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Abstract. In this study, an improved finite element formulation with a scheme of solution for the large
deflection analysis of inextensible prismatic and nonprismatic slender beams is developed. For this
purpose, a three-noded Lagrangian beam-element with two dependent degrees of freedom per node (i.e.,
the vertical displacement, y, and the actual slope, dy/ds = sinθ, where s is the curved coordinate along the
deflected beam) is used to derive the element stiffness matrix. The element stiffness matrix in the global
xy-coordinate system is achieved by means of coordinate transformation of a highly nonlinear (6 × 6)
element matrix in the local sy-coordinate. Because of bending with large curvature, highly nonlinear
expressions are developed within the global stiffness matrix. To achieve the solution after specifying the
proper loading and boundary conditions, an iterative quasi-linearization technique with successive
corrections are employed considering these nonlinear expressions to remain constant during all iterations
of the solution. In order to verify the validity and the accuracy of this study, the vertical and the
horizontal displacements of prismatic and nonprismatic beams subjected to various cases of loading and
boundary conditions are evaluated and compared with analytic solutions and numerical results by available
references and the results by ADINA, and excellent agreements were achieved. The main advantage of
the present technique is that the solution is directly obtained, i.e., non-incremental approach, using few
iterations (3 to 6 iterations) and without the need to split the stiffness matrix into elastic and geometric
matrices. 
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1. Introduction

Due to the fact that all physical structures are nonlinear, linear analysis is obviously inadequate

for many structural simulations. A nonlinear structural problem is one in which the structure’s

stiffness changes as it deforms. Geometric nonlinearity occurs whenever the magnitude of the

displacements affects the response of the structure. It includes the effects of large displacements and

rotations (i.e., slopes), snap through, and load stiffening. As key source of nonlinearity in problems

of elastica, the term “large displacement” refers to a branch of nonlinear bending analysis in which

the deflections and rotations of the sections are large but the fiber extensions and angle changes

between fibers are small (i.e., small strain theory). In which, a linear or nonlinear stress-strain

relationship may take place. 

When both large deflections and large rotations are concerned, the analysis becomes highly nonlinear

due to the non-linearity appears in the exact expression of the curvature. Thus, if the displacements are

large, the shape of the structure and its stiffness change. Afterward, the stiffness matrix of the structure

has to be assembled and inverted many times during the course of the analysis, making it more

expensive to solve than a linear analysis. For more details on large deflection theory one may refer to

(Cook et al. 1989, Crisfield 1991, 1997, Hinton 1992, Oden 1972).

Slender beams have been widely used in many civil, mechanical and aerospace engineering

applications, both in their stand-alone forms and as supporting structures. Development of reliable

beam models with incorporating the effects of the large deflection of slender beams has received

considerable interest. Early attempts to present a finite element formulation for a flexural behavior

of slender beams were based on the closed form solutions using elliptic integrals that are

extensively available but for certain loading and boundary conditions (Timoshenko and Gere 1961,

Mattiasson 1981, Chucheepsakul et al. 1994, Bona and Zelenika 1997, Wang 1997, Chucheepsakul

1999, Coffin and Bloom 1999, Ohtsuki and Ellyin 2001). Thereafter, with the deepening of the

research work, great attention was paid to the numerical integration solutions and finite differences

modeling approaches, which have proved to be efficient for solving large deflection problems (Dado

et al. 2004, Kooi and Kuipers 1984, Katsikadelis and Tsiatas 2003, Lee and Oh 2000, Lee 2001,

Mau 1990, Schmidt 1977, Saje and Srpcic 1985, Srpcic and Saje 1986, Wang and Watson 1980,

Wang 1981, Watson and Wang 1981, Wang and Watson 1982, Watson and Wang 1983). Also

intensive and remarking research works (Williams 1964, Yang 1973, Oran and Kassimali 1976,

Bathe and Bolourchi 1979, Argyris and Symeonidis 1981, Surana 1983, Golley 1984, Kooi 1985,

Kassimali and Abbasnia 1991, Yang and Kuo 1994, Neuenhofer and Filippou 1997, Golley 1997,

Chucheepsakul and Huang 1997, Neuenhofer and Filippou 1998, Taylor and Filippou 2003) have

been made over the years to develop finite element models that can accurately represent the large

deformable response of the slender beams. 

