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Vibrations and thermal stability of functionally 
graded spherical caps
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Abstract. Here, the axisymmetric free flexural vibrations and thermal stability behaviors of functionally
graded spherical caps are investigated employing a three-noded axisymmetric curved shell element based
on field consistency approach. The formulation is based on first-order shear deformation theory and it
includes the in-plane and rotary inertia effects. The material properties are graded in the thickness
direction according to the power-law distribution in terms of volume fractions of the constituents of the
material. The effective material properties are evaluated using homogenization method. A detailed
numerical study is carried out to bring out the effects of shell geometries, power law index of functionally
graded material and base radius-to-thickness on the vibrations and buckling characteristics of spherical
shells. 
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1. Introduction

The demand for improved structural efficiency in space structures and nuclear reactors has

resulted in development of a new class of materials, called functionally graded materials (FGMs)

(Koizumi 1997, Suresh and Mortensen 1998, Fukui 1991). FGMs are microscopically

inhomogeneous, in which the material properties vary smoothly and continuously from one surface

of the material to the other surface and thus, distinguish FGMs from conventional composite

materials. Typically, these materials are made from a mixture of ceramic and metal, or a

combination of different materials. Further, varying the properties in FGMs in a continuous manner

is achieved by gradually changing the volume fraction of the constituent materials. The advantages

of using these materials are that they are able to withstand high-temperature gradient environment

while maintaining their structural integrity, and they avoid the interface problem that exists in

homogeneous composites. Furthermore, a mixture of ceramic and metal with a continuously varying
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volume fraction can be easily manufactured (Koizumi 1993, Yamaoka et al. 1993, Wetherhold et al.

1996). Although these materials are initially designed as thermal barrier materials for aerospace

structural applications and fusion reactors, they are now employed for general use as structural

elements for different applications. For example, a common structural element for such applications

is the rectangular plate, for which several recent studies on static buckling, vibration and dynamic

behaviors have been performed (Praveen and Reddy 1998, Lanhe 2004, Tauchert 1991, Ma and

Wang 2003, Yang et al. 2003).

Among various structural elements, shell elements form an important class of structural

components with many significant engineering applications such as vessels or vessel’s enclosures.

Studies pertaining to FGMs shell structures are mainly limited to thermal stress, deformation, and

fracture analysis in the literature (Makino et al. 1994, Obata and Noda 1994, Takezono et al. 1994,

Durodola and Adlington 1996, Oh et al. 2003, Dao et al. 1997, Weisenbek et al. 1997). Makino et al.

(1994), Obata and Noda (1994), and Takezono et al. (1994) have investigated thermal stress of

FGM shells whereas the discs and rotors have been examined based on analytical approach by

Durodola and Adlington (1996), and Oh et al. (2003). The elasto-plastics deformation of FGM shell

is studied in the work of Dao et al. (1997), and Weisenbek et al. (1997). Few transient dynamic

analyses of cracked FGM structural components are also reported in the literature (Li et al. 2001,

Zhang et al. 2003). Li et al. have analyzed the stress intensity factor of FGMs under dynamic

situation whereas Zhang et al. studied the dynamic responses of cracked FGM structural

components. The parametric instability analysis of functionally graded cylindrical shells under

harmonic axial loading has been carried out by Loy et al. (1999) and Ng et al. (2001) whereas the

effect of FGM materials on the parametric response of plate structures has been reported by Ng et al.

(2000). He et al. (2001) and Ng et al. (2002) have studied the active control of FGM structures

integrated with piezoelectric sensors and actuators. However, to the authors’ knowledge, it must be

stressed that work on the vibrations and stability behavior of functionally graded material spherical

shells is not commonly yet available in the literature, and such study is immensely useful to the

designers while optimizing the designs of FGMs spherical shell structures.

In the present work, a three-noded shear flexible axisymmetric curved shell element developed

based on the field-consistency principle (Prathap and Ramesh Babu 1986, Ganapathi et al. 2003) is

employed to analyze the axisymmetric vibration, and thermal stability of functionally graded

material spherical caps. The material properties are graded in the thickness direction according to

the power-law distribution in terms of volume fractions of the material constituents. The present

formulation is validated considering isotropic case for which solutions are available. Numerical

results are presented considering different values for shell geometrical parameter, power law index,

and boundary conditions on the axisymmetric vibration and thermal stability behavior of

functionally graded spherical caps.

