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Abstract. This article presents a unified analytical solution for the analysis of thermal deformations and
stresses in elastic annular disks with arbitrary cross-sections of continuously variable thickness. The
annular disk is assumed to be under steady heat flow conditions, in which the inner surface of the annular
disk is at an initial temperature and the outer surface at zero temperature. The governing second-order
differential equation is derived from the basic equations of the thermal annular disks and solved with the
aid of some hypergeometric functions. Numerical results for thermal stresses and displacement are given
for various annular disks. These disks include annular disks of thickness profiles in the form of general
parabolic and exponential functions. Additional annular disks with nonlinearly variable thickness and
uniform thickness are also included. 
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1. Introduction

Solid and annular disks are common structure types that can be used in applications involving

turbine motors, flywheels, gears and shrink fits. The research on disks is always an important topic

and their benefits have been included in the literature (Timoshenko and Goodier 1970). For

instance, the subject of stationary disks under external pressure is also studied by Gamer (1983).

Güven (1998) has considered an annular disk profile in exponential form and studied the effect of

the application of external pressure analytically. Various thickness profiles including hyperbolic,

exponential and power function form for annular disks were studied numerically by Eraslan (2002)

with radial constrained and free boundary conditions. Zenkour and Allam (2006) have developed

analytical solution for the analysis of deformation and stresses in viscoelastic rotating solid and

annular disks with arbitrary cross-sections of continuously variable thickness.

For the effects of material inhomogeneity, Shaffer (1967) has obtained the general solutions for a

non-homogeneous orthotropic annular disk subjected to uniform pressures at the internal and

external surfaces. Horgan and Chan (1999a) have investigated on the response of linearly elastic

isotropic hollow circular cylinders or disks under uniform internal or external pressure. In addition,
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Horgan and Chan (1999b) have investigated the effects of material inhomogeneity on the response

of linearly elastic isotropic solid circular disks or cylinders, rotating at constant angular velocity

about a central axis. In a recent paper, Zenkour (2006) has presented accurate elastic solutions for

the rotating variable-thickness and/or uniform-thickness orthotropic circular cylinders containing a

uniform-thickness solid core of rigid or homogeneously isotropic material. In Zenkour (2005), the

closed form solutions for the rotating exponentially graded annular disk subjected to various

boundary conditions are obtained.

When the structures are exposed to a temperature field, the thermal stresses are then induced. The

research for thermoelastic problems is of increasing interest in engineering science and many works

have been done. Parida and Das (1972) have early studied the transient thermal stresses in a

homogeneous orthotropic thin circular disc due to an instantaneous point heat source. Kennedy and

Gorman (1977) have determined the natural frequencies of transverse vibration of a variable-

thickness disk subjected to combined actions of centrifugal loading and complex radial temperature

distribution. Yoshihiro et al. (2004) have presented a method of material design for the weight

reduction, the high thermal radiation and the relaxation of in-plane thermal stress and centrifugal

stress in a solid rotating disk composed of functionally graded material with arbitrary thermal and

mechanical non-homogeneities in the radial direction. Callioglu et al. (2005) have presented the

thermal stress analysis of a curvilinear orthotropic rotating annular disc under internal and external

pressures. The temperature distribution is chosen to vary parabolically from the inner surface to the

outer surface along the radial section. 

The objective of this investigation is to obtain thermoelastic solution for variable-thickness

annular disks. The problem of an annular disk subjected to purely radial temperature variation is

treated here. A state of plane stress and small deformations are presumed. Closed form solutions are

obtained and numerical results are presented. The results include the radial stress, circumferential

stress, and radial displacement for combinations of uniform and variable thickness disks. The

distributions of displacement and stresses through the radial direction are obtained and comparisons

between uniform thickness and variable thickness cases are made at the same temperature field.

2. Basic equations

The problems of composite thin disk are in a state of plane stress with neglecting the axial stress,

σz = 0. As the effect of thickness variation of such disks can be taken into account in their

equilibrium equation, the theory of the variable thickness disks can give excellent results as that of

the uniform thickness disks as long as they meet the assumption of plane stress. Let us consider the

axisymmetric problem of an annular disk. The disk is subjected to a temperature distribution, which

varies with r only and is independent of θ. The equilibrium equation of disks with variable

thickness can be written as

 (1)

where r is the radial coordinate, σ
r
 and σθ are the radial and circumferential stresses, and h is the

thickness of the annular disk. 

