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A compressible finite element model for hyperelastic 
members under different modes of deformation
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Abstract. The performance of a three dimensional non-linear finite element model for hyperelastic
material considering the effect of compressibility is studied by analyzing rubber blocks under different
modes of deformation. It includes simple tension, pure shear, simple shear, pure bending and a mixed
mode combining compression, shear and bending. The compressibility of the hyperelastic material is
represented in the strain energy function. The nonlinear formulation is based on updated Lagrangian (UL)
technique. The displacement model is implemented with a twenty node brick element having u, v and w
as the degrees of freedom at each node. The results obtained by the present numerical model are
compared with the analytical solutions available for the basic modes of deformation where the agreement
between the results is found to be satisfactory. In this context some new results are generated for future
references since the number of available results on the present problem is not sufficient enough.

Keywords: nonlinear finite element model; compressible strain energy function; hyperelastic material.

1. Introduction

The use of rubber as structural material is steadily gaining popularity due to some of its specific

features. One of the significant advantages of the material is its ability to dissipate kinetic energy

associated with impact, shock or any dynamic loading, which is much higher compared to other

materials. The material has a large amount of deformability and it may be considered to be elastic

in that range of deformation if Mullin’s effect and permanent set are ignored. These unique features

are exploited to solve many engineering problems in an elegant manner. The use of rubber as

vibration isolators, shock absorbers, load bearing materials, sealant materials and filler between two

railway lines are some of its important applications. The detailed applications are well documented

in the text by Gent (2001).
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On the other hand the rubber material is found to exhibit a near incompressible feature and this

makes the prediction of stress and deformation quite difficult. Apart from that a good amount of

complexity is involved in the solution of the problem due to severe nonlinearity induced by the

extremely large deformations as mentioned above. Due to theses complexities, the analytical

solution exists only for some elementary cases and its number is very few as expected. Therefore, a

computer simulation is the only alternative for design optimization of a practical engineering

component. In this context, the finite element method is most suitable since it is regarded as the

most accurate, versatile and comprehensive numerical technique specifically in the field of

computational solid mechanics. 

It is to be noted that the truly incompressibility condition of rubber plays the most crucial role in

finite element analysis when its bulk modulus becomes infinite and Poisson’s ratio becomes 0.5. In

some analytical solution the truly incompressibility condition is used to make the problem simple

but it is not so in finite element analysis. In that situation, the complete state of stress can not be

obtained from strain only since the hydrostatic pressure component can not produce any volumetric

strain. Thus pressure is to be taken as a separate unknown along with the usual unknowns for the

displacements and it leads to a mixed-field problem. Herrmann (1965) is one of the first

investigators who identified the problem and proposed a formulation in terms of displacements and

mean pressure. Apart from that a number of alternative attempts (Askes et al. 2004, Belytschko et al.

1994, Chen and Pan 1996, Chen et al. 2000, Kuhl et al. 2004, Liu et al. 1988, 1991, Masud and

Xia 2005, Monaghan 1988, Nayroles et al. 1992, Sulsky et al. 1994, Zidi and Cheref 2002,

Zienkiewicz 1977) have been made by different investigators to treat the incompressibility

condition.

However, in reality, rubber is not completely incompressible (ν = 0.5), it is rather near

incompressible i.e., a certain degree of compressibility exists though it is small. In this context,

Obata (1974) has reported that the range of variation for the Poisson’s ratio lies between from 0.49

to 0.4998 while Peng et al. (1994) has recommended a range of 0.498 to 0.4999. They have also

mentioned that the Poisson’s ratio of most of the industrial rubbers lies between 0.4985 and 0.4995.

So the near incompressible feature (ν < 0.5) helps us to use usual finite element model based on

displacements since the critical condition at ν = 0.5 is not reached. Thus someone can avoid the use

of mixed-field formulation, which involves a number of difficulties as discussed by Gadala (1992).

It is observed that the expanded global stiffness matrix does not become positive definite and it

causes numerical difficulties especially in nonlinear analysis (Argyris et al. 1974). Again a mixed

formulation does not work with any element and it requires different order of interpolation functions

for the pressure and displacements, which involves computational difficulties (Argyris et al. 1974,

Bathe 1982).