2. Formulation

An axisymmetric functionally graded shell of revolution (radius a, thickness h) made of a mixture

of ceramics and metals is considered with the coordinates s, θ and z along the meridional,

circumferential and radial/thickness directions, respectively as shown in Fig. 1(a). The materials in

outer  and inner  surfaces of the spherical shell are ceramic and metal,

respectively. The locally effective material properties are evaluated using homogenization method

z h/2=( ) z h/2–=( )
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that is based on the Mori-Tanaka scheme. The effective bulk modulus K and shear modulus G of

the functionally gradient material evaluated using the Mori-Tanaka estimates (Mori and Tanaka

1973, Benveniste 1987, Qian et al. 2004) are as 

(1)

(2)

K Km–

Kc Km–

------------------ Vc/ 1 1 Vc–( )
3 Kc Km–( )
3Km 4Gm+

----------------------------+=

G Gm–

Gc Gm–

------------------- Vc/ 1 1 Vc–( )
Gc Gm–( )
Gm f1+

------------------------+=

Fig. 1(a) Geometry and the coordinate system of a spherical cap

Fig. 1(b) Curved axisymmetric quadratic shell element
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where . 

Here, V is volume fraction of phase material. The subscripts m and c refer to the ceramic and metal

phases, respectively. The volume-fractions of ceramic and metal phases are related by Vc + Vm = 1,

and Vc is expressed as

(3)

where k is the volume fraction exponent . 

The effective values of Young’s modulus E and Poisson’s ratio υ can be found as 

 (4)

The locally effective heat conductivity coefficient κ is given as (Hatta and Taya 1985)

(5)

The coefficient of thermal expansion α is determined in terms of the correspondence relation

(Rosen and Hashin 1970) 

(6)

The effective mass density ρ can be given by rule of mixture as (Senthil and Batra 2004)

(7)

The temperature variation is assumed to occur in the thickness direction only and the temperature

field is considered constant in the xy plane. In such a case, the temperature distribution along the

thickness can be obtained by solving a steady-state heat transfer equation

, T = Tc at z = h/2; T = Tm at z = −h/2 (8)

The solution of this boundary value problem provides the temperature distribution through the

thickness of the plate (Cheng and Batra 2000).

By using the Mindlin formulation for an axi-symmetric spherical shell, the displacements at a

point (s, z) are expressed as functions of the mid-plane displacements uo, and w, and independent

rotation βs of the radial section, as 

u (s, z, t) = uo (s, t) + z βs(s, t)

w (s, z, t) = w (s, t) (9)

where t is the time. The various strain components such as the membrane strains , bending

strains , shear strains  are written as (Kraus 1967)

f1
Gm 9Km 8Gm+( )

6 Km 2Gm+( )
---------------------------------------=

Vc z( ) 2z h+

2h
---------------⎝ ⎠

⎛ ⎞
k

=

k 0≥( )

E z( ) 9KG
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------------------ and υ z( ) 3K 2G–

2 3K G+( )
--------------------------= =
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(10)

where r = Rsinφ, R and φ are the radius of the parallel circle, radius of the sphere and meridional

angle (Fig. 1a). 

If {N} represents the stress resultants (Nss, Nθθ , Nsθ) and {M} the moment resultants (Mss, Mθθ ,

Msθ), one can relate these to membrane strains  and bending strains  through the

constitutive relations as

(11)

(12)

where the matrices [Aij], [Bij] and [Dij]  are the extensional, bending-extensional coupling

and bending stiffness coefficients and are defined as . The thermal

stress resultant  and moment resultant  are

(13)
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 (14)

where the thermal coefficient of expansion  is given by Eq. (6), and  is

temperature rise from the reference temperature T0 at which there are no thermal strains.

Similarly the transverse shear force {Q} representing the quantities  is related to the

transverse shear strains  through the constitutive relations as

, where (15)

Here [Eij]  are the transverse shear stiffness coefficients, κ is the transverse shear

correction factor for non-uniform shear strain distribution through the shell thickness, taken as 5/6.

 are the stiffness coefficients and are defined as

(16)

where the modulus of elasticity E(z) is given by Eq. (4). 

The strain energy functional U is given as 

 (17)

In general, Eq. (17) can be rewritten as 

(18)

where [K] is the elastic stiffness matrix and δ is the vector of the degree of freedom associated to

the displacement field in a finite element discretisation.