The relations between the radial displacement u
r
 and the strains are irrespective of the thickness of

the disk. They can be written as

d

rd
----- hσr( ) h

σr σθ–

r
-----------------+ 0=
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 (2)

where ε
r
 and εθ are the radial and circumferential strains, respectively. For the elastic deformation,

the relations between the stresses and strains (constitutive equations) can be described with Hooke’s

law

 (3)

where α is the coefficient of linear thermal expansion. The stresses σ
r
 and σθ can be expressed

explicitly in terms of strains by solving the above equation. These are

 (4)

3. Thermoelastic solution

Substituting for σ
r
 and σθ in Eq. (4) into the radial equilibrium equation, Eq. (1), one obtains

(5)

Let the inner surface (r = a) of the annular disk is at temperature T0 while the outer surface (r = b)

is temperature free. Assuming steady state conditions, the temperature at any distance r from the

center is given by the expression

 (6)

where c and c1 are constants should be determined from the condition

 (7)

Then, one can easily obtain

 (8)

Next, it is to be noted that the thermo-elastic model developed herein is not limited to a fixed

thickness variation. It can be used for variable thickness with any functional form of thickness

variability. The thickness of the disk is assumed sufficiently small compared to its diameter so that

the plane stress assumption is justified. Therefore, the thicknesses of the annular disk are given

using various distributions through the radial direction as follows:
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Case (1): Exponentially distribution

In this case, 

 (9)

where h0 is the thickness at the middle of the disk, k and n are geometric parameters. The above

exponential law assumption reflects a simple rule of mixtures applies only to the radial direction.

The geometric parameters k and n may be varied to obtain different distributions of the components

materials through the radial direction of the disk. Fig. 1 displays the dimensionless thickness

 as a function of the dimensionless radius r/b, for three different sets of geometric

parameters k and n. Figs. 1(a) and (b) correspond to small k and large n (k = 0.6 and 1.6, n = 2)

while the remaining convex profile, Fig. 1(c) corresponds to large k and small n (k = 2.5, n = 0.5).

It is to be noted that the parameter n determines the thickness at the outer edge of the disk relative

to h0 while k determine the shape of the profile.

h r( ) h0e
n r /b( )

k
–

=

h r( )/h0

Fig. 1 Disk profiles according to Case 1: (a) k = 0.6, n = 2, (b) k = 1.6, n = 2, and (c) k = 2.5, n = 0.5  
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Case (2): General parabolic distribution 

Here, we consider an annular thin disk whose thickness vary continuously in the form of a

general parabolic function h(r), 

 (10)

With this form of the profile function, a linearly decreasing disk thickness is obtained by setting

k = 1. Fig. 2 displays  versus r/b for different values of k at a fixed value n/b = 0.5. Note

that, for k < 1 the profile is concave (see Fig. 2(a)) and for k > 1 it is convex as shown in Figs. 2(b)

and (c). In addition, the shape of the profile is smoothed as n increasing.

Case (3): Nonlinearly distribution 

In this case, 

 (11)
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Fig. 2 Disk profiles according to Case 2 (n/b = 0.5): (a) k = 0.6, (b) k = 1.2, and (c) k = 2.5 
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Fig. 3 displays the dimensionless thickness as a function of the dimensionless radius for k = ±0.2

and ±0.5. For positive values of k, the profile is concave whereas it may be convex for negative

values of k.

Case (4): Uniform thickness and density 

Putting k = 0 in the above case, one obtains the case of uniform thickness annular disk. In

addition, putting the value n equals to zero in Case (1) represents a uniform disk. However, a disk

of uniform thickness is obtaining from Case (2) by setting .

Therefore, the general solution of Eq. (5) can be written for different cases as

 (12)

where A and B are arbitrary constants and the index “i ” represents the number of the case studied.

So, for the first two cases, one gets

n ∞→

ur AFi r( ) BGi r( ) Ui r( )+ +=

Fig. 3 Disk profiles according to Case 3: (a) k = 0.2, (b) k = −0.2, (c) k = 0.5, and (d) k = −0.5 



Thermoelastic solutions for annular disks with arbitrary variable thickness 521

 (13a)

 (13b)

 (14a)

 (14b)

in which

 (15a)

 (15b)

The functions  and  are the generalized hyper-geometric

functions,

 (16a)

 (16b)

where  is the Pochhammer symbol given by

 (16c)

in which Γ represents Gamma function.

