proposed method was compared with FEMA 356

Non-linear Static Analysis (NSA) procedures (FEMA 2000) using fixed loads distributions (first

mode, SRSS and uniform distribution) and the effectiveness of the method was shown. Considered

parameters in the evaluation study are floor displacements, story drifts, max. beam plastic rotations,

story shears, capacity curves (displacement and base shear demands) and distribution of plastic

sections in the system. 

3.1 Properties of structural model and ground motions 

The evaluation study was carried out on a 20-story building, which is affected by higher modes.

Geometrical properties of the building are shown in Fig. 3. Seismic design of the building was

based on Turkish Earthquake Code (TEC 1998). The building was designed according to high

ductility level (R = 8), seismic zone of 1, and importance factor of 1. An internal frame of the

building (axis of B-B) was considered for the evaluation in this study. The element details of the

considered frame are presented in Table 1. Each story mass of the frame is 72.9 kNs2/m. First mode

period, T1 of the frame with effective (cracked section) stiffness is found to be 3.49s. Additional

detailed information about the building can be found in the dissertation prepared by Turker (2005).

RC

k
∆

Pmin

k
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Fig. 3 Geometrical properties of the building

Table 1 Element details of the frame

Story  Place 

Steel of beams (cm2) 
Size of beams

(cm*cm)Support
(1), (2)

Span
(1-2), (2-3)

1
top 

bottom 
9.43 
6.28 

6.28
6.28

30*70

2-8
top 

bottom 
12.57 
9.43 

6.28
6.28

9-14
top 

bottom 
12.57
9.43 

6.28
6.28

30*60
15-16

top 
bottom 

9.43 
6.28 

6.28
6.28

17-19
top 

bottom 
9.43 
6.28 

6.28
6.28

25*50
20

top 
bottom 

6.28 
6.28

6.28
6.28

Story Name Steels of columns 
(cm2)

Size of columns 
(cm*cm)

1-4
B1,B4 
B2,B3 

54.24
72.32 

70*70
80*80

5-8
B1,B4 
B2,B3 

37.68 
50.24

60*60
70*70

9-12
B1,B4 
B2,B3 

25.12 
37.68 

50*50
60*60

13-16
B1,B4 
B2,B3 

18.48 
25.12 

40*40
50*50

17-20
B1,B4
B2,B3 

13.56
18.80

35*35
40*40
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To apply the proposed method to RC buildings, behavior of RC sections should be idealized

according to the principles of the method. For this purpose, the moment-curvature (M − χ)

relationships, which were determined by using the material and section properties, of the elements

were idealized as shown in Fig. 4(a). Actual yield conditions of the columns with symmetric section

were idealized by three line segments as shown in Fig. 4(b). Similar characteristic values (Mo, Mb,

Not, Noc, Nb) can also be used for the idealizations of non-symmetric sections. 

As shown in Fig. 4(a), My is the yielding moment of section, Mu is the moment bearing capacity

of section under constant axial force, χy and χu are the yielding curvature and ultimate (failure)

curvature of the section, respectively. At the graphics shown in Fig. 6(b), Not, Noc and Nb are axial

load capacity of the section in tension, compression and at balanced failure, respectively. Mo and Mb

are the moment bearing capacity of the section in pure bending and that at balanced failure,

respectively. 

As shown in Fig. 1(a), initial stiffness on the idealized moment-curvature relationship was used

for beam and column elements. Depending on the reinforcement included, beams were defined as

having two support region and one span region. Lengths of these regions were accepted as equal.

Bending stiffness belonging to bending moment due to gravity loads was used at the each region of

the beams. Axial forces due to gravity loads were considered in determination of bending stiffness

of columns. These section properties were generated by using a special-purpose program (BEKE-3,

by Girgin 1996). 

In the evaluation of the proposed method, three ground motions that have different frequency

content were used (PEER 2005) (Table 2). Acceleration records and spectrums, with 5% damping,

of these ground motions are presented Fig. 5. 

Fig. 4 Idealization of behaviors of RC elements

Table 2 Properties of the earthquakes

Earthquake Component
Magnitude

(M)

Peak ground 
aceleration

(g)

Peak ground 
velocity 
(cm/s)

Peak ground 
dispalcement 

(cm)

Imperial Valley-USD (1940)  ELC-180 7.0 0.313 29.8 13.32
Erzincan-Turkey (1992) ERZ-DB 6.9 0.496 64.3 22.78
Kocaeli-Turkey (1999)  SKR-090 7.4 0.376 79.5 70.52
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3.2 Properties of the analysis 

In all non-linear analyses, gravity loads composed of (1.0 dead load+1.0 live load) were used.