The kinetic energy (T ) of the shell is given by

(19)

where  and ρ (z) is mass density which varies through the thickness 

of the spherical shell and is given by Eq. (7). [M] is the consistent mass matrix. The dot over the

variable denotes derivative with respect to time.

The shell is subjected to temperature field and this, in turn, results in in-plane stress resultants

. Thus, the potential energy (V ) due to unit thermal pre-buckling stresses 

developed during buckling can be written as 
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 (20)

where [KG] represents the geometric stiffness matrix due to unit thermal loads. 

By minimization of total potential energy obtained UT (= U − V ) contributed by Eqs. (18) and

(20), the governing equations are derived for thermal stability case as (Zienkiewicz and Taylor

1989)

 (21)

where ∆T (= ) is the critical temperature difference.

Similarly, substituting Eqs. (18) and (19) in Lagrange’s equation of motion of the form

 (22)

the governing equation for the free vibration case is obtained as (Zienkiewicz and Taylor 1989)

[M]  + [K]{δ} ={0}  (23)

where  is the acceleration vector. For free vibration case, assuming harmonic vibration,

, Eq. (23) leads to

 (24)

where ω is the natural frequency.

The frequency and the critical temperature difference can be calculated using standard eigenvalue

extraction algorithm. 

3. Element description

The axisymmetric three-noded curved shell element used here is a C0 continuous shear flexible

one and has 3 nodal degrees of freedoms (Fig. 1b). If the interpolation functions for three-noded

element are used directly to interpolate the three field variables uo, w and βs in deriving the

transverse shear and membrane strains, the element will lock and show oscillations in the shear and

membrane stresses. Field consistency requires that the membrane and transverse shear strains must

be interpolated in a consistent manner. Thus, βs and uo terms in the expression for  given in

Eq. (10) have to be consistent with field function  as shown in the works of Prathap and

Ramesh Babu (1986). Similarly w and uo terms in the expression of  given in Eq. (10) have to

be consistent with the field function  respectively. This is achieved by using the field

redistributed substitute shape functions to interpolate those specific terms that must be consistent as

described by Prathap and Ramesh Babu (1986) and Ganapathi et al. (2003). The element derived in

this fashion behaves very well for both thick and thin situations, and permits the greater flexibility
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in the choice of integration order for the energy terms. It has good convergence and has no spurious

rigid modes. The original shape functions used for the present three-noded quadratic element are 

 (25)

whereas the redistributed substitute shape functions used for avoiding locking syndrome here are 

 (26)

4. Results and discussion

In this section, we use the above formulation to investigate the effect of parameters like gradient

index, shell geometrical parameter on the axisymmetric free flexural vibration characteristics and

thermal buckling of functionally graded material spherical caps. Since the finite element used in this

study is based on field consistency approach, an exact integration is employed to evaluate all the

strain energy terms. The shear correction factor, which is required in a first order theory to account

for the variation of transverse shear stresses, is taken as 5/6. For the present study based on

progressive mesh refinement, a 15-element idealization is found to be adequate in modeling the

spherical caps. 

Fig. 2(a) shows the typical variation of the volume fractions of ceramic in the thickness direction

z for the FGM spherical cap. The outer surface is ceramic rich and the inner surface is metal rich.

The typical temperature variation through the thickness direction is presented in Fig. 2(b) and it can

be noted that the temperature variation in the thickness of functionally graded shell is nonlinear

compared to those of pure ceramic and metal cases (k = 0 and k = 100). The FGM spherical shell

considered here consists of aluminum and alumina (Lanhe 2004). The Young’s modulus,

conductivity and the coefficient of thermal expansion for alumina is Ec = 380 GPa, κc = 10.4 W/mK,

αc = 7.4 × 10−6 1/oC, and for aluminum is Em = 70 GPa, κm = 204 W/mK, αm = 23 × 10−6 1/oC,

respectively. The shell is of uniform thickness and boundary conditions considered here are:

N1 ξ
2

ξ–( )/2, N2 1 ξ
2

–( ) , N3 ξ
2

ξ+( )/2= = =

N 1 1/3 ξ–( )/2, N 2 2/3, N 3 1/3 ξ+( )/2= = =

Fig. 2 Variation of volume fraction of ceramic and temperature through thickness; (a) Volume fraction of
ceramic, (b) Temperature
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simply supported:

 and Ms = 0 (Natural BC) on r = a

clamped support:

on r = a

Before proceeding for the free flexural vibration characteristic study of FG spherical cap, the

formulation developed herein is validated against the available clamped isotropic spherical shells

results pertaining to the free vibrations and thermal buckling cases in Tables 1(a) and (b),

respectively. Here, the nondimensional frequency, Ω is defined as , where

ρc and Ec are the mass density and Young’s modulus of ceramic, respectively. The results are found

to be in good agreement with the existing solutions (Sathyamoorthy 1994, Ganesan and Ravikiran

2005).

