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Abstract. The paper presents results of parametric studies, and an overall approach for the design of a
modular bridge system which incorporates a steel-reinforcement free concrete slab cast on top of carbon
FRP stiffened deck panels which act as both structural formwork and flexural reinforcement, spanning
between hollow box type FRP girders. Results of the parametric studies are highlighted to elucidate
important relationships between critical configurational parameters and empirical equations based on
numerical studies are presented. Results are discussed at the level of the individual deck and girder
components, and as a slab-on-girder bridge system. An overall design methodology for the components
and bridge system including critical performance checks is also presented.

Keywords: steel-free; fiber reinforced polymer; structural formwork; parametric study; design approach;
modular bridge system. 

1. Introduction

The critical need for rehabilitation, and even replacement, of a large portion of the nation’s bridge

inventory has lead to a focused effort towards the development and implementation of bridge

systems incorporating newer and potentially more durable materials. Fiber reinforced polymer (FRP)

composites are increasingly being considered in this effort. Decks fabricated of FRP composites

have been extensively characterized and systems incorporating these decks have been implemented

in the field. However, to date, the FRP decks are significantly more expensive than conventional

reinforced concrete decks (GangaRao et al. 1999, Karbhari et al. 2000). In an attempt to combine

the attractive features of FRP composites with the low-cost and good compressive characteristics of

concrete, a steel-free modular bridge system has been developed wherein a steel-reinforcement free

concrete slab is cast on top of carbon FRP stiffened deck panels which act as both structural

framework and as the flexural reinforcement (Cheng et al. 2005). The deck panels span between

girders, and a system incorporating FRP hollow box type girders has been extensively characterized
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through large scale component and system tests (Cheng et al. 2005, Cheng and Karbhari 2005),

which show the structural validity and effectiveness of the modular system (Fig. 1). It is noted that

Dieter et al. (2002) and Kwon et al. (2004) reported on the use of FRP stay-in-place forms for

bridge decks but both these were additionally reinforced with FRP grids and bars taking the place

of steel reinforcing bars.

The system has been characterized, and the performance validated, through tests of individual

deck panels, girders, and a two-girder-deck assemblage system (Cheng et al. 2005) as well as

fatigue tests conducted to assess system response. To understand performance under traffic loads

that induce repetitive stress cycles, a two span deck specimen (of 1.22 m width) was also tested by

subjecting it to a total of 2.36 million cycles of load simulating an AASHTO design truck

(AASHTO 2004) and the system was shown to have extremely stable response, far exceeding the

demand levels (Cheng and Karbhari 2005). For further implementation and future adoption of such

classes of systems, suitable analysis and design tools, amenable for use in routine bridge design are

essential. This paper presents a simplified design approach and a description of an appropriate set of

analytical tools for use with the modular system. Results from a parametric study conducted on both

individual components and the slab-on-girder system are presented, and then the simplified design

methodology for the system is elucidated.

2. Parametric studies

In an attempt to enhance an understanding of response, and as an aid to selection of appropriate

Fig. 1 Components of the bridge system
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parameters, parametric studies were carried out at the level of the deck, girder, and the system.

Details of the analysis and comparisons with experiments to show validity are reported elsewhere

(Cheng et al. 2005, Cheng and Karbhari 2005) and are hence not repeated herein except to elucidate

specific points.

2.1 Reinforcement free concrete deck on FRP structural formwork

The functionality of the deck systems arises from the intrinsic continuity and stress transfer

between the FRP structural formwork (Fig. 2) and the concrete cast on top, which is ensured

through shear. This is maintained through both a sand roughened surface on the panel, and through

raised ribs. An analytical model of the deck takes advantage of symmetry, and uses ABAQUS

(2003), with the deck panel modeled using 4-node double curved general-purpose shell elements

with reduced integration points (S4R) and the concrete by 8-node linear brick elements (C3D8).

Linear elastic orthotropic properties are used for the FRP composite, while a “damaged” plasticity

formulation is used to model the nonlinear response of concrete. This uses the ABAQUS (2003)

formulation incorporating isotropic damaged elastic response in combination with isotropic tensile

and compressive plasticity to represent inelastic behavior of concrete.

