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Abstract. A simple plane-strain solution is derived in this paper for the functionally graded
multilayered isotropic elastic cylinder under static deformation. The solution is obtained using method of
separation of variables and is expressed in terms of the summation of the Fourier series in the
circumferential direction. While the solution for order n = 0 corresponds to the axisymmetric deformation,
that for n = 2 includes the special deformation frequently utilized in the upper and lower bounds analysis.
Numerical results for a three-phase cylinder with a middle functionally graded layer are presented for both
axisymmetric (n = 0) and general (n = 2) deformations, under either the traction or displacement boundary
conditions on the surface of the layered cylinder. The solution to the general deformation case (n = 2) is
further utilized for the first time to find the upper and lower bounds of the effective shear modulus of the
layered cylinder with a functionally graded middle layer. These results could be useful in the future study
of cylindrical composites where FGMs and/or multilayers are involved.

Keywords: elasticity; analytical solution; micromechanics; functionally graded material; fiber/matrix
bond; effective modulus; three-phase cylinder.

1. Introduction

Functionally graded materials (FGMs) are continuously playing an important role in the design of

composite structures. Besides their well-known applications in thermal coatings for high temperature

resistance, FGMs can be utilized as transition layers to reduce the sharp contrast in the material

properties between the laminates (i.e., Zhu et al. 1996, Yang and Munz 1997).

To assist the design of FGMs, various modeling and simulation methods have been proposed,

including both numerical and analytical approaches (i.e., Aihara et al. 1998, Jin et al. 2002). While

many analytical results have been reported so far, they are mostly associated with plate geometry

only (i.e., Pan 2003, Zhong and Shang 2003, Pan and Feng 2005). To the best of the authors’
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knowledge, the corresponding FGM cylindrical composite has not been fully investigated except for

some simple deformation cases (Horgan and Chan 1999, Alshits and Kirchner 2001, Tarn 2001,

Oral and Anlas 2005). 

The present study was motivated by recent experimental work on fiber reinforced composites

where it was observed that an FGM interface exists between the fiber and the matrix (Lafdi 2005).

As such, from the fabrication and design points of view, it would be helpful if one could understand

the effect of different FGMs on the distribution of the displacement, strain, and stress. The ability to

estimate the effective material property is also an important issue in the corresponding FGM

cylindrical composites. In this paper, we first present the general solution for the FGM cylinder

layer by virtue of the method of separation of variables where the θ-dependent solution in the

circumferential direction is expressed in terms of the Fourier series. For multilayered FGM

cylinders, a system of linear equations are formed, which can be solved for the given boundary

conditions. We discuss further in detail the cases which correspond to the axisymmetric deformation

(n = 0) and the deformation of order n = 2 which has been frequently used in the upper and lower

bounds analysis. We point out that our formulation for the upper and lower bounds of the shear

modulus is presented based on a very simple approach associated with the strain energy and can be

for both multilayered and FGM cases. As examples, numerical results on the displacement, strain,

and stress are presented for the three-phase cylinder with a FGM middle layer. The analysis shows

clearly the influence of the FGM layer on the field distribution in the inner and outer homogeneous

layers as well as in the FGM layer. The corresponding effective shear moduli for the three-phase

cylinder with FGM middle layer or with homogeneous middle layer are also predicted for the first

time based on the solution. Results in this paper could be useful in future numerical study of the

layered FGM cylindrical composites based on either boundary or finite element method.

The paper is organized as follows: In Section 2, the general solution for the multilayered FGM

cylinder is derived based on the method of separation of variables. In Section 3, the upper and

lower bounds formulation is presented for the FGM and multilayered cylinder, which is based on

the simple energy equivalence in the radial direction only. Numerical examples are presented in

Section 4 to show the influence of the FGM layer on displacement, strain, and stress fields as well

as on the upper and lower bounds. Finally, conclusions are drawn in Section 5. 

Fig. 1 A three-phase FGM composite cylinder
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2. General solutions for the multilayered FGM cylinder

Assume that a layered cylinder consists of L layers, which can be homogeneous or FGM (a three-

layered cylinder is shown in Fig. 1). The layered cylinder is solid so that it includes the inner most

layer (r = 0) j = 1. For any layer j of the cylinder bounded by r = Rj− 1, Rj (Rj > Rj− 1), we assume the

Young’s modulus as a function of radius in the form of

(1)

where R is a nominal length within the layer j, k is the FGM factor which characterizes the

variation of the Young’s modulus within the layer, and E0j is the proportional constant. 

