Structural Engineering and Mechanics, Vol. 24, No. 2 (2006) 247-268 247
DOI: http://dx.doi.org/10.12989/sem.2006.24.2.247

Buckling analysis of partially embedded pile in elastic
soil using differential transform method

Seval Catal’ and Hikmet Huseyin Catal*

Dokuz Eyliil University, Civil Engineering Department, Engineering Faculty, 35160, Buca, Izmir, Turkey

(Received February 20, 2006, Accepted May 4, 2006)

Abstract. The parts of pile, above the soil and embedded in the soil are called the first region and
second region, respectively. The forth order differential equations of both region for critical buckling load
of partially embedded pile with shear deformation are obtained using the small-displacement theory and
Winkler hypothesis. It is assumed that the behavior of material of the pile is linear-elastic and that axial
force along the pile length and modulus of subgrade reaction for the second region to be constant. Shear
effect is included in the differential equations by considering shear deformation in the second derivative of
the elastic curve function. Critical buckling loads of the pile are calculated for by differential transform
method (DTM) and analytical method, results are given in tables and variation of critical buckling loads
corresponding to relative stiffness of the pile are presented in graphs.

Keywords: static stability; differential transform method; critical buckling load; partially embedded
pile; non-trivial solution.

1. Introduction

The piles partially embedded in the soil are used marine, harbor, bridge structure and modeled
mostly by equivalent soil spring model. In this model, soil is idealized by Winkler hypothesize
(Chen 1997). Elastic soil is idealized by Winkler foundation modulus in this study also and effect of
friction through the pile length is neglected.

For designing of these piles require calculation of the buckling load of the piles.

Many researches have studied the behavior of the beams on an elastic foundation and elastic
buckling of columns, beams, plates and shells in the past. Hetenyi (1995) has studied beams on
Winkler foundations. Reddy and Valsangkar (1970) have obtained buckling loads for fully and
partially embedded piles using vibration functions and the Rayleight-Ritz energy method. Smith
(1979) has obtained discrete element matrices for stability analysis of slender piles, assuming
conservative or non-conservative ground resistance. Pavlovic and Tsikkos (1982) have studied the
problem of beam supported on quasi-Winkler foundations. West et al. (1997) have investigated
stability of end-bearing piles in non-homogeneous elastic foundation. They have neglected shear
effect and assumed the coefficient of horizontal subgrade reaction varies linearly with depth. Capron
and Williams (1988) have obtained the dynamic stiffness of Timoshenko column embedded in
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elastic medium. Heelis et al. (2004) have calculated buckling load of Euler-Bernoulli pile embedded
in Winkler foundation using analytical analyses of the pile. Heelis ef al. (1999) have investigated
the stability of uniform-friction piles in homogeneous and non-homogeneous elastic foundation
using a power-series solution and neglecting shear effect. West and Mafi (1984) have determined
buckling loads, natural frequencies of Euler-Bernoulli beam rested on elastic supports by using an
initial-value numerical method. Chen (1998) has calculated displacements, bending moments and
shear forces of Euler-Bernoulli beam resting on an elastic foundation using the differential
quadrature element method. Doyle and Pavlovic (1987) have solved the partial differential equation
for free vibration of beams attached to elastic foundation using variable separating method and
neglecting axial force and shear deformation. Valsangkar and Pradhanang (1987) studied the
variations of natural circular frequency values of the piles partially embedded in the soil according
to relative stiffness of the piles, length of the piles and buckling load ignoring the shear force effect.
Budkowska and Szymczak (1996) investigated the initial post-buckling load equilibrium path of the
pile partially embedded in soil after flexural buckling. The equilibrium path is determined by
utilizing a perturbation approach. Catal and Alku (1996a) have obtained the second order stiffness
matrix of Euler-Bernoulli beam on elastic foundation using analytical method. Chen (1997)
determined fixity depths required in equivalent cantilever pile model. Catal and Alku (1996b) have
calculated vertical displacements of Timoshenko beam on elastic foundation using finite difference
equations and matrix-displacement method and compared the solutions. Aydogan (1995) has
obtained a stiffness matrix for a Timoshenko beam on elastic foundation using differential-equation.
Ergiiven and Gedikli (2003) have derived a finite element formulation for Timoshenko beam on
elastic foundation by considering second-order effects. Li (2001a) has obtained critical buckling
load of multi-step cracked columns with shear deformation by using transfer matrix. Li (2001b) has
governed differential equation for buckling of a multi-step non-uniform beam. The shear effect of
the beam was neglected in the equation. Banarjee and Williams (1994) have investigated the effects
of shear deformation on the critical buckling of columns. Yang and Ye (2002) have studied a
dynamic elastic local buckling analysis for a pile subjected to an axial impact load using a
perturbation technique. Wang ef al. (2002) have investigated exact stability criteria and buckling
loads of Timoshenko columns under intermediate and end concentrated loads using analytical
method. Catal (2002) has obtained fourth order differential equations for free vibration of partially
embedded pile in soil.