The rough, sand based, surface on the FRP panel induces a frictional effect which is simulated

using the classic Coulomb model in combination with the definition of surface interaction used in

ABAQUS (2003). The two contacting surfaces, the FRP deck and the concrete, are assumed to

carry shear stresses up-to a level of critical shear stress, τcrit, at which point sliding initiates as a

function of the contact pressure, p, between the surfaces, such that

τcrit = µ p   (1)

where µ is the coefficient of friction, which was experimentally determined to be 0.562.

The interlock provided by the raised shear ribs is simulated through use of spring elements acting

between the nodes of elements on the panel and slab, with the line of action being the line joining

the two nodes. Thus, the relative displacement along this line represents the relative slippage

between the two surfaces. The behavioral property of these spring elements is represented by a bond

strength-slippage relationship wherein the springs are assumed to behave in a linear elastic fashion

prior to attainment of their ultimate capacity. After that, sudden failure occurs with a large drop in

load and the spring stiffness (i.e., force per relative displacement) reduces to zero. The spring

Fig. 2 FRP Stiffened deck panel
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stiffness during the elastic range, ks, is defined by the shear bond strength of the interface, τu, which

was assumed to be 50 MPa/mm based on extensive experimental data for CFRP-concrete interfaces

(Yoshizawa et al. 2000). The ribs fabricated from sand-filled epoxy, as shown in Fig. 2 and

described in Cheng et al. (2005) and Cheng and Karbhari (2005) are externally formed on the

composite deck panel through the use of epoxy resin and therefore the ultimate shear strength or

capacity of the rib-panel interface, τu, can be assumed to be governed by the nominal shear strength

of the epoxy resin. The ribs are a minimum of 7 mm in height and 15 mm in width and are

generally spaced 152 mm on centers to enhance shear interlock with concrete. The ribs are formed

of the same resin as used for the fabrication of the deck panel and in the ideal case are formed at

the same time thereby providing a primary, rather than secondary, bond. Comparative experiments

conducted on specimens with ribs at different spacings indicate that the response is similar within

the spacing range of 150-305 mm.

Fig. 3 Response of the steel-free FRP-concrete deck panel; (a) Comparison of FEA results with experiments,
(b) Comparison of crack patterns
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Results from the model are seen to compare well with experiments in flexure under a central line

load (Cheng 2005) and examples of strain and crack patterns are seen in Figs. 3(a) and 3(b)

respectively. It should be noted that in Fig. 3(b) the graphical representation of predicted cracking is

shown by vectors normal to the crack plane, and the overall trend that can be predicted for crack

location and level can be seen to match well with the experimentally measured crack patterns

shown in the same figure.

While a number of materials and configuration related parameters can be selected for study, from

an applications/field perspective the most important are the tensile strength of the concrete (since

this will control cracking at the FRP panel-concrete interface), the shear span-to-depth ratio (a/d ),

and the level of carbon fiber reinforcement used (ρc, since this intrinsically controls stiffness).

Effects of shear-rib spacing were reported by Cheng (2005) and hence a detailed study is not

considered herein. These are then used for the parametric study, with ranges shown in Table 1. It is

noted that since a direct relation exists between concrete compressive strength, fc' , and tensile

strength, the compressive strength, which is easily characterizable, is used as a primary parameter.

The effect of change in concrete strength on overall response of the component is shown in

Fig. 4, for strength levels corresponding to the extremes of the range recommended by AASHTO

(2004) as well as an intermediate value corresponding to the level used in earlier experiments

(Cheng 2005). Over the entire range it can be noted that the effect of an increase in concrete

Table 1 Parameters used in deck panel study

Parameter Range/Level Rationale

fc' 16.5 MPa - 68.9 MPa
Upper and lower bounds correspond to the 

AASHTO defined allowable range

a/d ratio 2.5 - 6.5
a/d controls failure and the range corresponds to 

that typical for inclined flexural-shear type 
failure (MacGregor 1997)

Carbon reinforcement
4-12 layers (resulting in a plate 

thickness of 4.37-7.42 mm)
Variable ranges from manufacturing, 

structural stiffness, and cost

Fig. 4 Effect of concrete strength on deck response at a rib spacing, s, of 152 mm
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strength is greater for lower values of fc'  and decreases as fc'  increases following a simple

exponential relationship

Pdeck = 57.65 · ( fc' )
0.526   (2)

where Pdeck denotes the failure load for the steel free FRP-concrete deck panel. It is noted that final

failure in all cases was due to concrete crushing.