Thus, the obvious choice in this regard is the straightforward displacement finite element model

but it should be mentioned that the model may suffer from numerical instability when the value of

Poisson’s ratio becomes very close to 0.5 (critical value) such as 0.499999. In such case the use of

mixed-field formulation becomes essential and one of such studies is due to Sussman and Bathe

(1987) where they took the value of Poisson’s ratio up to 0.49999999. Anyway the displacement

finite element model using the strain energy function of Peng and Chang (1997) proposed in the

present study is found to work without any problem up to a value of ν = 0.4995. Again it has been

observed that the compressible finite element solution of Peng and Chang (1997) for ν = 0.499

almost matches with the analytical solution for completely incompressible condition (ν = 0.5). The

above observations as well as the realistic range of values of Poisson’s ratio have motivated the
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authors to adopt the displacement finite element model. In the present study, the strain energy

function of Peng and Chang (1997) is used since it gives a more realistic representation of near

incompressible rubber elastic material and is well tested in single-field (displacement) finite element

analysis. 

The strain energy function as mentioned above is utilized to get the constitutive relation of rubber/

hyperelastic materials (Peng and Chang 1997). The state of strain is used to express the strain

energy function, which is not dependent on the path of deformation. Again the state of strain is

generally expressed with the three components of principal stretches (λ1, λ2 and λ3) measured from

a given configuration (Ogden 1972).

In the present study, the 3D brick element having twenty nodes is used to implement the proposed

scheme consisting of geometric nonlinearity due to large deformation up to a considerable extent

and constitutive equation based on strain energy function (Peng and Chang 1997) for rubbers/

elastomers. The updated Lagrangian (UL) technique based on Cauchy stress tensor and Almansi

strain tensor is used for geometric nonlinearity. The formulation is purely displacement-based where

each node contains three usual degrees of freedom u, v and w. The arc-length method (Crisfield

1981, de Souza Neto and Feng 1999) is used to solve the nonlinear problem utilizing the assembled

incremental equilibrium equations appropriately. The stresses are computed at the Gauss points and

extrapolated at the outer corner nodes according to Hinton and Campbell (1974) when it is required.

The present numerical model is applied to solve problems of rubber blocks under simple tension,

pure shear, simple shear, pure bending and a mixed mode combining compression, shear and

bending. The results obtained are compared with the available analytical solutions for the basic

modes of deformation. New results are also generated for future references since the number of

available results on the present problem is very few.

2. Formulation

It has been mentioned that the present problem involves severe nonlinearity. In such case, the

incremental solution scheme is most suitable where the entire loading path is divided into a number

of steps. It gives different configurations/states such as 0Ω, 1Ω, ….nΩ, n+1Ω, …., where 0Ω is the

initial state while nΩ is any intermediate one. In this system, any displacement component ui at two

adjacent states may be expressed as

(i =1, 2 and 3) (1)

where ui is the increment of the displacement component . In a similar manner the coordinates at

any state may be obtained as

(2)

Now the equilibrium equation of the body at any state may be obtained by utilizing the principle of

virtual work. According to this principle, a compatible small virtual displacement is imposed on the

body and the virtual work carried out by the internal forces/stresses is equated with that due to the

external loads. Following the updated Lagrangian concept (Bathe 1982) the governing equation may

be expressed as 
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(3)

where

(4)

The different terms in the above Eqs. (3) and (4) are as follows:

 is the variation of Green-Lagrangian strain component  at the (n + 1)-th 

configuration, but measured in terms of the n-th configuration 

is the corresponding 2nd Piola Kirchhoff stress component

is the volume of an element at the n-th configuration 

is the density at the n-th configuration

is the body force per unit mass at the (n + 1)-th configuration, but measured in the n-th

configuration

is the surface force at the (n + 1)-th configuration, but measured in the n-th configuration

is the surface area of an element at the n-th configuration 

The above stress and strain components may be expressed with the help of an incremental

decomposition as follows:

(5)

(6)

Since  = 0 in the above equation, it may be expressed by splitting the incremental part εij into

linear and nonlinear components as 

(7)

where

(8)

Again  is simply the Cauchy stress  and with this, Eq. (5) becomes 

(9)

The Cauchy stress and the incremental stress in the above equation may be obtained as:

(10)
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density function to be presented later. The component of Almansi strain tensor may be defined as

(12)

After substitution of Eqs. (7), (9) and (11) in Eq. (3) it becomes 

(13)