The finite element formulation of nonlinear problems proceeds in much the same way as for

linear problems. The main difference arises in the solution of the finite element algebraic equations.

Once the finite element method is used for nonlinear analysis, there are three basic techniques that

can be followed to solve the nonlinear stiffness matrix equations. A primary technique is the

incremental or stepwise procedure in which the load is applied in several small steps, and the

structure is assumed to respond linearly or quasi-linearly within each step with its stiffness

recomputed on the basis of the structural geometry and member end actions at the end of the

previous load step. This is a simple procedure that may require no or few iterations within each

step, but errors are likely to increase after several steps due to possible deviations unless very fine
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steps are used. Bear in mind that, the incremental procedure divides the stiffness matrix into an

initial (or linear) stiffness matrix and a tangential stiffness matrix (or geometrical stiffness matrix)

that depends on the state of deformation existing in the element during the load increment. 

Other technique is the iterative methods which seek an approximate solution to the algebraic

equations by linearization. The direct iteration method, also known as the Picard method, is one of

these iterative methods. Additional iterative method is the Newton-Raphson method (or modified

Newton-Raphson method), which is based on the Taylor series expansion of the algebraic equations

about known solution. In this iteration procedure, the total load is applied. The iteration is continued

until the convergence is satisfied or the residual is less than a certain preselected value. Unfortunately,

convergence may not be achieved using iterative methods, particularly with stiff nonlinearity. 

A further technique is the mixed procedure in which a combination of the incremental and

iterative schemes is utilized. The load is applied incrementally, and iterations are performed either

within each load increment or after the application of all load increments. This procedure yields

better accuracy but requires more computational effort.

The key objective of this paper is not only to develop the improved finite element formulation

considering large deflection and large rotation effects, but also to propose an efficient, robust, and

practical procedure in studying various large deflection problems of prismatic and nonprismatic

slender beams subjected to continuous and discontinuous loadings and with different boundary

conditions. The effect of the horizontal force on the deflection profile of the beam is also

considered. Even though a significant amount of researches have been conducted on development of

slender beams analyses, the significance of this study is the simplicity, as a non-incremental

approach, and the small number of elements along with small number of iterations required to

achieve an economical and accurate solution.

The main points presented in this study for applications on inextensible prismatic and

nonprismatic slender beams are summarized as follows:

1. A general theory of flexural slender beams with large deflections and large rotations using a

three-noded Lagrangian beam-element with two dependent degrees of freedom per node (i.e.,

the vertical displacement, y, and the actual slope, dy/ds = sinθ, where s is the curved coordinate

along the deflected beam) is developed.

2. Considering the actual curved length of the element and the actual moment-curvature relations,

the strain-displacement and the stress strain relations are derived. 

3. The element stiffness matrix, in sy-coordinate system, containing a highly nonlinear terms is

obtained using the principle of Total Potential Energy. A transformation matrix, [T], is used in

order to transform the element stiffness matrix into the global xy-coordinates. 

4. The global (or assembled) stiffness matrix is obtained by assembling all element stiffness matrices.

The nodal boundary conditions and the equivalent nodal vector, including the effect of the

horizontal force on the deflection profile of the beam, are also specified for different problems. 

5. To achieve the solution, an iterative quasi-linearization technique is adopted with utilizing

successive corrections. The solution of the quasi-linearized equations is obtained by using the

Gauss elimination technique (Gerald and Wheatley 1970) instead of the conventional inverse

technique in order to reduce the computational time. 