As can be expected, an increase in the thickness of the FRP panel’s plate component results in a

corresponding increase in the total amount of carbon fiber used, although the fiber fraction remains

constant, which causes an increase in stiffness. Fig. 5 shows the effect of this change over the range

of span-to-depth ratios considered. As can be seen the increase in load capacity is fairly linear with

thickness except for the initial region of 4-6 layers wherein the panel shows a much greater rate of

increase. The trends and slopes within the 6-12 layer thickness regime are actually similar for rib

spacing between 152 mm and 305 mm, after which the lack of sufficient interlock, which is

provided by the raised shear ribs causes premature loss in continuity between the two components –

the FRP deck and the concrete, resulting in failure by mechanisms other than the concrete crushing.

Within the 152 mm to 305 mm range, however the increase in spacing decreases load capacity by

only 3-7%.

2.2 FRP girder

Although the FRP-concrete deck system could be used in conjunction with girders fabricated of a

number of materials, in this study hollow rectangular tube type girders with a configuration as

shown in Fig. 1 are considered. The primary reinforcement used was E-Glass fiber in the triaxial

(0/−45/45) and unidirectional fabric form with additional unidirectional carbon fabric embedded in

the bottom flange for added stiffness. The effective mechanical properties of the girder components

are listed in Table 2. Element 1 consists of the bottom flange, element 2 is representative of a web

of the box section, element 3 comprises all the layers in the bottom portion of the cap region,

element 4 is representative of an outer side of the cap, element 5 consists of the layers in the top

Fig. 5 Effect of amount of carbon fiber reinforcement on deck response at a rib spacing, s, of 152 mm
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portion of the cap region. Details of the large-scale tests conducted on the girder for purposes of

characterization are reported in Cheng et al. (2005).

A half-span FEA model using symmetry was created using four-node shell elements, S4R, for the

composite and 8-node solid elements, C3D8, for the polymer concrete filled regions in the girder

cap. The FRP composite response was modeled by defining lamina properties for each layer and the

computing structural response through a three-stepped method: (1) micromechanical analysis of

individual layers following classical lamination theory, (2) structural response assessment using FEA

with these properties using the Tsai-Wu criterion, and (3) post-processing of response to identify the

failure load. As seen in Fig. 6, the analytical results match the experimental response in flexure

fairly well, with failure being predicted when strain in the carbon fiber reinforcement reaches the

design ultimate of 1% at a load of 1844 kN which compares well within 8% of the experimentally

determined failure load. The first-ply failure load, which corresponded to the initiation of failure,

was noted at a load of 1588 kN.

Within the confines of realistic changes in configuration, the parametric study considered changes

in the thickness of carbon fiber reinforcement (between 0 layers and 27 layers), overall depth of the

girder (from 356 mm to 1422 mm, maintaining a fixed cap depth of 99 mm), and span length (from

6 m to 38 m, corresponding to the limits for short span bridges). It should be noted that the

experimentally characterized girder had an overall depth of 711 mm with a cap depth of 99 mm, a

Table 2 Effective properties of girder component

Property Element 1 Element 2 Element 3 Element 4 Element 5

Longitudinal modulus, EL 42069 MPa 14000 MPa 15862 MPa 14621 MPa 14621 MPa

Transverse modulus, ET 12276 MPa 12552 MPa 12138 MPa 12552 MPa 12552 MPa

In-plane shear modulus, GLH 4448 MPa 4428 MPa 3538 MPa 4145 MPa 4145 MPa

In-plane Poisson’s ratio, νLH 0.31 0.33 0.30 0.31 0.31

In-plane Poisson’s ratio, νHL 0.13 0.30 0.23 0.27 0.27

Nominal thickness, t 25 mm 19 mm 32 mm 16 mm 16 mm

Fig. 6 Load-midspan displacement response of a single girder
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width of 458 mm, 13 layers of carbon fabric reinforcement (at a total thickness of 5.85 mm), and a

span of 8.5 m (Cheng et al. 2005).