The differential transform method (DTM) which was introduced by Zhou in 1986 for the solution
of initial value problems in electric circuit analysis is based on Taylor series expansions. In recent
works, DTM is applied to vibration analysis of continuous systems as beams and plates. Jang and
Chen (1997), the differential transformation method is Jang and Chen, the differential
transformation method is applied to solve a second order non-linear differential equation that
describes the under damped and over damped motion of a system subject to external excitations.
According to types of conditions at both end of a prismatic Bernoulli-Euler beam, frequency
equations and fundamental frequencies of the beam have obtained using DTM by Malik and Dang
(1998). Chen and Ho (1996), using differential transform technique proposed a method to solve
eigenvalue problems for the free and transverse vibration problems of a rotating twisted Timeshenko
beam under axial loading. Ozdemir and Kaya (2006), flapwise bending vibration of a rotating
tapered cantilever Bernoulli-Euler Beam is considered by using differential transform technique.
Ruotolo and Surace (2004) calculated natural frequencies of a bar with many cracks using transfer
matrix approach and finite element method. Hosking et al. (2004) studied natural flexural vibrations
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of Bernoulli-Euler beam mounted on discrete elastic supports using transfer matrices. Coupling
lateral and torsional vibrations of symmetric rotating shaft modeled by the Timoshenko beam is
examined using modified transfer matrix method by Hsieh et al. (2006).

The DTM used in this study was proposed by Zhou (1986). DTM is one of the solution methods
of ordinary and partial differential equations. DTM has advantage of reducing the ordinary
differential equation to the algebraic equation and reducing the partial differential equation to the
algebraic equation system. In DTM, the orthogonal polynoms as Taylor series are used for solution
of the differential equations and to apply mathematical operations to these polynms are easier.

In this study, forth-order differential equations of elastic curves for critical buckling load of
partially embedded pile in elastic soil are developed considering shear effect, these differential
equations are solved using differential transform method (DTM) and analytical method, and critical
buckling loads for the first three modes of the pile are obtained. Numerical results are presented and
the differential transform solutions are compared with the analytical solutions.

2. Problem formulation

A pile partially embedded in the soil is presented in Fig. 1(a). The pile parts above the soil and
embedded in the soil are called the first region and the second region, respectively. The internal
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Fig. 1(a) Pile partially embedded in the soil, (b) internal forces and deformations of segment in the first
region, (c) internal forces and deformations of segment in the second region
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forces and deformations of segment of the pile having the length of dx; and dx, at the first and
second regions are presented in Fig. 1(b) and Fig. 1(c), respectively.

The buckling loads of the partially embedded pile are calculated under the following assumptions:
material behavior of the pile is linear-elastic; soil behavior coincides with Winkler hypothesis; effect
of friction along the pile length is neglected.

Using the equilibrium equations of the lateral load and bending moment acting to segment of the
pile in the first and the second region and neglecting infinitesimal quantities of second order gives

dM(x,) _ T,(x)) (0<x, <L) (1
dx,
dT\(xy) _ ‘ﬁ
ao TN =<l @)
aM,(x,) _ T(x) (0<x,<L,) 3)
dx,
dT,(x,) - Ndﬁ+C5yz(xz) (0<x,<Ly) “)
dx, dx

where M;(x1), My(xy) and T;(x;), T>(x») are bending moment and shear force functions for the first
and the second regions, respectively; N is the constant axial compressive force; &, and 8, are slope
of elastic curve in the first and second region, respectively, C;= C, - b in which C, is the modulus
of subgrade reaction and b is width of the pile.

Substituting Eqs. (2) and (4) into the second order derivate with respect to x of elastic curve
equations gives

2
|:1 __N :|d yl(le) +Ml(x1) — 0 (0 le SLI) (5)
kAGY  dx; EI
2
oA Gy ) D g (05 ©)
kAG!) dx;  kAG EI

Where, y;(x1) and y,(x,) are elastic curve functions for the first and second regions, respectively.
Substituting Egs. (1) and (3) into the first order derivate with respect to x of Egs. (5) and (6) gives

N 1dyiG) | Tix) _
[1_];AG} y% +28 =0 (O<x, <L) 7)

12 Tfyz(xz)_ Cy dy(a) , Do) _

0<x, <L 8
kAG!  dx) kAG dx; EI (0<x,<L,) (8)
Differentiating Eqs. (7) and (8) with respect to x gives

4
|:] . _N i|d yl(xl) + dTl(xl)L =0 (0 le SLl) (9)
kAG)  dx) de, EI
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4 2

oAt G Ont) BWL g snsi) (0)
kAG! dx,  kAG dx, dx, EI

Substituting Egs. (2) and (4) into Egs. (9) and (10) respectively, given

d'y@x) | KAGN _dn(xn) _ g

" — ; (0<x, <L) (11)
dx, (kAG-N)EI  dx;

d*y,(xy) .\ kAGN — EICsdy5(x,) [ kAG - Cy

) | 22 2 _ }yz(m:o (12)
dx!  (KAG-N)EI &’ LEI(N-kA4G)

where k is the shape factor due to cross-section geometry of the pile, I, 4, E, G are moment of
inertia, cross-section area, modulus of elasticity, shear modulus, respectively, of the pile.