6. Finally, to verify the validity and the accuracy of this study, the vertical and the horizontal

displacements of prismatic and nonprismatic beams subjected to various cases of loading and

boundary conditions are evaluated and compared with analytic solutions and numerical results

by available references and the results by ADINA (2000).
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2. Formulation 

A small incremental length of a three-noded beam element of constant flexural rigidity EI is

considered in the deformed shape with actual curved length, ∆s, horizontal projection, ∆x, and

lateral projection, ∆y, as shown in Fig. 1. Vertical forces, V1, V2 and V3 and bending moments, M1,

M2 and M3 act upon the element. 

Neglecting the horizontal displacement, u, along the x-axis (as ineffective), there remain two

degrees of freedom for each node, which are the vertical displacement, y, and the slope dy/ds = sinθ.

The force vector associated with the two degrees of freedom, y, and sinθ are the vertical force, V,

and the equivalent bending moment, M`, which is equal to the bending moment M multiplied by the

ratio sinθ/θ. The vertical displacement, y, can be expressed in terms of the deflected curved

coordinate, s, and it has the following deflection polynomial:

(1)

where s is the distance along the curved length, ∆s and a0, a1, a2, a3, a4 and a5 are constants that can

be obtained by using the boundary conditions at the three nodes of the element. 

The slope (i.e., dy/ds = sinθ ) is obtained from Eq. (1) after differentiation as:

  (2)

In a matrix form, Eqs. (1) and (2) can be written as:

(3)

y ao a1s a2s
2

a3s
3

a4s
4

a5s
5

+ + + + +=

yd

sd
----- sinθ a1 2a2s 3a3s

2
4a4s

3
5a5s

4
+ + + += =

y
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  s
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5

0  1  2s  3s
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  4s
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  5s

4

a0
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a3

a4

a5⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
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⎪ ⎪
⎪ ⎪
⎧ ⎫

=

Fig. 1 Three-noded isoparametric beam element in the deformed configuration
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The actual curved length of the element is ∆s (finite). Fig. 1 shows the three nodes of the beam

element which are considered with the following boundary conditions:

At node (1): s = 0, y = y1, 

At node (2): s = ∆s/2, y = y2, 

At node (3): s = ∆s, y = y3, 

Then, in matrix form:

(4)

By inversion

(5)

Substituting Eq. (5) into Eq. (3) gives

yd

sd
-----

1

sinθ
1

=

yd

sd
-----

2

sinθ
2

=

yd

sd
-----

3

sinθ
3

=
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y3
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⎪ ⎪
⎪ ⎪
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⎪ ⎪
⎧ ⎫
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1  
s∆
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⎪ ⎪
⎪ ⎪
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⎪ ⎪
⎪ ⎪
⎪ ⎪
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=
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⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
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⎪ ⎪
⎧ ⎫
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6
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⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

=
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(6)

Eq. (6) gives the lateral deflection and slope at any distance s along the element in terms of the

nodal deflections and slopes through the derived shape function N.

 The bending strain-curvature relationship for a beam element is taken as:

{ε} = η {φ}          (7)

where ε is the bending strain vector, φ is the curvature and η is distance from the neutral axis.

According to Euler-Bernoulli beam theory, the exact curvature φ can be expressed as (Kooi and

Kuipers 1984):

  (8)

or

  (9)

where 

 (10)

During iteration, A is considered constant for each element. From Eqs. (1) and (9)

 (11)

Substituting Eq. (5) into Eq. (11) yields
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⎧ ⎫
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s∆( )2
-------------   

34
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⎪ ⎪
⎪ ⎪
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⎪ ⎪
⎧ ⎫
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φ
d

2
y/ s

2
d

1 dy/ds( )2–[ ]
1/2

----------------------------------------=

φ A
d

2
y

s
2

d
--------=

A
1

1 dy/ds( )2–[ ]
1/2

----------------------------------------=

φ{ } A 2a2 6a3s 12a4s
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20a5s
3

+ + +( ) A 0  0  2  6s  12s
2
  20s
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a1
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a4

a5⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
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⎪ ⎪
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⎪ ⎪
⎧ ⎫
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(12)

Simplifying gives

 (13)

where A[B] is the strain-displacement transformation matrix and given by:

 (14)

φ{ } A 0  0  2  6s  12s
2
  20s

3[ ]=

1  0  0  0  0  0

0  1  0  0  0  0

23

s∆( )2
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6

s∆( )
----------  –
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s∆( )2
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8

s∆( )
----------  –

7

s∆( )2
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1

s∆( )
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s∆( )3
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13

s∆( )2
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s∆( )3
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s∆( )2
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34

s∆( )3
------------  –

5

s∆( )2
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68

s∆( )4
------------  –

12

s∆( )3
------------  –

16

s∆( )4
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40

s∆( )3
------------  –

52

s∆( )4
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8

s∆( )3
------------–

24

s∆( )5
------------  

4

s∆( )4
------------  0  

16

s∆( )4
------------  

24

s∆( )5
------------  –

4

s∆( )4
------------

y1

θsin( )1
y2

θsin( )2
y3

θsin( )3⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

φ{ } A B[ ]

y1

θsin( )1
y2

θsin( )2
y3

θsin( )3⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

=

B[ ]

46

s∆( )2
-------------–

396s

s∆( )3
-------------

816s
2

s∆( )4
-------------–

480s
3

s∆( )5
-------------+ +

⎝ ⎠
⎜ ⎟
⎛ ⎞

12

s∆( )
----------–

78s

s∆( )2
-------------

144s
2

s∆( )3
-------------–

80s
3

s∆( )4
-------------+ +

⎝ ⎠
⎜ ⎟
⎛ ⎞

32

s∆( )2
-------------

192s

s∆( )3
-------------–

192s
2

s∆( )4
-------------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

16

s∆( )
----------–

192s

s∆( )2
-------------

480s
2

s∆( )3
-------------–

320s
3

s∆( )4
-------------+ +

⎝ ⎠
⎜ ⎟
⎛ ⎞

14

s∆( )2
-------------

204s

s∆( )3
-------------–

624s
2

s∆( )4
-------------

480s
3

s∆( )5
-------------–+

⎝ ⎠
⎜ ⎟
⎛ ⎞

2

s∆( )
----------–

30s

s∆( )2
-------------

96s
2

s∆( )3
-------------–

80s
3

s∆( )4
-------------+ +

⎝ ⎠
⎜ ⎟
⎛ ⎞

T

=
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The bending stress-strain relationship for a linear elastic beam is given by:

 (15)

where {σ } is the bending stress vector and E is the modulus of elasticity.

The element stiffness matrix, [K] in local coordinate system is obtained using the principle of

Total Potential Energy. Thus:

(16)

Substituting Eqs. (14) and (15) into Eq. (16) and integrating, then:

(17)

Eq. (17) presents the element stiffness matrix in local sy-coordinates. The stiffness matrix is

highly nonlinear due to the existence of the nonlinear expression A2. In order to transform the

element stiffness matrix into the global xy-coordinates, a transformation matrix [T] is used.

 (18)

where [K]g is the element stiffness matrix in global coordinates and [T] is given by:

 (19)

The global (or assembled) stiffness matrix [K*] of the whole beam is obtained by assembling all

element stiffness matrices where the beam is considered as an assemblage of structures, each

consisting of one element at a time. For a beam divided into n elements, the dimensions of the

global stiffness matrix are (4n + 2) × (4n + 2). Solution can be made after applying the proper

loading and boundary conditions. It should be noted that when the finite element method is used,

different element lengths might be used in the analysis. This may be beneficial in cases where loads

are applied unevenly over the length of the beam.