Considering the simplest case of just increasing the number of layers of carbon fiber

reinforcement on the tension side, keeping all other variables constant, as expected, the first ply

failure (FPF) load can be shown to increase almost linearly with increase in thickness (i.e., increase

in the number of layers of carbon fabric, keeping fiber volume fraction constant). In all cases the

ply showing failure is the bottom-most in the girder itself, indicating that although the increase in

carbon reinforcement results in an increase in both strength and stiffness, it does not change the

mode and mechanism of FPF. It is of obvious interest to compare and contrast the effect of change

in the girder depth (essentially through increase in web height which incorporates only the cheaper

E-glass fiber reinforcements) with the change in number of layers of carbon fabric. This is shown

for the experimentally verified span of 8.5 m in Fig. 7. As can be seen there is a greater effect of

increasing the number of carbon fiber layers for girders with greater depth than for shallower ones,

and in fact this is also seen in the rate of increase in FPF load with increase in the number of

carbon fiber layers at the largest depth (1422 mm). From a preliminary design perspective it is of

interest to note that, for the general configuration considered, the FPF load can be empirically

determined using a simple relationship

FPF Load = [0.039545 . d1.4796] + t  (3)

where d is the girder depth and t the thickness of the carbon reinforcement layer (both in mm). The

R2 correlation between the computational predictions and the empirical equation are seen to exceed

0.999 in all cases, indicating very good correspondence. The use of this equation thus provides a

simple means of enabling the designers to make quick decisions between depth and carbon

reinforcing layers for purposes of preliminary design.

The use of prefabricated modules for construction of bridges in extremely attractive, especially if

the modules can be rapidly assembled and even transported easily to site. The current system

provides this since the use of FRP decreases weight substantially, the modules are easily snapped

d

4.5
-------⎝ ⎠

⎛ ⎞

Fig. 7 FPF load as a function of carbon fiber reinforcement and girder depth
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together, and the concrete deck can be rapidly cast since no reinforcement cages (as with steel) have

to be assembled. The current configuration lends itself well to short span bridges wherein the

typical range for the slab-on-girder class is 6-38 m (Taly 1998). With an increase in span the FRP

load will decrease, and it is of interest to assess effects of parameters of number of layers of carbon

fabric and span length as in Fig. 8, for a girder depth of 711 mm, from which it can be seen that the

increase in FPF load with increase in carbon fabric layers is much more significant at shorter spans

while depth increases are necessary at the longer spans. From a preliminary design perspective the

overall relationship between the parameters can be empirically expressed as

FPF Load  =  (4)

where d and t are in mm and the span is in meters. It is noted that Eqs. (3) and (4) provide

empirical estimates for relationships between parameters for the purpose of initial design and must

hence be considered as approximations. A complete set of empirical equations and charts resulting

from in-depth parametric studies will be reported elsewhere.

0.336d
1.4796( ) 1.88dt( )+

Span
-----------------------------------------------------------

Fig. 8 FPF load as a function of carbon fiber reinforcement and span length

Fig. 9 Schematic of typical slab-on-girder
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2.3 Slab-on-girder system

Fig. 9 depicts a typical section of a slab-on-girder configuration for the current system. In this dg

is the total girder depth, hs is the depth of the concrete slab not including the thickness of the CFRP

panel, tc, bs is the flange width with efficiency of the compressive flange, eff, wg is the girder width,

a is the depth of the anchorge zone, s is the distance between the center-lines of the grooves in the

cap region, tf is the thickness of the girder bottom flange, tw is the thickness of the girder web, tcb is

the thickness of the cap bottom flange, tct is the thickness of the cap top flange, and text is the

thickness of the caps exterior web. For purposes of analysis the equivalent moduli are used for the

FRP components corresponding to the operative direction. A schematic of the section with strain

profile used in sectional analysis is shown in Fig. 10. The sectional analysis essentially involves an

iterative procedure of adjusting the neutral axis position for a given strain distribution to maintain

force equilibrium.