For Cases 3 and 4, one can get easily

 (17)

and 

 (18)

For all cases studied, the particular solution  for Eq. (12) is obtained using variation of

parameters as

 (19)
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where

 (20)

in which

 (21a)

 (21b)

 (21c)

 (21d)

and  is the Wronskian given by

 (22)

The particular solution for Cases (1) and (2) may be given by

 (23)

where
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in which

 (24c)

The particular solution for Cases (3) and (4) may be given, respectively, by

 (25a)

and

 (25b)

The radial and circumferential stresses are obtained with the help of Eqs. (2) and (12) from

Eq. (4) as

(26a)

(26b)

The elastic solution for the annular disk is completed by the application of the boundary conditions.

The radial stress should be vanished at the inner and outer radii, i.e., σ
r
= 0 at r = a and r = b. Hence

 (27)

where

,  (28)

4. Numerical examples and discussion

The thermoelastic solutions for all cases studied are considered. The results are presented in terms

of the following dimensionless and normalized variables: 
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displacement: 

radial stress: , and

circumferential stress: 

Taking the value of Poisson’s ratio is fixed ν = 0.3, Young’s modulus E = 70 GPa and . The

results of the present investigations are displayed in Figs. 4-8. Radial displacement u1
, radial

stresses σ1, and circumferential stress σ2 are plotted in Fig. 4 for Case 1. Similar results for Cases 2

and 3, respectively, are plotted in Figs. 5 and 6. The circumferential stress σ2 is monotone

increasing in  with its maximum occurring at the outer surface . The radial

u1

ur

αbT0

------------=

σ1

σr

αET0

-------------=

σ2

σθ

αET0

-------------=

a 0.2=

r r/b≡( ) r 1=

Fig. 4 Dimensionless stresses and displacement for an annular disk (Case 1): (a) radial displacement u1, (b)
radial stress σ1, and (c) circumferential stress σ2  
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displacement u1 is no longer monotonic increasing in  and has a single maximum at the vicinity

of the outer surface. The radial stress σ1 is no longer monotonic decreasing in  and has a single

minimum at the vicinity of the inner surface. For all cases, the radial stress σ1 is compressive at all

points, whereas the circumferential stress σ2 is compressive at the inner surface and tensile at the

outer surface.

Fig. 7 shows plots of u1 and σ1 for Case 1 (k = 1.5, n = 0.5), Case 2 (k = 1.5, n/b = 0.5), Case 3

(k = 0.1), and Case 4. It is to be noted that, results for the uniform thickness disk (Case 4) are the

smallest ones.

Finally, Fig. 8 shows a comparison of the results of Case 1 and Case 4 for annular disks subjected

to a through the radial temperature field. For the considered values of  radial displacement u
r
/b

increases with increase in  and temperature. For , σθ also increases with increase in 

and temperature. However, σ
r
 decreases with increase in temperature and increases with increase in

.

r

r

r

r r 0.5> r

r

Fig. 5 Dimensionless stresses and displacement for an annular disk (Case 2): (a) radial displacement u1, (b)
radial stress σ1, and (c) circumferential stress σ2
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Fig. 6 Dimensionless stresses and displacement for an annular disk (Case 3): (a) radial displacement u1, (b)
radial stress σ1, and (c) circumferential stress σ2 

Fig. 7 Dimensionless (a) radial displacement and (b) radial stress of an annular disk according to all cases  
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5. Conclusions

A thin disk subjected to a temperature distribution which varies with its radius and independent of

the circumferential angle, is considered. It is assumed further that it is vary over the thickness and,

consequently, it is taken that the stresses and displacement also vary over the thickness. The

governing equation is derived from the basic equations of the disks and solved with the help of the

generalized hyper-geometric functions. These disks include annular disks with uniform thickness,

nonlinearly variable thickness, and disks of thickness profile in the form of general parabolic and

exponential functions. If the temperature is constant, then all stresses are zero and the radial

displacement is given in terms of the constant temperature. If the temperature at the inner surface is

positive, the radial stress is compressive at all points, whereas the circumferential stress is

compressive at the inner surface and tensile at the outer surface. 

Fig. 8 Stresses and displacement for an annular disk versus αT0 according to Case 1 and Case 4: (a) radial
displacement u

r
/b, (b) radial stress σ

r
, and (c) circumferential stress σθ 
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