σ{ } E ε{ }=

K[ ] A
2

B[ ]T EI( ) B[ ] sd
0

s∆

∫=

K[ ] EI

35 s∆( )3
-------------------A

2

5092  1138 s∆   3584  – 1920 s∆   1508  – 242 s∆

1138 s∆   332 s∆( )2  896 s∆   – 320 s∆( )2  242 s∆   – 38 s∆( )2

3584–   896 s∆–   7168  0  3584  – 896 s∆

1920 s∆   320 s∆( )2  0  1280 s∆( )2  1920 s∆   – 320 s∆( )2

1508  – 242 s∆–   3584  – 1920 s∆   – 5092  1138 s∆–

242 s∆   38 s∆( )2  896 s∆   320 s∆( )2  1138 s∆   – 332 s∆( )2

=

K[ ]g T[ ]T K[ ] T[ ]=

T[ ]

x/ s∆   ∆ 0  0  0  0  0

0  1  0  0  0  0

0  0  x/ s∆   ∆ 0  0  0

0  0  0  1  0  0

0  0  0  0  x/ s∆   ∆ 0

0  0  0  0  0  1

=



A simple finite element formulation for large deflection analysis of nonprismatic slender beams 655

3. Boundary conditions

Different boundary conditions can be easily represented by the finite element method. The

dimensions of the global stiffness matrix are modified according to the type of the boundary

condition. For a beam divided into n elements, the application of the boundary conditions yields:

1) Fixed-fixed beam (zero deflection and zero slope at both ends)

(4n − 2) × (4n − 2).

2) Fixed-hinged beam (zero deflection at both ends and zero slope at one end) 

(4n − 1) × (4n − 1).

3) Hinged-hinged (zero deflection at both ends) 

(4n) × (4n).

4) Fixed-free (zero deflection and zero slope at the fixed end) 

(4n) × (4n).

4. Loading

For the sake of analysis, loads shall be applied at the nodes. When a load on an element is given,

it should be transformed into equivalent nodal forces. This can be done by utilizing the shape

function matrix, [N]. The equivalent nodal forces and moments at the nodes of the element, V *
1,

M *
1, V *

2, M
*
2, V

*
3 and M *

3 are calculated from:

 (20)

where qo(s) and mo(s) are the distributed load and moment on the element, respectively.

5. Effect of horizontal force

Fig. 2 shows a section in the beam subjected to large deflection. In case of vertical force acting

on the beam, the shearing force in the section at node i is given by:

           (21)

The shearing force corresponding to the constant horizontal force at the same node is:

  (22)

V 1

*

V 2

*

V 3

*

M 1

*

M 2

*

M 3

*

N[ ]T
qo s( )

mo s( )⎩ ⎭
⎨ ⎬
⎧ ⎫

sd
0

s∆

∫=

Fi Vicosθi=

Fi Psinθi–=
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Hence, the value of the vertical force Vi that produces exactly the same shearing force as that of a

horizontal force P is:

(23)

Eq. (23) gives the value of the equivalent vertical force that should be applied to simulate the

effect of a horizontal force. The solution has been carried out assuming that for the case of the

applied horizontal force less than the critical buckling load with no lateral forces applied on the

beam, the slopes become small, i.e., small deflection, sinθi reaches zero and the equivalent vertical

force due to a horizontal force will be equal to zero at the given section. 

6. Solution sequence

The nonlinear coefficients A in each element depend on the initially unknown deflections. They

are needed to initiate a solution. The initial deflected profile may be taken from the linear small

deflection analysis (or any properly estimated deflection shape). These deflections and slopes are

considered for the initial solution. Thus, the stiffness matrix can be calculated. In matrix form:

[K*](0) {δ}(1) ={F} (24)

Solving for {δ}(1) gives:

{δ}(1) = ([K*] (0))−1{F}             (25)

From the new calculated {δ}(1), improved values of A and hence [K*](1) are obtained. After r

cycles

{δ}(r) = ([K*] (r−1))−1{F}             (26)

To achieve a solution, the process is repeated until in each element, the error vector of the form

{∆δ}= ({δ}(r) − {δ}(r−1))/{δ}(r) is less than a specified small value (convergence criterion). A value

of 0.001 is found to be appropriate.

Vi P
sinθi

cosθi

------------–=

Fig. 2 A section in a beam element



A simple finite element formulation for large deflection analysis of nonprismatic slender beams 657

7. Determination of horizontal projection length

The total length of the beam, L, remains constant as the axial extensions are neglected

(inextensible beam). When large deformations take place, the horizontal projection, Lx, is required

for analysis changes according to these deformations. In order to obtain an accurate value of this

length, an iterative procedure is used. 