Since shear-lag affects the FRP-concrete deck component its strength is not fully realized by the

system and hence an effective slab width is typically used for analysis as

beff  = eff  bs    (5)

where eff is the slab efficiency coefficient. Results of different coefficients for the 711 mm depth

Fig. 10 Strain distribution

Fig. 11 Effect of slab width efficiency on M-φ response
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girder (discussed in the previous sections) with a 6 mm carbon fiber reinforcement thickness are

given as a typical example in Fig. 11 from which it can be seen, as expected, that although moment

capacity increases with slab width efficiency, the increase is less after about 50% efficiency.

Assuming an effective slab width of 80% the effect of thickness of the carbon fiber reinforcement

and girder depth on moment capacity and effective stiffness are shown in Figs. 12 and 13,

respectively. These charts, in conjunction with ones discussed earlier, provide a means for further

development of design and analysis tools for the use of such systems.

3. Simplified design approach for the deck

While parametric studies provide useful charts for extrapolation of the “as-tested” design, a more

comprehensive approach is needed for actual routine design of the system by engineers. An

approach is elucidated in this section.

Fig. 12 Moment capacity as a function of girder depth and carbon fiber reinforcement

Fig. 13 Effective stiffness (M/φ) as a function of girder depth and carbon fiber reinforcement
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The FRP deck panel provides the primary component that carries construction loads (weight of

wet concrete, equipment, live load etc.) prior to the setting of the concrete. Maximum stress, and

strain, levels in the deck under bending and shear can be computed using elastic analysis and

sectional analysis (for example, as in McCormac and Nelson 1999). Once the concrete sets, the

hybrid reinforcement-free concrete slab and the stiffened FRP panel act as a unit and can be

designed for the requisite flexural capacity while ensuring that the FRP panel does not fail in a

brittle mode. This can be ensured through achievement of compressive strain in concrete, εc,

reaching 0.003, prior to the ultimate strain, εs, being reached in the composite, thus causing a

compression failure. Flexural capacity, Mu, can be obtained as a simple summation of internal

moments of forces along the cross-section (Fig. 14 shows a typical section). The AASHTO (2004)

specified rectangular stress block is used with a mean stress of 0.85 fc'  and a depth of a1, where

 = β1 = 0.85  for fc'  ≤ 27.6 N/mm2 (6)

where β1 is reduced continuously by 0.05 for each increment of 6.89 N/mm2 in strength in excess of

27.6 N/mm2 (ACI 1995) to account for the less favorable stress-strain response in higher strength

concrete. Flexural capacity of the cross-section can then be based on evaluation of cross-sectional

equilibrium at the limit state (εc = εc
u) using this equivalent stress block approach. Tensile strength of

the concrete is neglected at this stage, being substantially less than that of the FRP components. For

simplification, and generality, the average of the FRP moduli and thickness of the upper and lower

parts of the FRP stiffener are used. Normal strain and stress distributions corresponding to three

cases for ultimate flexural capacity, corresponding to when the neutral axis is located above the

rectangular stiffeners, within the stiffeners, or within the bottom plate, are illustrated in Fig. 15.

Flexural capacity is then calculated from equilibrium principles and a summary for the three cases

is given in Eqs. (7)-(14) for the three cases.