To find the general solution for each layer, we utilize the method of separation of variables with

Fourier series in the θ-direction (as a summation from 0 to a large but finite N ). In other words, we

assume that the displacement, strain, and stress fields can be expressed as

(2)

(3)

(4)

where i = √(−1), and the shear stress τrθ is also represented alternatively as σrθ . We remark that

while n = 0 corresponds to the axisymmetric deformation, n = 2 corresponds to the case used most

frequently in the upper and lower bounds moduli estimation for three-phase composites (i.e.,

Christensen and Lo 1979, Qiu and Weng 1991). It is emphasized, however, that the solution

presented here is more general, which includes multilayered FGMs with the formulation being very

simple. For example, in order to solve the general problem in the r-θ space, it is sufficient for us to

look at the corresponding amplitude of the field quantities for the given order n (or the r-dependent

function only). Keeping this in mind, the strain-displacement relations and the equilibrium equations

in terms of the amplitudes are then reduced to (being functions of the variable r only)

(5)

(6)

The constitutive relation between the stress and strain is similar to the well-known Hooke’s law

with the exception that the Young’s modulus is now a function of the radius r.

Eqs. (5) and (6), combined with the isotropic constitutive relation, can be used to solve the

unknown amplitudes of the displacement, strain, and stress fields. More specifically, in order to find
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the amplitude of the displacement field in each FGM layer, we assume the n-th order solution as

(7)

where the unknown factor p and the corresponding coefficients (c1 and c2) can be solved from the

following eigensystem of equations:

(8)

where νj is the Poisson’s ratio of the layer j, and k again characterizes the FGM as given in Eq. (1).

For any layer other than the inner layer (r = 0), there are generally four different (complex) roots pm

with four different (complex) pairs of eigenvectors (c1m, c2m) (see Appendix A for detailed

discussion). Therefore, the amplitudes of the displacements can be obtained as 

(9)

where Re stands for the real part of the complex function. Once the displacement amplitudes are

found, amplitudes of the strains are obtained using the displacement-strain relation, and stresses

using the constitutive relation. It is obvious that for the solution to be bounded for the inner layer

(r = 0), it is necessary to choose solutions corresponding to the two roots which have a positive real

part. 

Once the general solution for each layer is derived, the boundary condition as well as the interface

condition can be applied to solve all the unknowns involved in the layered cylinder (assuming

continuity of the displacement and traction vectors at the interfaces between adjoining layers). The

size of the system of linear equations will be proportional to the number of layers. Alternatively, it

is possible to find the propagator matrix for each layer and then propagate the solutions from layer

to layer (i.e., Pan 1997) to arrive at a system of equations involving only 2 unknowns. The

propagator matrix (or transfer matrix) has been utilized previously in many areas including those

related to laminate FGM composites (e.g., Pan 2001, 2003, Pan and Han 2005). In this paper,

however, the direct solution method is adopted as the number of layers studied here is relatively

small. 

3. Upper and lower bounds of the effective shear modulus for multilayered FGM

cylinders

In this section, we follow the general procedure as in Christensen and Lo (1979) and Qiu and

Weng (1991) for three-phase composites in order to find both the upper and lower bounds of the

effective shear modulus for multilayered FGM cylinders. It can be observed that the formulation
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presented here is extremely simple with all the calculations in the radial r-direction only. 

In order to obtain the upper bound, we apply the following displacement condition on the surface

of the outer layer r = RL (in terms of the Cartesian coordinates (x1, x2) in the (r, θ )-plane):

(10)

where the described non-zero components of the strain tensor are

(11)

It is easy to show that in terms of the polar coordinates, the displacement boundary condition

becomes

(12)

Or in general,

(13)

Therefore, the displacement amplitudes of second order (n = 2) should satisfy the following

boundary condition:

(14)

Again, the subscript “2” on the left-hand side of the equation indicates the amplitude of the

displacement corresponding to order n = 2.