Writing the dimensionless parameters z;, z, instead of the position parameters x;, x, in Eqgs. (11)
and (12) gives the elastic curve function of the pile at the first and the second region as

4 2
), pd0E) _ (0<=,<4) 13
le le L
d'y,(z d*y,(z L
26, pd 0@ gy =0 (0<z<h) (14)
dz, 5 L
2,7 4 7 L 2 = 74
Where f, = L (kA_GN—EICS); - L kA(_} Cb; D, =]£(_ kAG ); o = CiL
EI(kAG —N) EI(N-kAG) EI \kAG - N ET

« being the relative stiffness value; L, = pile length above the soil; L, = pile length embedded in the
soil; L = total length of the pile; z;, = x,/L; z, = x,/L

3. Differential transformation

The differential transformation technique, which was first proposed by Zhou (1986), is one of the
numerical methods for ordinary and partial differential equations that use the form of polynomials
as the approximation to the exact solutions that are sufficiently differentiable. The function that will
be solved and the calculation of following derivatives necessary in the solution become more
difficult when the order increases. This is in contrast with the traditional high-order Taylor series
method. Instead, the differential transform technique provides an iterative procedure to obtain
higher-order series; therefore, it can be applied to the case high order.

The differential transformation of the function y(z) is defined as follows:

k
Y(k) = %[d—ﬁf)} (15)

0

Where y(z) is the original function and Y(k) is transformed function which is called the 7-function
(it is also called the spectrum of the y(z) at z = z,, in the K domain). The differential inverse
transformation of Y(k) is defined as:
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Table 1 Some basic mathematical operations of DTM

Original function y(z) Transformed function Y(k)
Anz) AY(k)
y1(2) £ ya(2) Yi(k) £ Ya(k)
adw(z)/dz k+1) Y(k+1)
d*(2)/dz* (k+ D(k+2) Y(k+2)
d*W(z)/d?’ (k+ D(k+2)(k+3) Y(k+3)
d"Wz)ldz* (k+ D)k +2)(k+3)(k+4) Y(k+4)
Y@ = Y (-2)" Yk (16)
k=0
from Eq. (13) and Eq. (14) we get
o (o -\ gk
v = 3 ER LX) (17)
k=0 - dZ z=2z

Eq. (16) implies that the concept of the differential transformation is derived from Taylor’s series
expansion, but the method does not evaluate the derivatives symbolically. However, relative
derivative are calculated by iterative procedure that are described by the transformed equations of
the original functions.

The basic operations of transformed functions which are given Table 1 can easily be proofed
using Eqs. (15) and (16). "

The function is expressed by finite series and Eq. (16) can be written as y(z) = z (z—zo)kY(k).

k=0
Eq. (16) implies that y(z) = z (z —ZO)kY (k) is negligibly small. In fact, » is decided by the con-
k=n+1

vergence of natural frequency in this paper.

4. Solution of motion equations by differential transformation

The boundary conditions of the pile whose both ends simply supported shown in Fig. 2 are given
in Egs. (18)-(35).

yi(zy=L,/L) =0 (18)
Wz, =0) =0 (19)
Q@) o gy, = 0) (20)

2
dz,

z,=0
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Fig. 2 Pile whose both ends are simply supported

d’yi(z1)
dzf
»i(z =
dy,(z,)
dz,
d’y,(z dy,(z
yz(3 2) + B, y,(2,)
dz; , dz,
=
d’y:(2,)
EE— + Biya(zy =
dz,
1,
n=2

= -Dy(z, = L/L)

1
L

0) = yy(z, = Ly/L)

- dy,(25)
. dz, )
277
_dnE)| )
~ _L2 dZ3l 2 =0 le z;=0
52—7 1
2
L,y/L) = dyl—(zZl) +Dyyi(z) = 0)
Z

z; =0

ey

(22)

(23)

24

(25)

By applying the DTM to Egs. (13), (14), (18), (20) and using the relationship in Table 1 following

equations are obtained.

_ Nk+2) Y, (k)
Y,(k+4) = ﬂl(k+3)(k+4) ﬂz(k+ D(k+2)(k+3)(k+4)
Vi(k+4) = -p,—1k*2)

"+ 3)(k + 4)

(26)

27
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Y,(0) = 0

r

(2) =0

(28)

(29)

The recurrence relations of the first region for £ = 0(1)n are obtained from Eq. (26) using Egs. (28)

and (29) as follows:
o(

2k) = 0

1) = ${-B3I50) - AL}

B = B - LBIHG) - AT}
LO) = g {4+ 288)31F,6) + A+ POV}
L1 = S{(B= 344+ 31 103) + (B - 245DV (1)}

11!

1(13) = S B+ 4B B =3BBD3IN0) + B+ 38 K- )T}

The recurrence relations of the second region for £ = 0(1)n are obtained from Eq. (27) as:

Y,(4) =
Y,(5) =
Y,(6) =
(7)) =
Y, (8) =
9) =
Y,(10) =
Y,(11) =
Y,(12) =

Y,(13) =

i{_plzzyl(z)}
%{—Dl?ﬁ!Yl(B)}
S{DD2T, ()}
D3T3}
DD,
S { D)3}
S {D)217,(2)}
HGHERAGY
D)2 @)

1 5
L HERACN

(30)

€1y
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By applying the DTM to Egs. (19), (21), (22), (23), (24), (25) and using the recurrence relations
(30), (31) following equations are obtained

bui(0)y+b,Y (1) +5,52'Y,(2)+b,3'7,(3) =0 (32)
by Y1(0) + b Y1 (1) + 5321 Y, (2) + b2, 317, (3) = 0 (33)
b3sYo(1) + b3631Y,(3) = Y,(0) (34)
bysYo(1) + bys31Y,(3) = Yi(1) (35)

bssY (1) +bsg3'Y,(3) = 3'Y,(3)+ D, Y, (1) (36)

besYVo(1) + bes3'Y,(3) = 21Y,(2) + D, Y,(0) (37)