When the neutral axis is located above the rectangular stiffeners (Fig. 15(a))

(7)

a1

c
-----

εc ε c

u
, ε4 ε 4

u<=

ε4

yu

h yu–

-------------ε c

u
=

Fig. 14 Schematic of typical FRP-concrete deck section and strain profile
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(8)

where

(9a)

(9b)

(9c)

When the neutral axis is located within the rectangular stiffener (Fig. 15(b)),

ε2

yu ds–

h yu–

---------------ε c

u
=

yu h C2/ 2C1( ) 4C1 hC2 C3–( ) C2

2
+[ ]

1/2
/ 2C1( )–+=

Mu 0.85fc′β1b h yu–( ) h β1 h yu–( )/2–[ ] ε c

u
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 d s

2
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2
+=

Fig. 15 Stress and strain distribution at ultimate for the FRP-concrete deck
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(10)

(11)

where

(12a)

(12b)

(12c)

(12d)

When the neutral axis is located within the CFRP bottom plate (Fig. 15(c)),

(13)

where

(14a)

(14b)

(14c)

(14d)
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Since the integrity of the deck system depends on shear-bond between the FRP panel and the

concrete, the level of shear bond needs to be checked. This can be done using results from

parametric studies (as reported earlier in this paper) or through use of simplified formulae. The

three approaches reported by ACI (1999), Schuster (1972) and Zsutty (1968) were used in the

current study and a regression analysis was conducted between non-dimensional quantities, for cases

corresponding to the rib spacing of 152 mm - 305 mm. Since the number of cases for comparison is

limited a reduction of 15% in the regression line was used as recommended by Porter and Ekberg

(1976) with a confidence level of 95%. Resulting design equations and R2 values (which indicate

how well the model fits the data, e.g., a value close to 1.0 indicates that almost all the variability

has been accounted for) for the 3 cases using the two extreme rib spacings are listed in Table 3 and

a comparison with experimental results is shown in Table 4.

The deflection limit state can then be checked following conventional elastic theory applies to

reinforced concrete members (McGregor 1997) through the use of transformed sections for the FRP

components, and considered the cracked and uncracked cases. It is noted that the moment of inertia

of cracked section can be determined as

Table 3 Comparison of design equations

Formulae Design equations R-square value

ACI code  (s = 152 mm)

 (s = 305 mm)

0.63

0.88

Schuster’s formula  (s = 152 mm)

 (s =305 mm)

0.89

0.89

Zsutty’s formula  (s = 152 mm)

 (s = 305 mm)

0.92

0.91
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Table 4 Comparison between predictions using design equations and experiments

Rib spacing ACI code Schuster’s formula Zsutty’s formula Experimental average

s = 152 mm 347.6 kN 343.1 kN 205.9 kN 321.4 kN

s = 305 mm 334.0 kN 330.1 kN 181.1 kN 327.8 kN
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(15)

where the n terms are the modulus ratios, n4 = E4/Ec, nf = Ef /Ec, ns = Es /Ec, for the bottom CFRP

panel, the foam filler, and the web of the stiffeners, respectively. The elastic neutral axis of the

moment of inertia of uncracked section, is given by

(16)

and the moment of inertia of the uncracked section can be determined as
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Fig. 16 Summary of design procedure for deck section
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(17)

For generality the effective moment of inertia of the section used in deflection calculation, Id,

can be taken as the average of the cracked, Ic, and uncracked section, Iu, moments of inertia such

that

(18)

It is noted that this is rather simplistic but is used just as an example of the procedure. Several

approaches for modified I values are available in the literature that more rigorously match the actual

effective moment of the section and the approach presented in this paper is amenable to the use of

these without loss in generality. The design procedure is summarized in Fig. 16.

4. Simplified design approach for the bridge system

The overall procedure for design is shown schematically in Fig. 17, with details for each step,

once an approximate configuration is selected, discussed in the following.

4.1 Web shear

The maximum shear stress in the web, τmax, can be approximately taken to be equal to 1.5 times

the average shear stress in the girder web (MacGregor 1997), such that

(19)

such that the section’s ultimate shear strength is given by

(20)

where  is the in-plane fracture shear strength of the web.

4.2 Web shear buckling

Following Deskovic et al. (1995) and experimental investigations on girder sections (Cheng et al.