Similarly, to find the lower bound, the traction boundary condition on the surface of the outer

layer r = RL (again, in terms of the Cartesian coordinates) is described by:

(15)

where the described non-zero components of the stress tensor are

(16)

In terms of the polar coordinates, the traction boundary condition becomes

(17)

Or in general,

(18)
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Therefore, the corresponding traction amplitudes of order n = 2 satisfy the following boundary

condition:

(19)

In both cases, the effective shear modulus Geff is calculated based on the equivalence of the strain

energies between the multilayered FGM model and the homogeneous model with the effective shear

modulus. The derivation is presented below:

Since both the multilayered FGM and the homogeneous models have the same θ-dependence,

multiple factors from integration over the variable θ are therefore the same on both sides of the

energy equation. Consequently, it is only necessary to carry out the integration along the radial

direction. For a linear elastic cylinder made of L FGM layers, the strain energy is calculated from

(20)

This expression can be used to find energy in the multilayered FGM model once all the coefficients

in each layer are solved under the given boundary and interface conditions. The energy for the

corresponding homogeneous model with the undetermined effective shear modulus Geff is evaluated

based on simple surface integration where the θ integration cancels out when equating this

expression to that of the multilayered FGM model in Eq. (20). For the equivalent homogeneous

model, the total energy is

(21)

Ignoring the θ-dependent factor, the effective energy is therefore reduced to 

(22)

Using either the displacement or traction boundary condition, combined with the solved coefficients

for the equivalent model, it can be shown that the expression for the effective energy Eq. (22)

involves only the effective shear modulus as the unknown. Letting the effective energy Eq. (22)

equal the multilayered FGM energy Eq. (20), then the effective shear modulus Geff can be finally

solved.

4. Numerical examples

4.1 Example 1: Upper and lower bounds of shear modulus in three-phase cylinders

We first checked our solution of multilayered cylinders for the effective shear modulus. For the
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three-phase cylinder case considered in Qiu and Weng (1991), the Young’s modulus Ei in each layer

takes a value of 1, 5, or 25 (for example, E1/E2/E3 = 1/5/25 for one of the models), whilst the

Poisson’s ratio is the same, i.e., ν1 = ν2 = ν3 = 0.3. The upper and lower bounds for the shear

modulus predicted from our analytical formulation are found to be the same as those in Qiu and

Weng (1991, Figs. 1 and 2). For instance, listed in Table 1 are some of the results from our solution

for different volumetric fractions d1 (with fixed d2:d1 = 2:1). The corresponding radii of the three-

phase cylinder are given in Table 2.

Fig. 2 Comparison of the amplitudes (n = 2) of stresses based on the FGM vs. discrete layered models under
the displacement boundary condition 

Table 1 Upper and lower bounds of the effective shear modulus Geff for the three-phase 
composite with ν1 = ν2 = ν3 = 0.3 and d2:d1 = 2:1 

E1/E2/E3 Fraction d1 Upper Geff Lower Geff

1/5/25

0.1 5.9398 4.0706

0.2 3.8299 1.8252

0.3 1.6760 1.0535

25/5/1

0.1 0.60833 0.53305

0.2 0.99751 0.76440

0.3 2.1978 1.8029

25/1/5

0.1 1.4395 1.3439

0.2 1.1406 1.0917

0.3 0.78148 0.75887
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4.2 Example 2: A three-phase cylinder with a middle FGM layer (n = 2)

The second example is for a three-phase cylinder with a middle FGM layer. Solutions for both the

direct FGM and discrete models are employed to carry out the calculation. In the discrete model, a

total of 12 layers are used. In other words, 10 discrete homogeneous layers are used to approximate

the middle FGM layer (it has been checked that when the number of the discrete layers is equal to

10 or larger, the discrete-based solution is nearly the same as the FGM solution). The FGM factor k

in Eq. (1) is chosen in such a way that E2(r) = (r/R1)
2.321928 in the FGM layer. Other parameters are

R1 = 1.0, R2 = 2.0, and R3 = 3.0, ν1 = ν2 = ν3 = 0.3, E1 = 1 and E3 = 25. It is obvious that when r = R1

we have E2 = 1, and at r = R2, we have E2 = 5. The boundary condition applied at R3 = 3.0 is the

displacement condition described by Eq. (14) with . For example, the amplitudes of the

stresses from both the direct FGM and discrete homogeneous models are plotted in Fig. 2. It is

observed that both models predict very close results to each other. Furthermore, there is a sharp

discontinuity for the normal stress σθ across the interface at r = 2 due to the jump of the Young’s

moduli on both sides of the interface. 