As the above equation can not be solved due to the presence of nonlinear incremental strains, it is

linearized by taking  and  to get an approximate solution. With these the

above equation becomes

(14)

Since , the virtual work due to external loads  as presented in (4) may be

rewritten as 

(15)

The above Eqs. (14) and (15) may be presented in matrix form with the help of Eq. (8) as 

(16)

(17)

where the different matrices in the above Eqs. (16) and (17) are: 
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Eqs. (16) and (17) are in convenient form for the finite element implementation, where the twenty

noded 3D brick element (Fig. 1) based on isoparametric formulation is used. According to

isoparametric formulation the displacements and geometry at n-th configuration can be represented

with same interpolation functions (Bathe 1982, Cook et al. 2001) as 

(18)

where  or simply N k is the interpolation function corresponding to k-th node, while 

and  are the coordinate and displacement at the corresponding node. In a similar manner the

incremental displacements can be expressed as 
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(22)

where

After substitution of Eqs. (20), (21) and (22) in (16) and (17) and subsequent necessary

rearrangement the incremental equilibrium equation may be obtained in its final form as

(23)

where

Following the usual technique, integration of these quantities is carried out numerically according to

Gauss quadrature integration rule where the number of Gauss points taken in all the three directions
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Rivlin and Ogden-Tschoegl. In this context, the strain energy density function W of Peng and Chang

(1997), which is expressed in terms of principal stretches (λ1, λ2, λ3) as 

(24)

where µk and αk are material constants, , m = 1, 2 or 3 depending on the material

model (Ogden 1972, 1984) and the Lame’s constant  where . The

values of the principal stretches λi and their directions vij are obtained from the left Cauchy-Green

deformation tensor  defined in terms of the deformation gradient  as,
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3. Results and discussions

In this section, numerical examples of rubber blocks are solved by the proposed finite element

model to check its accuracy and range of applicability. For the purpose of validation, the analysis is

first carried out for the basic modes of deformation, which includes simple tension, pure shear,

simple shear and pure bending. The results obtained in all these cases are compared with the

analytical solution. Finally an example having mixed mode deformation combining compression,

shear and bending is analyzed and the results obtained are reported. In most of the cases, the material

models of Ogden-Tschoegl, Mooney-Rivlin and neo-Hookean are used. The material constants of

these models as shown in Table 1 are used in the present analysis unless specified otherwise.

Table 1 Material constants of different material models

Material model m µ1 (MPa) µ2 (MPa) µ3 (MPa) α1 α2 α3 ν

Neo-Hookean 1 0.618 2.0 0.49932

Mooney-Rivlin 2 0.367 −0.0292 2.0 −2.0 0.49932

Ogden-Tschoegl 3 0.618 0.001245 −0.00982 1.3 5.0 −2.0 0.49932

Fig. 2 A bar under simple tension 

Fig. 3 Variation of nominal stress  with respect
to stretch λ1 of a bar under simple tension
(Ogden-Tschoegl material)

t1 n( ) Fig. 4 Variation of nominal stress  with respect
to stretch λ1 of a bar under simple tension
(Mooney-Rivlin material)

t1 n( )
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3.1 Simple tension of a rectangular prismatic bar

A hyperelastic bar (Fig. 2) under axial tension is analyzed by the proposed finite element model

using a mesh size of 10 × 1 × 1 (number of divisions along x, y and z are 10, 1 and 1 respectively)

i.e., 10 elements. For the axial tension a uniformly distributed load is applied on the face at x =

100 mm where the load is consistently distributed at all the nodes on that face. On the opposite face

(x = 0) the displacement components u (u1) of all the nodes are restrained. Apart from that, the

displacement components v (u2) and w (u3) at the faces y = 0 and z = 0, respectively, are restrained.

The results obtained in the present analysis are plotted in Figs. 3 and 4 where the variation of the

nominal (engineering) stress  is shown with respect to the major principal stretch. It

is found that the value of  as well as λ1 does not vary from point to point at any configuration/

load level as expected. The results are compared with the analytical solution based on original strain

energy function (Ogden 1984) in these figures, which show an excellent agreement between them.

For this mode of deformation, the analytical solution (Ogden 1984) used is given as = nτ11/λ1

. The present results obtained for the Ogden-Tschoegl model are also plotted

in Fig. 5 along with the experimental results of Treloar (1974) and it is observed that a good

agreement exists between the two up to a stretch of 7.5.