Acceleration spectrums obtained from actual ground motions were used in order to compare the

method results with those of the NDA. In the proposed method, all modes of the frame were

considered. However, analysis including 1 mode, 2 modes, 3 modes and 4 modes were also carried

out separately on the 20 story frame in order to determinate the effect of number of mode

considered in the analysis and obtained results were compared with each other and the results

including all modes. It was seen that consideration of the first three modes was sufficient and effect

of other modes could be neglected. Details of these analyses can be found in Turker (2005).

Numerical applications of the proposed method were performed by program MEPARCS (Turker

2005). 

In the NDA of the frame for different ground motions, stiffness proportional damping was

assumed and damping ratio (ξ ) of 5% was used. Perfectly rigid plastic behavior that was

compatible with assumptions of NSA was assumed for hysteretic moment-plastic rotation

relationship of beam and column elements in the NDAs. The program RAM Perform-2D (RAM Int.

2000) was used for the NDAs of the frame. 

The proposed method was also evaluated by comparing the obtained results with those of FEMA

356 NSA procedures using fixed loads distributions in order to show the effectiveness of the

method. Descriptions of these distributions are summarized below. 

a) First mode distribution: Forces proportional to the first mode shape are used in this distribution.

b) SRSS distribution: Forces proportional to the story shear forces obtained by elastic response

spectrum analysis (RSA) are used in this distribution proposed for building affected by higher

Fig. 5 Acceleration records and spectrums of ground motions used in the evaluation 
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modes. Therefore, the distribution is called briefly as “SRSS”. In the determination of this

distribution, consideration of a sufficient number of modes is stipulated in FEMA 356. In the

determination of this distribution, spectral accelerations (Sa) obtained from related ground motions

were used and four modes of the frame were considered in the RSA.

c) Uniform distribution: Forces proportional to the masses in the each story of frame are used in

this distribution. 

3.3 Comparison and evaluation of the analysis results

Comparisons of the results obtained from the NDA, the proposed method and NSAs for FEMA

356 (2000) procedures were carried out on response quantities obtained in the instability limit state

of the proposed method. Therefore, the ground motion records in the NDAs were scaled to obtain

the roof displacements occurred at the instability limit state. Maximum response quantities occurred

during NDA for related records were taken as reference (accurate value) for comparisons of the

results. In addition, “Dynamic Pushover Analysis” approach (Elnashai 2001) was used for the

evaluation of the capacity curves (base shear and roof displacement demands). All the response

quantities obtained from the proposed method, the NDAs and NSAs procedures in FEMA 356 are

presented in Figs. 6-8.

The first mode distribution is independent from the earthquake characteristics. Therefore, this

distribution yields the similar characteristic results for the investigated frame for all of the analyses.

The higher modes were not very effective in the behavior of the frame due to frequency content of

the SKR-090 record. Therefore, it was generally obtained good results from the first mode

distribution for all parameters except for the shear forces. However, the story drifts, beam plastic

rotations and distribution of plastic sections in the upper stories of the frame due to the higher mode

effects of ELC-180 and ERZ-DB records could not be determined by the first mode distribution

(Figs. 6-8). 

The uniform distribution is also independent from the earthquake characteristics and yields the

similar characteristic results in the investigated frame for all analyses. As expected, it was seen that

the uniform distribution in FEMA 356 yielded quite different results from other analyses for all

response quantities. When the NDA results are taken as reference, it was seen that this distribution

yielded very high values for floor displacements in all stories of the frame, very low values for

story drift and beam plastic rotations in the upper stories of the frame, very high values for story

drift and beam plastic rotations in the lower stories of the frame, very low values for story shears in

all stories of the frame (Fig. 6). This distribution yielded better values only for a few story shears

than the proposed method and other FEMA 356 distributions (Fig. 7). As seen in Fig. 8, this

distribution was also insufficient in the determination of the distribution of plastic sections in the

middle and upper stories. 

The SRSS distribution includes the earthquake characteristics by using elastic spectral

accelerations of the records. Story drifts, beam plastic rotations and distribution of plastic sections in

the upper stories of the frame due to higher mode effects at ELC-180 and ERZ-DB records could

be determined very well by the SRSS distribution (Figs. 6-8). However, as seen in the figures, the

SRSS distribution was insufficient in the determination of the story drifts, beam plastic rotations and

distribution of plastic sections in the middle and lower stories of the frame (Figs. 6-8). 

The proposed method includes the earthquake characteristics and changing dynamic properties

(period elongations and spectral amplifications) of the frame. Therefore, general characteristics
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predicted by the NDA could be obtained appropriately by the proposed method for almost all the

parameters. The proposed method yielded high values for beam plastic rotations in some stories of

the frame for ELC-090 records only. In addition, it yielded generally low values for story shears in

Fig. 6 Comparison of floor displacements, story drifts, max. beam plastic rotations and story shears
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the lower stories of the frame and capacity curves (base shear and roof displacement demands).