L, L L
by = 1; blz— s bi3=0; byy=0; by =Dy; bzz—(Ll)Dlé by; =1, 524:—1

L
L n L 2k +1 ( ]) k>2m k m— k )
b ) (_2) mpnm 1 m
35 L+k=2 7 Qk+ 1) Z=: B (1)
! L 2 (—])k kez2m -1 k—m k 2m+1 Hm—1 m
b = Y () D)
kgl L (2k+ ])' mz=l m—1

R R e

— 4 L 2k( l)k k= 2m -1 k—m k-2m+1,m-1 m
b%—k;(f) (2k),{ > [ Jﬂ. i (1)}

m=1 m_

b, = ﬂl+(%>2_2_ﬂ!2+ Zn:(L)zkgzllc;l:{kﬂZnéﬂ[k n_1 zjﬂlk 2m - 1132””1( l)m}

k=3 m=1 m

_ u L 2k( l)k kz2m k—m— k=2m Hm m
bse = 1+ Z(f) (2k)'{ Z ( jﬂl B (-1) }

m=1 m_

b, = (é)ﬂl+(é)3__p;2+ n»(}ﬁ)zkn(zkg_ Pf)!{kzgﬂ[k;"j_zjﬂnk 2m - lﬂ2m+l(_])m}

m=1

_ L " L 2 (—])k kz2m k—m k=2m m m
b = (2)+ 3 (%) m{z[ ) jﬁl Bl 1)}

m —
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Substituting Eqs. (34) and (35) into Egs. (36) and (37), respectively, gives:
31Y,(3) = (bss— D bys)Yo(1) + (bsg— D1bag)3! Y5(3) (38)
21Y1(2) = (bgs— D1b35)Yo(1) + (bes — D1b36)3! Y5 (3) (39)

Substituting Egs. (34), (35), (38) and (39) into Egs. (32) and (33), respectively, gives:
By, an{ () }= {0} (40)
B,, By|3!T>(3) 0

By = bubss + biabys + b1 (bgs — Dibss) + by (bss — Dibys)
By = b11bss + b1obas + b1z (bes — D1b3g) + b14 (bse — D1bag)
By1 = by1b3s+ bybys + bas (bes — Dibss) + bay (bss — Dibys)
Byy = by1bsgt+ babas + by (bes — D1bsg) + bag (bsg — Dibas)

where

Thus, the frequency equation of the beam resting on elastic foundation is obtained using Eq. (28)
as:

f(”) = BBy — BBy =0 41)

Solving (41) we get N = N, i = 1,2,3,... where N is the nth estimated N axial compressive
load circular frequency corresponding to n, and » is indicated by

|Ml1) _Mn—l)‘ <g
where NV~ " is the ith estimated axial compressive load corresponding to n— 1 and ¢ is a positive
and small value.
5. Analytical solution of differential equations

The solution of differential equation of the elastic curve for the first region of the pile, Eq. (13), is
obtained as (Ross 1984):

w(z)) = C,+ Cyz, + cos(D,z,)C5 + sin(D,z,)C, (OSZ, SIL;l) 42)
2
2 7 05
Where D, = [& [_kﬁﬂ ; Ch, ..., Cq = constant of integration.
EI'LkAG-N.

The solution of Eq. (16) is obtained due to the sign of y; four possible conditions exist due to the
signs of A; and A, when yis positive.
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2
Where A, = 50— ()" A= Ll (8)"%5 D= (A" D= (A" 7=(2) 4

Ly>0,A1>0and A,>0
V5(z,) = [Cscosh(Dsz,) + Cgsinh(Dsz,) + C,cosh(D,z,) + Cgsinh(Dyz,) ] (0 <z, < %) (43)
IL y>0,A;>0and A, <0
V,(z,) = [Cscosh(Dsz,) + Cysinh(Dsz,) + C,cos(D,z,) + Cgsin(D,yz,) ] (0 <z, < %) (44)
ol y>0,A1<0and A,> 0

V5(z,) = [Cscos(D52,) + Cysin(Dsz,) + C,cosh(Dyz,) + Cgsinh(D,z,) ] (0 <z,< Lz) (45)

L
VL >0, Ai<0and A, <0
(zy) = [Cscos(D;z,) + Cgsin(Dsz,) + C,c08(Dyz5) + Cg(Dyz5)] (0 <z,< %) (46)
V.y<0
(zy) = {Cs[cosh(ra,z,)cos(rayz,y) ]+ Cy[sinh(razy)cos(ranz,) ] +
C;[cosh(razy)sin(ronz,y)] + Cg[sinh(r o z,)sin(r ez, )] } (0 <z, S%) 47
2
2 [
Where 4 = Arctg ;o = sin(A4/2); «, = cos(A/2); r = 4/-p,

B

Bending moment functions with respect to z for the first and the second regions of pile are
obtained from Eqgs. (5) and (6), respectively, as:

M,(z,) = —N-C5—NC, (ng, s%) (48)
EITkAG - N1d’y,(z,)  TEIC L
M) = NI 2 ey (0s5,52) @)
L kAG dz kAG L