3.2 Pure shear - a thin long plate under lateral tension

The problem of a thin infinitely long plate subjected to uniform lateral tension along the width is

considered in this example. As it may be treated as plane strain problem, the analysis of a strip is

sufficient to get the solution. For this purpose the same bar taken in the previous example (Fig. 2) is

used as the required strip in the present case. Similar to the previous case, the analysis is carried out

with an identical mesh size, loading and boundary conditions where one additional condition is

imposed by restraining v (u2) on the face at y = 10 mm. It should be noted that the present problem

t1 n( ) τ
n

11
/λ1=( )

t1 n( )

t1 n( )

µk λ1

α
k

1–

λ1

0.5α–
k

1–

–( )
k 1=

m

∑=

Fig. 5 Variation of nominal stress  with respect to stretch λ1 of a bar under simple tensiont1 n( )
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can also be defined as a pure shear problem since the principal stretch along y direction is unity and

stress along z direction is zero. In Figs. 6 and 7, the results are plotted in similar manner and

compared with the analytical solution where the results are found to be exactly matching. For the case

of pure shear, the analytical solution used (Ogden 1984) is .

3.3 Simple shear of a square plate

The simple shear of a square plate, as shown in Fig. 8, is studied in this example. The uniform

shear load is applied on the face at x = 100 mm towards z direction where the load is as usual

t1 n( ) µk λ1

α
k

1–

λ1

α–
k

1–

–( )
k 1=

3

∑=

Fig. 6 Variation of nominal stress  with respect
to stretch λ1 of a thin long plate under lateral
tension – pure shear (Ogden-Tschoegl material)

t1 n( ) Fig. 7 Variation of nominal stress  with respect
to stretch λ1 of a thin long plate under lateral
tension – pure shear (Mooney-Rivlin material)

t1 n( )

Fig. 8 A square plate under simple shear 
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distributed consistently at all the nodes on that face. For the imposition of the boundary conditions,

the different displacement components restrained are: u = 0 at x = 0 mm, x = 100 mm, z = 0 mm

and z = 100 mm; v = 0 at all the nodes; w = 0 at x = 0 mm. Taking the neo-Hookean material

model, the analysis is carried out with 100 elements (mesh size: 10 × 1 × 10). The results obtained

in the form of stress components (  and ) as well as

normal and shear stresses (ts and tn) at the inclined edge (z = 0 or z = 100 mm) evaluated from

these stresses are presented with those obtained from the analytical solution (Beatty 1987) for

different values of shear strain  in Table 2. It clearly shows that the results obtained

from both the sources are exactly matching. 

τxx τ
n

11
= τyy τ

n

22
= τzz τ

n

33
=, , τxz τ

n

13
=

γ 20

n
ε13=( )

Table 2 Different stress components in the square plate under simple shear

Shear strain
γ

Sources
τxx

(N/m2)
τyy

 (N/m2)
τzz

(N/m2)
τxz

(N/m2)
ts

 (N/m2)
tn

 (N/m2)

100
Analytical* 0.0000 0.0000 19214.4 108970 105684 −18635.0

Present 0.0000 0.0000 19214.4 108970 105684 −18635.0

200
Analytical 0.0000 0.0000 81869.1 224934 198621 −72292.3

Present 0.0000 0.0000 81869.1 224934 198621 −72292.3

300
Analytical 0.0000 0.0000 206000 356802 267602 −154500

Present 0.0000 0.0000 206000 356802 267602 −154500

400
Analytical 0.0000 0.0000 435127 518564 304306 −255343

Present 0.0000 0.0000 435127 518564 304306 −255343

500
Analytical 0.0000 0.0000 877731 736504  304306 −362657

Present 0.0000 0.0000 877731 736504  304306 −362657

600
Analytical 0.0000 0.0000 0.185400E+07 0.107041E+07 267602 −463500

Present 0.0000 0.0000 0.185400E+07 0.107041E+07 267602 −463500

*Beatty (1987)

Fig. 9 A cantilever beam under pure bending

Table 3 Tip deflection of the cantilever beam under pure bending (neo-Hookean material) 

End moment Analytical (Ogden 1984) Present

15 N-m 1.216 m 1.218 m

30 N-m 1.349 m 1.363 m
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Table 4 Tip deflection of the cantilever beam under pure bending (Mooney-Rivlin material)