A proper trial value of the horizontal length, Lx, is estimated. When the deflections are obtained,

the length of each element, ∆s, and then the total length of the beam are recalculated from the

obtained horizontal projection and lateral deflections as: 

 (27)

If the calculated length from Eq. (27) is not equal to the actual length, L, the estimated horizontal

projection should be modified accordingly. A difference ratio less than 0.01% between the actual

and computed length is assumed to be the accepted tolerance herein. 

8. Non-dimensional parameters

For the purpose of analysis and generalization, the following normalized parameters are defined:

1) The normalized horizontal and vertical coordinates parameter xn and yn are

 (28)

2) The normalized horizontal and vertical concentrated loads are 

 (29)

3) The normalized distributed loads intensity in horizontal and vertical are 

 (30)

For prismatic beam I = I and for non-prismatic members I = I1. Where I1 is the moment of inertia

of the cross-section at the left support.

9. Computer programming

In order to apply the present method, a computer program is constructed using Qbasic language.

The solution of the quasi-linearized equations is obtained by using the Gauss elimination technique

(Gerald and Wheatley 1970) instead of the conventional inverse technique in order to reduce the

computational time. 

L y i 1+
y i–( )2 xi 1+

xi–( )2+[ ]
1/2

1

2n 1–

∑=

xn

x

L
---= ; yn

y

L
---=

Pxn

PxL
2

EI
-----------= ; Pyn

PyL
2

EI
-----------=

qxn

qxoL
3

EI
------------= ; qyn

qyoL
3

EI
------------=
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10. Numerical examples

Five representative numerical examples are investigated to demonstrate the versatility and

efficiency of the present new finite element scheme. For all numerical examples presented in this

section, the actual length of the beam is divided into ten elements to achieve excellent results.

10.1 Example 1: Post-buckling analysis of a prismatic cantilever beam subjected to a

concentrated axial compressive load

Fig. 3 shows a prismatic cantilever beam subjected to a concentrated axial compressive load.

Table 1 shows the normalized tip displacements parameters xt and yt for different concentrated axial

compressive load parameter Pxn. The present results shown in this table are compared with the

results analyzed by Timoshenko and Gere (1961) using elliptic integrals. Table 1 shows excellent

agreements between present scheme and elliptic integrals. Convergence with good accuracy was

achieved by the present study with a number of iterations equal to 4.

10.2 Example 2: Post-buckling analysis of a prismatic cantilever beam subjected to a

uniformly distributed axial compressive load

Fig. 4 shows a prismatic cantilever beam subjected to uniformly distributed axial compressive

load. Table 2 shows the normalized tip displacements parameters xt and yt for different uniformly

Fig. 3 Cantilever beam subjected to axial compressive load

Table 1 Normalized tip displacements parameters of prismatic cantilever beam subjected to a concentrated
axial compressive load Pxn 

Present study Timoshenko and Gere (1961)

Pxn xt yt xt yt

2.4671 1 0 1 0

2.5049 0.9695 0.2195 0.9712 0.2201

2.6240 0.8794 0.4212 0.8811 0.4218

2.8412 0.7407 0.5925 0.7412 0.5929

3.1920 0.5594 0.7189 0.5603 0.7190

3.7458 0.3487 0.7914 0.3491 0.7918

4.6498 0.1210 0.8028 0.1213 0.8031
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distributed axial compressive load parameter qxn. The present results shown in this table are

compared with the recent results obtained by Lee (2001) using numerical integration procedure in

connection with Butcher’s fifth-order Runge-Kutta method. It can be seen from this table that the

agreement between present numerical scheme and Lee (2001) is excellent. Convergence with good

accuracy was achieved by the present study with a number of iterations equal to 4.