The summation of horizontal components V(z1) and V,(z,) of axial (N) and shear forces (71(z)),
T5(z,)) at initial ends of differential parts at the first and the second regions of pile are written,
respectively, as:

- T (2 _Ndyi (1) _ 1[dMi(z1) Ay (z) - Ly
@) = Tz L dz L[ dz, Ndle } (OS 1= L) 50)
a(er) = Tty - Y22 LERE) W@aE)] (<2< 2 51
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substituting Eqs. (48) and (49) into Eqs. (50) and (51), respectively, gives

- 3
V](Zl) — _E_'3[|:k1iG_N:|dyl(SZI)_]ydyl(Zl) (OSZISZ;I) (52)
L kAG dz; L dz, L
- 3
Vz(Zz) — _ZL]|:k1iG—N1|d yI(Zl)+l|:€ICS_N:|dyI(Zl) (0 S22Sl£> (53)
L’L k4G dz;  Llk4aG dz, L
Constants of integration C|, ..., Cg of elastic curve functions for the first and the second regions

must be obtained by using boundary conditions due to the support type of both ends in order to the
calculate the buckling load of the pile partially embedded in the soil.

Boundary conditions of the pile whose both ends simply supported (Fig. 2) are given in
relations (54).

L
yl(zl = zl) =0
Ml(zl = l;l) = 0
L
L
yi(z=0) = )Q(Zz = f)
dy(z;) _ dy,(z,)
dzy | dz, , (54)

zy=

T

L
Mi(z, =0) = Mz(zz = f)

Vi(zi=0) = Vz(Zz = %)
y(z,=0) =0
My(z,=0) =0

Elastic curve function for the second region of the pile, y(z,) used in Egs. (54), must be obtained
from Eqs. (43)-(47) due to the values of y A; and A,. A set of eight linear homogeneous equations

is obtained from Egs. (54) due to boundary conditions of the pile partially embedded in the soil.
This equation set is written in matrix form as:

[SHC} = {0} (55)

Where {C} and [S] indicate the unknown coefficients vector and coefficient matrix, respectively.
Hence, the non-trivial solution of this problem is given by
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Sll SlZ S13 S14 SlS S16 S17 S18
SZI S22 S23 S24 S25 S26 S27 S28
S3l S32 S33 S34 S35 S36 S37 S38
|S| — S4l S42 S43 S44 S45 S46 S47 S48 (56)
SSl SSZ S53 S54 SSS S56 S57 S58
S()l S()2 S63 S64 S()S S66 S67 S()8
S7l S72 S73 S74 S75 S76 S77 S78
S8| S82 S83 S84 S85 S86 S87 S88_

EIC; U_E_I(%AG—N) 1. = EI(kAG

Where, Ul = — — 3 ]\]) Al Ul D‘; Uz
kAG L’ kAG

> 27
kAG L
Ay = U, =DyU,, Ay=U, +DiU,, Ay=U, +DiU,, As=U,~(D;-D)U,

4;=20:0,0,, B, = D (v,-F)-pivs]. B, = bf(v,-)-Div)]

s, =nf(-v+¥)-pivs) so=p[(-v+Y)-piv] B = v -Yo@i-phu,

Sll = ], S12 =%, S13=COS(D L) S14 —Sln(DzL) S15 —0 S16_0 S17 —0 Sl8_0 S21 —0

Sp=0, S3=-N, Syu=-N, $5=0, S5=0, S5;,=0, S=0, S5 =1, 53, =0
Sy=1, 8343=0, S =0, Sp=1, S3=0, Syy=-1, §5,=0, S, =0, S53=-N, S5y =-N

N
S =0, Sg = _Z> Se3 =10, Ses =0
for y> 0, A;>0and A,> 0

S;S = _COSh(D;L ) S;() = _Slnh( L ), S37 = —COSh(D4[;2) 5 S}g = _Sinh(D4l£)
L L L
D . L D L,
Sys = —fsmh(D;fJ, Sy = —fcosh(D; L) S, = ——smh(D4 2)
)

D L L i
Sy = —fCOSh(D4ZZ)> Sss = —Amosh(D;f), Ss6 = —Alsmh(

hIF

~

~|
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S66 = —BICOSh(D3%), S67 = _stinh(D4%), S68 = —BchSh(D4%), S75 = ], S76 = 0
S;r=1, S55=0, Sgs =4, Sg6=0, Sg; =4,, Sgg=0
for y> 0, Ai> 0 and A, <0

L . L L . L
S35 = _COSh(D:;f) N S36 = _Slnh(D:;Zz) 5 S37 = _COS(D4ZZ) 5 S}g = _Sln(D4Z2)
Dy . L D L D, . L
S45 = —fSIHh(Dgf), S4() = —TSCOSh(Dgf) 5 S47 = fSIH(D4f)
D L L . L
S48 = _fCOS(D4Z2) 5 S55 = _AICOSh(D3Z2) 5 SS() = —AISIHh(D3I2)

S67 = —stln(D4L) S68 = BzCOS(D4L) S75 = ] S76 = 0
S77 = ], S78 = 0, S85 =A1, S86 = 0, S87 = _A3, S88 = 0
for y>0,A;<0and A,> 0

L . L L . L
Sys = —cos(D3 f) Sis = —sm(D3f), Sy, = —cosh(D4f), Sig = —smh(D4f)