End moment
Analytical 

(Ogden 1984)
FEM-Ia 

(Chen and Wu 1996)
FEM-IIb 

(Chen and Wu 1996)
Present

12.5 N-m 1.392 m 1.320 m 1.226 m 1.395 m

25.0 N-m 0.950 m - - 0.959 m

aFinite Element Method (Regular mesh) 
bFinite Element Method (Irregular mesh)

Fig. 10 Variation of end moment with respect to tip
deflection of the cantilever beam under pure
bending (neo-Hookean material)

Fig. 11 Variation of end moment with respect to tip
deflection of the cantilever beam under pure
bending (Mooney-Rivlin material)

Fig. 12 Deformed configurations of the cantilever beam under pure bending due to different end moments
(Ogden-Tschoegl material)
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3.4 Pure bending of a cantilever beam

The case of pure bending is studied by taking a 2000 mm long elastomer cantilever beam having

a square cross-section of 100 mm sides (Fig. 9) under the action of a moment at the free end. As

3D finite element is used in the present analysis, the moment is replaced by an equivalent normal

load having linear variation across the depth. The boundary conditions imposed are: u = 0 at x = 0 mm,

v = 0 at all the nodes and w = 0 at x = 0 mm and z = 0 mm. The analysis is carried out with 160

elements (mesh size: 40 × 1 × 4) and the results obtained are presented in different forms. For neo-

Hookean material, the tip deflection due to end moment of 15N-m and 30N-m evaluated in the

present analysis are presented with those obtained from analytical solution (Ogden 1984) in Table 3.

In a similar manner, the results are given for end moment of 12.5N-m and 25N-m in Table 4 for the

Mooney-Rivlin material where the finite element results of Chen et al. (1996) for end moment of

12.5N-m are also included. The tables show that the present results are reasonably close to the

analytical solution. Again, the variation of an end moment with respect to the tip deflection is

plotted in Fig. 10 and Fig. 11 for these two materials where a close agreement between the results is

similarly found. For the neo-Hookean material, the analysis is also carried out with a Poison’s ratio

of 0.492 and the results obtained are included in Fig. 11. Interestingly, it is found to be more close

to the analytical solution than that obtained with 0.49932 as the value of Poison’s ratio usually

taken. Finally the deformed shapes of the beam for the Ogden-Tschoegl material are presented in

Fig. 12 corresponding to different end moments. 

3.5 A cantilever beam under inclined tip load

As the number of available results on deformation of rubber member is very few, a new problem

is fabricated in this example. It is a cantilever beam subjected to an inclined tip load distributed

uniformly at the free end (Fig. 13), which induces a combined mode of deformation that consists of

compression, bending about y axis and shear in x-z plane. The analysis is carried out with 100

elements (mesh size: 5 × 1 × 20) taking the neo-Hookean material. The boundary conditions taken

Fig. 13 A cantilever beam subjected to uniformly distributed inclined tip load
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are: u = 0 at z = 0 mm, v = 0 at all the nodes and w = 0 at z = 0 mm. For the inclined load having

an intensity of 25 kN/sq·m, the horizontal tip deflections obtained for different inclination φ of the

load (Fig. 13) ranging from 00 to 750 are presented in Table 5. In a similar manner the stress

components obtained at the extreme fibers of the supported end are presented in Table 6. Finally its

deformed shape due to a 25 kN/sq·m inclined load with different values of φ is shown in Fig. 14. 

3.6 A hollow cylinder subjected to an internal pressure, internal tangential distributed

load and end surface distributed load

For same reason as mentioned in the previous example, another new problem is fabricated in this

example. This is a circular rubber cylinder (Fig. 15) of an inner radius 0.1 m, an outer radius 0.25 m

and a length 0.3 m which is subjected to an internal pressure (pi), a distributed tangential load (pt) at

the inner cylindrical surface and a distributed linearly varying load (as shown in Fig. 15) at the end

Table 5 Horizontal tip deflections (m) of the cantilever beam subjected to an inclined tip load (p = 25 kN/sq·m)

φ = 00 φ = 150 φ = 300 φ = 450 φ = 600 φ = 750

1.1461 1.0650 0.9317 0.7503 0.5278 0.2726

Table 6 Stress components (MPa) at the extreme fibers of the supported end of the cantilever beam subjected
to an inclined tip load (p = 25 kN/sq·m)