Next, the detailed investigations for free flexural vibrations of spherical caps are carried out for

different geometrical parameters and material power law index, k. Fig. 3 highlights the non-

dimensional fundamental frequencies of simply supported FGM spherical caps for different values

of thickness-to-radius ratio, material power law index and different spherical angle. It is observed

that the increase in material power law index value results in decrease in non-dimensional frequency

u0 w 0= =

u0 w βs= =

Ω ω a/h( ) ρca
2
/Ec( )

1/2

=

 

Table 1(a) Comparison of fundamental frequency, Ω for isotropic shallow 
spherical shell

H/h
Fundamental frequency

Sathyamoorthy (1994) Present

2 6.14  6.42

5 13.08 13.37

Table 1(b) Comparison of critical thermal buckling strain εT for isotropic hemi 
spherical shell  

h/R
Ganesan and Ravikiran 

(2005)
Present

0.01 0.00407 0.00424

0.02 0.00844 0.00840

0.03 0.01204 0.01251

0.04 0.01624 0.01657

0.05 0.02034 0.02052

0.06 0.02379 0.02446

0.07 0.02764 0.02844

0.08 0.03164 0.03222

0.09 0.03530 0.03584

0.10 0.03927 0.03944
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value. This is attributed due to the stiffness reduction because of the increase in the metallic

volumetric fraction and the introduction of different stiffness couplings due to elastic properties

variation through the thickness of FGM shell. It can also be opined that the frequency value

Fig. 3 Variation of nondimensional frequency Ω for a simply supported FG spherical shell for different
gradient index
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increases with the increase in thickness-to-radius ratio. However, the rate of increase in non-

dimensional frequency value is high for shallow spherical cases compared to deep shells. The effect

of boundary conditions on frequency can be further viewed from Fig. 4 for two values of material

index. It is noticed from Fig. 4 that the frequency values for clamped case is higher than those of

simply supported shell, as expected and the difference in frequency values is with respect to

thickness-to-radius however less for deep shells. 

Similar analysis for the thermal buckling behavior of FGM spherical caps with simply supported

boundary condition has been done considering different values of thickness-to-radius ratio and

geometrical parameter. The results are plotted in Fig. 5. It can be concluded that the influence of

material power law index and spherical included angle (ϕ) on critical values is qualitatively similar

to those of vibration case, i.e., reduction in thermal buckling temperature difference with increase in

the values of material index and deepness of the shell. However, the critical buckling temperature

difference is quite high for very shallow shells compared to those of deep cases. For moderately

Fig. 4 Comparison of nondimensional frequency, Ω for simply supported and clamped FG spherical shells
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deep shell structures, the change in the buckling values is noticeable for higher values of thickness-

to-radius ratio. The critical buckling temperature for ceramic is higher than the microscopically

heterogeneous mixture of ceramic and metal, as expected and this is mainly due to the increase in

metallic volumetric fraction. Furthermore, the results pertaining to FGM hemi-spherical shells are

highlighted in Fig. 6 and the observation is similar to those of other spherical caps.

Fig. 5 Variation of axisymmetric critical buckling temperature difference, ∆Tcr (
oC) for a simply supported FG

spherical shell
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5. Conclusions

Axisymmetric free flexural vibrations and thermal stability of FGM spherical caps have been

investigated using a three-noded axisymmetric curved shell element employing a field consistency

approach. Numerical results obtained here for an isotropic case are found to be in good agreement

with the previous findings. From the detailed parametric study, it is observed that the frequency and

critical buckling temperature decrease with the increase in metallic volume fraction and spherical

angle whereas they increase with the increase in thickness-to-radius ratio of the shells. It is hoped

that this study will be useful for the designers while optimizing the FGM based spherical shell

structures.
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