D . L D L, D, . L
Sys = fsm(D3f), Sy = —fcos(D3 L) Sy = —f51nh(D4f)

D L L . L
Sig = —fcosh(D4f), Sss = —A4cos(D3f), Ss¢ = —A4smh(D3f)
S57 = —AZCOSh(D4%) 5 S58 = _Azsinh(D4%) N S()S = _B4Sin(D3%)

S()6 = _B4COS(D3%), S67 = _stinh(D4%), S68 BzCOSh(D4L) S75 = 1 S76 = 0
S;p=1, S;3=0, Sgs =4y, Sg6=0, Sg; =45, Sgs=0
for y>0,A;<0and A, <0

L . L L . L
Sis = —cos(D3f), Sis = —sm(D3f), Sy, = —cos(D4f), Sig = —sm(D4f)
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D, . L D L D, . L D L
Sys = fsm(D3f), Sy = —fcos(D3f), Sy, = —fsnn(D4f), Sy = —T“COS(D4IZ)

SSS = _A4COS(D3Z;2), SS() = _A4Sin(D3%), S57 = _A3COS(D4%), S58 = _A3Sin(D4%)

L
. L L . L L
S()S = —B4Sln(D3f), S6() = _B4COS(D3ZZ), S()7 = _B3Sln(D4Zz), S68 = _B3COS(D4I2)
Sis =1, S36=0, S;,=1, S;3=0, Sgs =44, Sg6=0, Sg; =45, Sgg = 0
for y< 0
L L . L L L) . L
Sis = cosh(D3Z2) cos(D4Z2) , Sy = mnh(D}f) cos(D4f), Sy = cosh(D3f) sm(D4f2)

L
S4s = ——=sinh (DSE) COS(D4Z;2) + —2cosh (D3&) sin (D4&)
L L L L
Sy = ——cosh(D3ﬂ) cos(D4é) + —“smh(D3é) sm(D4é)
L L L L
Sy =— smh(D3é) sm(D42) — &cosh (D3é) cos(D4é)
L L L L L
Sy = —— cosh(D3é) 51n(D4é) - &smh(D3é) cos(D4ﬁ)
L L L L L
L L . L L
Sss = —AScosh(D3 f) cos(D4f) —A6smh(D3 f) sm(D4f>
L L L L
Ss¢ = —ASsmh(D3 f) cos(D4Z2) —A()cosh(D3 f) s1n(D4f2)

Ssg = —Assinh (D3L2) sin(D4—) + A6cosh(D3 —) cos(D4

: L L LY . (AL
Ses = — (BsDs + 2B6D3Di)smh(D3 f) cos(D4f) + (BsD; — 2B4D3D,)cosh (D3 f) sin (D4Z2)
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L L . L) . (L
Ses = — (BsDs +2B¢D;D;)cosh (D3 f) cos(D4f) +(BsDs — 2B4D3D,)sinh (D3f sin (D4f)
Sg; = —(BsD; + 2BGD3Di)sinh(D3%) sin(D4%) —(BsD; - ZBGD§D4)cosh(D3% sin(D4%)

2

Ses = — (BsDs + 2BGD3Di)cosh(D3%> sin(D%z) —(BsD; - 236D§D4)sinh(p3%) cos(D4—)

~|

Sis =1, S;6=0, S;7=1, S;3=0, Sgs=4s, Sg6=0, Sg; =0, Sgg =—4,

6. Numerical analysis

A pile model is considered for numerical analysis. The piles made up using 1 600 steel profile.
The buckling loads of the piles partially embedded in soil having modulus of subgrade reaction of
15.000 kN/m? are calculated for support conditions given in Fig. 2 by a computer program having
an iteration algorithm and prepared by the writers.

The characteristics of the steel pile used numerical analysis are presented in the following:

I1=139%10" m* 4 = 254*10* m2, EI= 291900 kN/m? ; 4G = 2053790.5 kN; k = 0.4347

Buckling loads and relative stiffness values (&) of the steel pile are calculated by taking pile
lengths of the first and the second regions, Z; and L,, from Table 1 and by using DTM and
analytical method for L,/L = 0.25, L,/L = 0.50, L,/L = 0.75. Euler critical buckling load of piles are
calculated using N, = 7> EI/(L,)* by neglecting the effects of modulus of subgrade reaction, shear
deformation and rotation restraining stiffness and by taking L, = L for both ends simply supported
pile.

N, = NIN; values are calculated according to «, L,/L and series size (n) values using DTM and
according to N, and L,/L values by using analytical method; and the values obtained are presented

Tables 2(a),(b),(c).