However, these results are better than those of all FEMA 356 procedures owing to the contribution

of higher modes. Consequently, it can be seen that, the proposed method yielded generally better

results than all FEMA 356 procedures for all of the investigated parameters. 

Fig. 7 Comparison of capacity curves of the system

Fig. 8 Comparison of distribution of plastic sections in the system
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More detailed evaluation study including different regular RC buildings, which represent a broad

period range, were carried out in the dissertation prepared by Turker (2005). In that study, very

similar results were also obtained for structures with wide range of period. 

3.4 Investigation of second order effects

In the proposed method, the analysis neglecting the second order effects (first order only) was

carried out in order to determine the effectiveness of the second order effects on the response

quantities and periods of the system and then the obtained results were compared with the analysis

results considering the second order effects. Similar results were obtained for each earthquake

record. As an example, the results obtained for ERZ-DB records were presented in this study (Fig. 9).

It was found that the story drifts and beam plastic rotations increased in the lower stories of the

frame and decreased in the upper stories of the frame due to consideration of the second order

effects (Fig. 9). The story shears and base shear capacity of the frame also decreased owing to the

Fig. 9 Effectiveness of the second order effects on response quantities (for ERZ-DB)
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second order effects as expected (Fig. 9). Change of the floor displacements and the distributions of

plastic sections in the system due to the second order effects were very small. 

In the proposed method, the second order effects are also considered in the determination of

modal properties of system. Modal periods of the system enlarged due to the second order effects as

expected (Fig. 10). When the plastification in the system is increased, effectiveness of second order

effects also increased and large increments occurred especially on the first mode period (Fig. 10). 

 

4. Conclusions

An effective load increment method is presented for multi-mode adaptive non-linear static analysis

of buildings. Lumped plastisicity approach is adopted and geometrical non-linearties (second-order

effects) are included in the method. Geometrical non-linearity effects and yield conditions of

column elements are linearized. Thus, load increments for formation of plastic sections can be

determined directly (without iteration or using a step-by-step solution) by using linearized yield

conditions. Formation of all plastic sections and the changing modal properties of the system due to

plastification can be determined in detail in the proposed method. 

 Different scaling approximations can be used in each step for calculating the modal lateral loads

because of using unit lateral load increment in the method. When the second order effects are

neglected in the analysis, the distribution of response quantities change considerably along the

building height. Furthermore, it is seen that modal periods of system change also considerably

(particularly for the first mode period) with increasing plastification due to the second order effects. 

End of the evaluations when NDA results are taken as reference, the proposed method yields

generally better results than all FEMA 356 procedures (first mode, SRSS, uniform) for all the

investigated parameters (floor displacements, story drifts, max. beam plastic rotations, story shears,

capacity curves and distribution of plastic sections). First mode distribution in FEMA 356 yields

generally good results in the lower stories, but it is not sufficient for determination of the response

quantities in the upper stories. SRSS distribution proposed in FEMA 356 to consider higher mode

effects, yields generally good results in the upper stories, but it is not sufficient for determination of

the response quantities in the middle and lower stories of the frame. Uniform distribution in FEMA

Fig. 10 Effectiveness of the second order effects on first three periods of the system
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356 is generally not sufficient for determination of the response quantities in all stories of the frame.

In conclusion, the proposed method is generally found compatible with NDA. Furthermore, it

yields better results than all NSA procedures proposed by FEMA 356. However, the proposed

procedure should further be evaluated through statistical studies considering various regular and

irregular buildings and ground motion records. Therefore, the authors are continuing to the studies

in this subject.
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Appendix A 

1) Derivation of end forces due to unit plastic deformation parameters in the plastic section  
As shown in Fig. A1, end forces due to unit plastic deformation parameters in the plastic section are obtained
from combination of end forces occurred at four different deformation states. 

i i

Fig. A1 Derivation of end-forces due to unit plastic deformation parameters
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Matrices of [Pφk]i and [Pφk] j obtained from superposition of end forces in Fig. A1 are given below.

(1)

Referring to the individual element coordinates, matrices [Pφ k]i and [Pφ k] j for a prismatic element which does
not include the second order effects become 

 (2)

Where EI and EF are the bending stiffness, the axial stiffness, respectively.
Matrices [Pφk]i and [Pφk]j for a prismatic element including the second order effects become 

(3)

Where b11, b12 are expressed by

   (4)

Where N is the axial force (compression) and . 

2) Derivation of ∆M and ∆N internal force variation in any section of element with a plastic section 
For the element which is not including the second order effects, 

 

  (5)

For the element including the second order effects, (for )
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Fig. A2 Variation of the internal forces in the element with a plastic section