2005) expressions determining the average web shear buckling stress, , (Timoshenko and Gere

1961, Holmes and Just 1983) are adopted herein to provide an estimate

for θ > 1 (21a)
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for θ < 1 (21b)

where the parameter K depends on θ as listed in Table 5 (Timoshenko and Gere 1961) and DL, DT,

H are defined as

(22a)

τbw
* 4K DTH4

twd
2

-----------------------=

θ DLDT/H=

Fig. 17 Flow of steps in overall design of the slab-on-girder system
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, (22b)

(22c)

wherein Ew is the longitudinal modulus of girder webs and EwT is the transverse modulus of the

webs. Then the average shear buckling force can be determined as

(23)

4.3 Lateral torsional buckling

Hollow box sections, in general, known to have a high resistance to lateral instability, which is

typically assured by specifying the limit for a section’s height-to-width ratio in a constraint

inequality of the form

(24)

where a is the depth of the anchorage zone and k1 is the constant chosen by the designer. Deskovic

et al. (1995) recommend that a reasonably conservative value of about 3 be used.

4.4 Flexural strength

The flexural strength of a typical slab-on-girder section is estimated following a similar

methodology as explained for the FRP-concrete deck, using equilibrium principles. It should be

noted that as in the deck, the neutral axis can be located in three distinct regions, for which explicit

design expressions are listed in Eqs. (25)-(34).

If the neutral axis is located within the concrete slab, i.e.,  (as in Fig. 18(a)),

DL

Ewtw
3

12 1 νLνT–( )
-------------------------------= DT

EwTtw
3

12 1 νLνT–( )
-------------------------------=

H
1

2
--- νLDT νTDL+( )

Gwtw
3

6 1 νLνT–( )
----------------------------+=

Vu 2twdτbw
*

=

d a+( )/w k1<

d yu d D+≤ ≤

Table 5 Variation of K (Eq. (20)) with θ (Eq. (21)) following 
Timoshenko and Gere (1961)

θ K

0 18.6

0.2 18.9

0.5 19.9

1.0 22.2

2.0 18.8

3.0 17.6

5.0 16.6

10.0 15.9

20.0 15.5

40.0 15.3
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(25)

(26)

(27)

where

(28a)
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Fig. 18 Stress and strain distribution at ultimate for the slab-on-girder system
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(28b)

(28c)

(28d)

If the neutral axis is located within the girder bottom section, i.e.,  (as seen in

Fig. 18(b)),

(29)

(30)

where
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(31d)

(31e)

If the neutral axis is located within the girder top anchorage zone, i.e.,  (Fig. 18(c)),
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(33)

where

(34a)

(34b)

(34c)

(34d)

The flexural rigidity (EI) of the slab-on-girder section (as denoted in Fig. 18) can be expressed as

(35)

where y is the depth of the centroidal axis from the girder bottom fiber and is given by

(36)

The shear rigidity, GA, of the section can be determined by assuming that the shear forces are

resisted by the webs of the girder only, giving a,

(37)

The axial rigidity of the section can also be determined as:

(38)

It is noted that two basic assumptions are made in calculating the torsional rigidity of the section:

(a) the equivalent shear modulus based on the transformed section method is used; and (b) the
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contribution of the carbon FRP deck panel is neglected due to its negligible thickness compared to

its width. Thus the torsional rigidity consists of the contribution of the box section of girder bottom

with a depth of (d − a), the solid rectangular section at cap region with a depth of a, and the narrow

rectangular concrete slab section. Therefore the torsional rigidity can be obtained as

(39)

The deflection of the section under load can then be computed using conventional means. As shown

in Fig. 17, if the deflection criterion is not met the design iterations can be terminated, else the

procedure is repeated with a change in on or more of the geometric or performance variables.

5. Conclusions

The paper provides elucidation of the effort of critical parameters related to the configurational

details of a novel FRP structural formwork based steel-free modular bridge details at both the

component and systems levels. Major effects are highlighted through a parametric study and some

empirical rules for preliminary design are highlighted. In addition, details pertaining to a design

methodology for the deck and the slab-on-girders system are provided using simple tools based on

elastic analysis in a form amenable to ease of use. The approach accounts for the variation in

position of the neural axis of both the deck and the slab-on-girder section through a series of

equations for each case enabling rapid dimensioning, followed by the checking of critical structural

conditions and limit states. This provides an iterative, yet simple approach to design of bridges

belonging to this new class of systems.
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