Table 1 Values of L with respect to ¢, values of L; and L, with respect to L,/L

L,/L =0.25 L,/L = 0.50 L./L =0.75

L (m)) a=C LYEI
Ly (m) L, (m) Ly (m) L, (m) Ly (m) L, (m)
2.10 1 1.575 0.525 1.05 1.05 0.525 1.575
3.73 10 2.797 0.933 1.865 1.865 0.933 2.797
6.64 100 4.980 1.660 3.320 3.320 1.660 4.980
11.81 1000 8.857 2.953 5.905 5.905 2.953 8.857
21.00 10000 15.750 5.250 10.50 10.50 5.250 15.750
37.35 100000 28.012 9.338 18.675 18.675 9338 32.012

66.42 1000000 49.815 16.605 33.21 33.21 16.605 49.815




Table 2(a) N, values for the first, second and third modes of the pile

o

Method

n

Ly/L =025

Ly/L=0.50

Ll/L =0.75

1st. Mode

2nd. Mode

3rd. Mode

Ist. Mode

2nd. Mode

3rd. Mode

1st. Mode

2nd. Mode

3rd. Mode

1.0

DTM

0.57869297
0.57843581
0.57843581
0.57843581
0.57843581
0.57843581
0.57843581

0.96824322
1.01717216
1.01938257
1.01939788
1.01939788
1.01939788
1.01939788

120676493
1.21864203
1.19178040
1.18707640
1.18701058
1.18700915
1.18700915

0.58263466
0.58262394
0.58262394
0.58262394
0.58262394
0.58262394
0.58262394

1.02121335
1.02005304
1.02004998
1.02004998
1.02004998
1.02004998
1.02004998

1.15173288
1.18550891
1.18722029
1.18723254
1.18723254
1.18723254
1.18723254

0.58707537
0.58683045
0.58683045
0.58683045
0.58683045
0.58683045
0.58683045

0.97075671
1.01854984
1.02066534
1.02068065
1.02068065
1.02068065
1.02068065

1.20579137
1.21757510
1.19180795
1.18752032
1.18745909
1.18745909
1.18745909

Analytic method

0.57843581

1.01939788

1.18700915

0.58262394

1.02004998

1.18723254

0.58683045

1.02068065

1.18745909

10.0

DTM

0.82152121
0.82098515
0.82098515
0.82098515
0.82098515
0.82098515
0.82098515

1.87783313
2.07214468
2.08148454
208155215
208155698
208155698
208155698

3.04269313
3.11892357
2.94843976
2.91929496
291889413
2.91888930
2.91888930

0.86244949
0.86242534
0.86244949
0.86244949
0.86244949
0.86244949
0.86244949

2.09306519
2.08828902
2.08827453
2.08827453
2.08827453
2.08827453
2.08827453

3.01674532
291072779
2.92101419
2.92109146
2.92109146
2.92109146
2.92109146

0.90491349
0.90451749
0.90451749
0.90451749
0.90451749
0.90451749
0.90451749

1.90283922
2.08584056
2.09424837
2.09430632
2.09430632
2.09430632
2.09430632

3.03300073
3.10827980
2.94873918
292371377
292335640
292335640
292335640

Analytic method

0.82098515

2.08155698

2.91888930

0.86244949

2.08827453

2.92109146

0.90451749

2.09430632

2.92335640

100.0

DTM

N

10
12
14
16

1.02242338
1.02141332
1.02141332
1.02141332
1.02141332
1.02141332
1.02141332

269830826
3.13580103
3.15975164
3.15993529
3.15993529
3.15993529
3.15993529

5.95093931
6.24140745
5.58161013
5.46377005
5.46219375
5.46216314
5.46216314

1.41807527
1.41793754
1.41793754
1.41793754
1.41793754
1.41793754
1.41793754

325726813
3.24790214
3.24787154
3.24787154
3.24787154
3.24787154
3.24787154

4.82216908
5.44800703
5.48334375
5.48360392
5.48360392
5.48360392
5.48360392

1.85855230
1.85888899
1.85888899
1.85888899
1.85888899
1.85888899
1.85888899

295056255
3.27500536
3.28958998
3.28969711
3.28969711
3.28969711
3.28969711

5.85408088
6.13510652
5.58392102
5.50827381
5.50720254
5.50718724
5.50718724

Analytic method

1.02141332

3.15993529

5.46216314

1.41793754

3.24787154

5.48360392

1.85888899

3.28969711

5.50718724
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Table 2(b) N, values for the first, second and third modes of the pile

o

Method

n

Ly/L =025

Ly/L =050

Ll/L =0.75

1st. Mode

2nd. Mode

3rd. Mode

Ist. Mode

2nd. Mode

3rd. Mode

1st. Mode

2nd. Mode

3rd. Mode

1000.0

DTM

1.65811207
1.65307707
1.65302866
1.65302866
1.65302866
1.65302866
1.65302866

3.41585901
431102361
441041641
441162675
441162675
441162675
441162675

9.38136368
9.94295964
9.46797534
7.90828780
7.90102578
7.90097737
7.90097737

3.24215157
3.23919835
3.23914994
3.23914994
3.23914994
3.239149%4
3.239149%4

6.62436324
7.53632730
7.56416503
7.56435869
7.56435869
7.56435869
7.56435869

7.77156823
8.15689084
8.20530428
8.20574000
8.20574000
8.20574000
8.20574000

5.57534072
5.33782436
533792119
5.33796960
5.33796960
5.33796960
5.33796960

8.06703548
8.52255797
8.26833859
8.23812860
8.23764446
8.23764446
8.23764446

10.65541190
10.72299707
10.70663332
10.50949377
10.49758407
10.49743883
10.49743883

Analytic method

1.65302866

441162675

7.90097737

3.23914994

7.56435869

8.20574000

5.33796960

8.23764446

10.49743883

10000.0

DTM

249175761
2.54472162
2.54533392
2.54533392
2.54533392
2.54533392
2.54533392

5.46524278
6.79929288
7.21228969
7.22453570
7.22453570
7.22453570
7.22453570

25.83480251
25.03303485
26.10528633
26.15396423
13.59185045
13.56215387
13.56184772