10.3 Example 3: Simply supported beam subjected to the combined action of a concen-

trated load located at the quarter span from left support and an axial compressive load

Fig. 5 shows a prismatic simply supported beam subjected to the combined action of a

concentrated load Pyn located at the quarter span from left support and an axial compressive load

Fig. 4 Cantilever beam subjected to uniformly distributed axial compressive load

Table 2 Normalized tip displacements parameters of prismatic cantilever beam subjected to uniformly
distributed axial compressive load qxn 

Present study Lee (2001)

qxn xt yt xt yt

7.8356 1 0 1 0

7.9448 0.9683 0.2249 0.9685 0.2255

8.2877 0.8754 0.4328 0.8761 0.4336

8.9101 0.7304 0.6079 0.7299 0.6082

9.907 0.5398 0.7354 0.5406 0.7358

11.4638 0.3209 0.8061 0.3216 0.8063

13.9685 0.0868 0.8129 0.0872 0.8130

Fig. 5 Simply supported beam subjected to a concentrated load located at the quarter span from left support
and axial compressive load 
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Pxn. Two cases are considered for the combined load. One with Pxn = 0 and Pyn = 18 and the other

with Pxn = 5 and Pyn = 18. Fig. 6 shows the deformed configurations for the two cases mentioned

above. Fig. 6 also shows results obtained via ADINA by dividing the beam into fifty two-

dimensional beam elements. A comparison between the present scheme and ADINA reveals

excellent agreement. The number of iterations required to achieve good accuracy were equal to 3.

10.4 Example 4: Large deflection analysis of a non-prismatic fixed-hinged beam of

tapered rectangular section type subjected to combined load consisting of a concentrated

compressive load and uniformly distributed transverse load

Fig. 7 shows a non-prismatic fixed-hinged beam of tapered rectangular section type subjected to a

combined load consisting of a concentrated compressive load Pxn and uniformly distributed

transverse load qyn. The depth of the rectangular section of the beam at the fixed end is equal to

twice that the free end. Two cases are considered for the combined load. One with Pxn = 0 and

qyn = 20 and the other with Pxn = 6 and qyn = 5. 

Fig. 8 shows the deformed configurations for the two cases. Fig. 8 also shows results obtained via

ADINA. A comparison between the present scheme and ADINA reveals excellent agreement. The

number of iterations required to achieve good accuracy were equal to 4.

Fig. 6 Deformed configurations for Fig. 5
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Fig. 7 Fixed-hinged beam of tapered rectangular beam subjected to uniformly distributed load and axial
compressive load

Fig. 8 Deformed configurations for Fig. 7
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10.5 Example 5: Fixed-fixed beams subjected to linearly distributed load and uniformly

axial distributed compressive load

Fig. 9 shows a prismatic Fixed-fixed beams subjected to linearly increasing distributed load qyn

and uniformly axial distributed compressive load qxn. Two cases are considered for the combined

load. One with qxn = 90 and qyn = 0 and the other with qxn = 45 and qyn = 95. Fig. 10 shows the

Fig. 9 Fixed-fixed beams subjected to linearly distributed load and uniformly axial distributed compressive
load

Fig. 10 Deformed configurations for Fig. 9
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deformed configurations for the two cases. Fig. 10 also shows results obtained via ADINA [44]. A

comparison between the present scheme and ADINA reveals excellent agreement. The number of

iterations required to achieve good accuracy were equal to 3.

11. Conclusions

A new, simple, robust and accurate finite element scheme for large deflection analysis of

inextensible slender prismatic and nonprismatic beams with different loading and boundary

conditions is presented and verified through comparison with available analytic solutions and

numerical results by available references and results by ADINA. An evaluation of the results leads

to a number of conclusions. These are listed herein. 

1. The present formulation and solution procedure is both simple and practical in studying

different large deflection problems of prismatic and nonprismatic slender beams subjected to

continuous and discontinuous loadings and with different boundary conditions.

2. Convergence with good accuracy is normally achieved with a small number of elements

(n = 10). 

3. The total number of iterations required for solving the nonlinear equations ranged between (3

and 5).
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