We have also compared this FGM model to a couple of discrete homogeneous three-phase models

with different combinations of E1/E2/E3. While the results for the upper and lower bounds are given

in Table 3, the amplitudes of the stress components for different models are presented in Figs. 3(a),

3(b), and 3(c) for the traction boundary condition Eq. (19) with . It is interesting to note

from Table 3 that the shear modulus bounds for the FGM case is somewhere between those of the

discrete models E1/E2/E3 = 1/2/25 and E1/E2/E3 = 1/3/25.

From Fig. 3, we first observe that while the normal (σr) and shear (τrθ) stresses have

approximately the same magnitude, the amplitude of the hoop stress σθ is much larger. For different

combinations of E1/E2/E3, the stress amplitude could decrease in one layer and increase in another

for increasing E2 in the middle layer. For instance, with increasing E2, the amplitude of σr decreases

in layers 1 and 2 but increases in layer 3 (Fig. 3(a)). However, the trend for the FGM layer case is

different: while the stress variation for the FGM layer model follows the curve of one of the

discrete models E1/E2/E3 in layers 1 and 3, its behavior in the FGM middle layer is different: It

ε 1=

σ 1=

Table 3 Upper and lower bounds of the shear modulus for the FGM middle layer model 
and the discrete homogeneous models with different combinations of E1/E2/E3

E1/E2/E3 Upper Geff Lower Geff

1/2/25 4.2418 1.8701

FGM 4.4258 2.0653

1/3/25 4.4493 2.2105

1/5/25 4.8311 2.8115

Table 2 Volumetric fraction d1 and the corresponding radii of the three-phase cylinder 
for fixed ratio d2:d1 = 2:1

 d1 R1 R2 R3

0.1 0.9486833 1.64316767 3.0

0.2 1.3416407865 2.2379 3.0

0.3 1.64316767 2.84604989 3.0
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crosses some (Figs. 3(a) and 3(c)) or all (Fig. 3(b)) of the curves predicted based on the discrete

models E1/E2/E3 in the middle layer. More importantly, the stress variation in the FGM middle layer

is much smoother than those in the homogeneous middle layer, and there is no discontinuity for the

stress σθ across the interface between the FGM and the inner layer as the Young’s moduli is

continuous there. 

4.3 Example 3: A three-phase cylinder with a middle FGM layer (n = 0)

The effect of different k values in the FGM model (Eq. (1)) is studied in this example, where the

Fig. 3 Amplitudes (n = 2) of stresses in FGM and discrete layered cylinders under traction boundary
condition: Stress σr in (a), σθ in (b), and σrθ in (c) 
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k in the middle FGM layer (1 < r < 2) varies as k = 0, −1/2, −1, −2, −3, −4, −5. The deformation is

restricted to the axisymmetric case (i.e., n = 0) under uniform traction (i.e., ). While

the Poisson’s ratios are the same in the three layers (i.e., ν1 = ν2 = ν3 = 0.3), the Young’s moduli in

the inner layer (r < 1) and outer layer (2 < r < 5) are, respectively, E1 = 10 and E3 = 1. The Young’s

modulus E2 in the FGM middle layer (1 < r < 2) is described by Eq. (1) with E02 = 10 and its

distribution for different k is plotted in Fig. 4. The corresponding solutions for the displacement,

strain, and stress are presented in Figs. 5(a), 5(b), and 5(c). Some interesting features can be

observed from Fig. 5:

1) Since the Young’s modulus in the inner layer is larger than those in the other two layers, the

induced displacement and strain fields in this layer are much smaller. Therefore, the effect of

different k values on the displacement and strain fields within layer 1 (r < 1) cannot be clearly

observed (Figs. 5(a) and 5(b)). 

2) For displacement ur (Fig. 5(a)), its values in both the FGM and outer layers increase with

increasing magnitude of k. For strain εr (Fig. 5(b)), however, with increasing magnitude of k, its

value increases in the FGM layer, but decreases in the outer layer. 

3) As for the stress in the inner layer, increasing magnitude of k corresponds to an increase of the

stress value for k = 0 to −3; however, when k = −4 and −5, the stress amplitude is reduced, with the

result for k = −5 close to that for k = −1/2 (Fig. 5(c)). This feature is possibly due to the fact that for

k = 0 to −3, the Young’s moduli in the FGM layer are all larger than that in the outer layer;

however, for k = −4 and −5, they become smaller in the FGM layer than that in the outer layer (near

r = 2 in the FGM layer in Fig. 4). 