498810747
4.67384415
4.68302866
4.68287559
4.68287559
4.68287559
4.68287559

9.66470698

11.87128554
12.51665046
12.53364180
12.53379488
12.53379488
12.53379488

21.04798888
20.65382032
20.55217841
19.91462033
19.89472055
19.89456748
19.89456748

10.28358989
9.81257759
11.09687826
11.16530286
11.16132291
11.16132291
11.16132291

26.02369726
26.14141207
18.78967090
25.59952597
20.30848274
20.29975745
20.29975745

32.38198058
34.19530904
25.60656743
37.47356687
25.59952597
24.22705400
24.48467951

Analytic method

2.54533392

7.22453570

13.56184772

4.68287559

12.53379488

19.89456748

11.16132291

20.29975745

24.48467951

100000.0

DTM

(o)

10
12
14

2.76395712
2.91406691
2.91745469
2.91745649
2.91745649
2.91745649
2.91745649

10.74447170
12.23443247
8.670532542
8.49524591
8.49282479
8.49282479
8.49282479

63.20154993
65.07017475
66.70249771
67.37072841
16.52563569
16.53870977
16.53967822

441322796
5.87558789
5.84701861
5.96032729
5.95596926
5.95596926
5.95596926

930583880
13.72487746
16.69656717
17.04472504
17.04085124
17.04085124
17.04085124

143.15535291
116.28812083
36.96913701
61.20121586
32.39320941
32.30798578
32.30653311

9.89223545

11.26549796
11.84124165
11.75553380
15.25406046
16.70818857
17.57110777

29.69026466
40.48267465
43.76087887
45.16658446
15.25406046
16.70818857
17.57107777

163.56307133
146.60061480
95.46256587
77.11721209
67.66126349
62.69795578
60.81964645

Analytic method

2.91745649

8.49282479

16.53967822

5.95596926

17.04085124

32.30653311

17.57110777

17.57107777

60.81964645
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Table 2(c) N, values for the first, second and third modes of the pile

a Method n L/L=0.25 Ly/L =0.50 L/L=0.75
Ist. Mode  2nd. Mode  3rd. Mode Ist. Mode  2nd. Mode  3rd. Mode Ist. Mode  2nd. Mode  3rd. Mode

4 2.69817294 8.11442588 376.56356930 4.31064519 9.31956896 452.73503841 10.65793624 31.48378866 490.42011971
6 3.30151013 45.62852386 316.98172431 4.58168753 13.72209291 450.00991926 12.09583884 44.15080713 479.92717505
DTM 8 3.21881925 3295231751 314.12276354 4.50818452 15.11558744 304.06050794 13.05597189 48.38794931 309.39100737
S 10 3.22494450 9.49566992 15.44788229 1.13623401 13.52761620 245.39591925 13.58886870 50.09995688 249.09097674
=3 12 3.22494450 9.48341941 18.22874612 6.11146890 17.97607953 35.61833289 13.62562021 51.24844139 111.47650032
% 14 3.22494450 9.48341941 18.22874612 6.92918987 20.13216778 38.14346749 13.62102627 52.18713606 112.99862512
16 3.22494450 9.48341941 18.73867324 6.82965454 1997597388 39.23529343 14.11717158 52.87163283 114.38446310
Analytic method 3.22494450 9.48341941 18.75398637 6.82965454 19.97597388 39.23529343 14.11717158 52.87163283 114.38446310
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Fig. 3 Variation of N, value with relative stiffness for the pile (a) the first mode, (b) the second mode, (c) the
third mode

Variation of N, = N/N, and « according to L,/L = 0.25, L,/L = 0.50, L,/L = 0.75 and series size
n =16 are shown in Figs. 3(a),(b),(c) for the pile both ends simply supported.

Figs. 3 that give the variation between relative stiffness and N, values of the pile partially
embedded in the soil indicates that N, values of the pile having relative stiffness between 100 and
1.000.000 increases as L,/L values increase for all modes. N, values of the pile having relative
stiffness between 1 and 100 are same for L,/L = 0.25, L,/L = 0.50, L,/L = 0.75.

7. Conclusions

In this paper, the buckling loads for the first three modes of the both ends simply supported pile
are calculated by using DTM and analytical method according modulus of subgrade reactions and
variation of L,/L values.

In the analytical method, the boundary conditions of the pile are used for obtaining closed-form
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solution function of the buckling load and the calculation of following derivates necessary in these
boundary conditions become more difficult when the order of derivates increases. However
calculation of high-order derivates necessary in the analytical method are calculated easier while the
DTM is being applied for buckling load of the pile, because Taylor series is used as solution
function.

Buckling loads of pile values obtained for the first mode and relative stiffness between 1 and
100.000 using DTM for series size n = 4 and n > 4 are same. DTM results indicate that frequency
factor values of the first mode are very fast converging for L,/L value, and that converging speed
decrease as the number of modes increase.

It is seen from Table 2(a),(b),(c) that all buckling loads obtained by using analytical method and
DTM for n = 16 overlap.

The results of DTM and analytical method in Table 2(a),(b).(c) indicate that the DTM can be
applied for buckling problem of partially embedded piles.
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