φ x = 0 mm, z = 0 mm x = 500 mm, z = 0 mm

τxx τyy τzz τxy τxx τyy τzz τxy

0o 0.7199 0.7322 0.7608 −0.1929 −0.9987 −0.9761 −0.9734 −0.1292

15o 0.6330 0.6424 0.6617 −0.1658 −0.8800 −0.8605 −0.8572 −0.1209

30o 0.5200 0.5260 0.5365 −0.1319 −0.7245 −0.7094 −0.7052 −0.1089

45o 0.3903 0.3933 0.3973 −0.0946 −0.5540 −0.5435 −0.5391 −0.0924

60o 0.2504 0.2511 0.2516 −0.0563 −0.3821 −0.3759 −0.3722 −0.0722

75o 0.1022 0.1020 0.1015 −0.0189 −0.2139 −0.2113 −0.2091 −0.0464

Fig. 14 Deformed configurations of the cantilever beam due an inclined load (25 kN/sq·m)
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surface at Z = 0.3 m where pa = pt. The last two distributed loads result in a torque. The analysis

is performed with 288 elements (mesh size: 6 × 12 × 4) with 6 divisions along the R-direction, 12

divisions along the θ-direction and 4 divisions along the Z-direction. The boundary conditions

imposed are: w = 0.0 at Z = 0 and Z = 0.3 m, uθ = 0 at R = 0.25 m and Z = 0.0. The angular

displacements of point A, B and C about the z-axis are presented in Fig. 16. The rubber material is

the Mooney-Rivlin type as mentioned in Table 1. The Cauchy stresses at inner cylindrical surface at

Z = 0.15 m and the internal pressure variations are depicted in Fig. 17. From the graph it is seen that

the internal pressure is in good agreement with the radial stress (σr) as expected.

1

10
------

Fig. 15 A hollow cylinder

Fig. 16 Angular displacements versus total applied
torque

Fig. 17 Cauchy stresses at inner surface at z =
0.15 m and internal pressure vs. applied
torque
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3.7 A hollow cylinder under combined torsion and telescopic shearing

The hollow cylinder as taken in the previous example (Fig. 15) is considered for the problem of

combined torsion and telescopic shearing. Uniformly distributed tangential and axial forces are

applied on the inner cylindrical surface to simulate a torque and an axial load on the cylinder. The

outer cylindrical surface is fixed and the inner cylindrical surface is restrained from radial

displacement (uθ). The cylinder is divided into 288 elements with 6 divisions along the R-direction,

12 divisions along the θ-direction and 4 divisions along the Z-direction. Radial stress (σrr),

circumferential stress (σθθ) and axial stress (σzz) vs. radius for different angles of twist (ϕ) and axial

displacements (w) are shown in Figs. 18, 19 and 20 respectively.

Fig. 18 Radial stress versus radius for different
angles of twist and axial displacements

Fig. 19 Circumferential stress versus radius for
different angles of twist and axial displace-
ments

Fig. 20 Axial stress versus radius for different angles of twist and axial displacements



244 M. C. Manna, A. H. Sheikh and R. Bhattacharyya

4. Conclusions 

A three dimensional finite element model based on displacement formulation is proposed for the

analysis of structural component made of rubber-elastic material. It includes geometric nonlinearity

based on an updated Lagrangian approach. An efficient compressible stain energy function is used

for the constitutive relationship of the rubber elastic material. A twenty node three dimensional

brick element having the three usual degrees of freedom at each node is used for the finite element

modeling. The model is applied to some problems having basic modes of deformation such as

simple tension, pure shear, simple shear and pure bending. The results obtained are validated with

the analytical results, which show a very good performance of the proposed model in terms of

solution accuracy. In the present study, the Poison’s ratio up to a value of 0.49932 is used where

any numerical disturbance such as stability, convergence or other problem are not faced. Finally,

two new problems - one having combined modes of deformation consisting of compression,

bending and shear and the other one being hollow cylinder under combined torsion and telescopic

shearing are solved. The new results obtained are reported for future references since the number of

available results for theses problems is very few. Based on the performance of this straightforward

displacement model observed in the present study, it can be highly recommended for the analysis of

nearly incompressible materials undergoing deformation up to a large extent.
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