4) In the outer layer, the stress σr decreases with increasing magnitude of k (Fig. 5(c)).

In general, different k values have apparent effect on the displacement, strain, and stress in both

the FGM middle layer and the outer layer. While the response (displacement, strain, or stress) as a

σ r0 r R3=( ) 1=

Fig. 4 Young’s modulus in the middle FGM layer of a three-phase cylinder 
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function of r is gentle in the outer layer, the one in the FGM layer experiences a large change in its

amplitude. It is also obvious that, the transfer of the stress from the inner to the outer layer is more

complicated than that of the displacement or strain, with the inner fiber carrying most of the stress.

5. Conclusions

In this paper, exact solutions are derived for multilayered FGM cylinders under static deformation.

They are obtained based on the method of separation of variables and include the previous

Fig. 5 Amplitudes (n = 0) of the field quantities for different FGM factors k: Radial displacement ur in (a),
strain εr in (b), stress σr in (c)
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axisymmetric solution as a special case. The most commonly used upper and lower bounds

formulation is also extended to the general multilayered FGM case and is further presented in terms

of a simple energy relation. While our solutions can be applied to many different deformation cases,

illustrative results for a three-phase cylinder with a FGM middle layer are presented for orders n = 0

and 2. It is observed clearly that the FGM middle layer can strongly influence the field

(displacement, strain, and stress) distribution within the FGM layer and in the inner and outer layers

as well. The FGM layer also has an obvious effect on the upper and lower bounds of the effective

shear modulus. Results presented in this paper could be useful in future numerical analysis of FGM

layered cylinders based on the boundary and finite element methods.
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Appendix A: Roots of the eigensystem of Eqs. (8)

Using Mathematica, the four different roots pm (m = 1, 2, 3, 4) of the system of Eqs. (8) can be found as
(for simplicity, the Poisson’s ratio in layer j, “νj”, has been replaced with “ν”):

(A1)

where

(A2)

We remark that in general the four roots are complex. Therefore, the corresponding eigenvectors (c1m, c2m) are
also complex. Since the displacement solution is real, one needs to take only the real part of the complex
solution.

We discuss below the solutions corresponding to those with special functional gradient k and Poisson’s ratio
v values:

1) k = 0 

This corresponds to the homogeneous material case. For this case, the four roots pm in Eq. (A1) are real,
and can be expressed as

(A3)

The same roots can also be easily derived from the governing equations when the material is homogeneous.

2) n = 0 

This corresponds to the axisymmetric deformation studied in detail in the paper. For the axisymmetric case,
the four roots pm are

(A4)

It is obvious that for the regular domain of k ≤ 0 and 0 ≤ ν ≤ 1/2, all the roots in Eq. (A4) are real.

3) n = 2
This corresponds to the special deformation associated with the prediction of the effective shear modulus, as

discussed in the paper. For this case, 

(A5)

It is apparent that for n = 2 and also for other orders, the four roots will be, in general, complex (in pair). For
example, for ν = 0.3, the four roots are

p1 4→

k–

2
-----

k
2

4
----

a b±
2 1 ν–( )
--------------------+±=

a 1 2n
2

1 ν–( ) 1 k+( ) 1 2ν–( )+ +=

b k
2

16n
2

1 ν
2

+( ) 8n
2

k 4ν–( ) 8kn
2

ν 3 2ν–( )– 4k
2

n
2

ν 1 ν–( )–+ +=

p1 4→ n 1±( )±=

p
m

k/2 k
2

/4 k 1+ +± ; m– 1 2,=

k/2 k
2

/4 1 kν/ 1 ν–( )–+± ; m– 3 4,=
⎩
⎨
⎧

=

a 10 1 ν–( ) k 1 2ν–( )+=

b k
2

1 16ν– 16ν
2

+( ) 32k 1 2ν–( ) 1 ν–( ) 64 1 ν–( )2+ +=
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(A6)

which, for the special functional gradient k = −3 studied in the paper, become

(A7)

p1 4→ 0.357143 1.4k 1.96k
2

5.6 7.0 0.4k 31.36 8.96k 2.36k
2

–+±+( )+±
⎩ ⎭
⎨ ⎬
⎧ ⎫

–=

p
m

4.09063 0.564382± i; m 1 2,=

1.09063 0.564382± i; m 3 4,=⎩
⎨
⎧

=




